overte-HifiExperiments/libraries/animation/src/Flow.cpp
2019-02-15 09:40:49 -07:00

735 lines
No EOL
30 KiB
C++

//
// Flow.cpp
//
// Created by Luis Cuenca on 1/21/2019.
// Copyright 2019 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "Flow.h"
#include "Rig.h"
#include "AnimSkeleton.h"
const std::map<QString, FlowPhysicsSettings> PRESET_FLOW_DATA = { { "hair", FlowPhysicsSettings() },
{ "skirt", FlowPhysicsSettings(true, 1.0f, DEFAULT_GRAVITY, 0.65f, 0.8f, 0.45f, 0.01f) },
{ "breast", FlowPhysicsSettings(true, 1.0f, DEFAULT_GRAVITY, 0.65f, 0.8f, 0.45f, 0.01f) } };
const std::map<QString, FlowCollisionSettings> PRESET_COLLISION_DATA = {
{ "Spine2", FlowCollisionSettings(QUuid(), FlowCollisionType::CollisionSphere, glm::vec3(0.0f, 0.2f, 0.0f), 0.14f) },
{ "LeftArm", FlowCollisionSettings(QUuid(), FlowCollisionType::CollisionSphere, glm::vec3(0.0f, 0.02f, 0.0f), 0.05f) },
{ "RightArm", FlowCollisionSettings(QUuid(), FlowCollisionType::CollisionSphere, glm::vec3(0.0f, 0.02f, 0.0f), 0.05f) },
{ "HeadTop_End", FlowCollisionSettings(QUuid(), FlowCollisionType::CollisionSphere, glm::vec3(0.0f, -0.15f, 0.0f), 0.09f) }
};
FlowCollisionSphere::FlowCollisionSphere(const int& jointIndex, const FlowCollisionSettings& settings, bool isTouch) {
_jointIndex = jointIndex;
_radius = _initialRadius = settings._radius;
_offset = _initialOffset = settings._offset;
_entityID = settings._entityID;
_isTouch = isTouch;
}
FlowCollisionResult FlowCollisionSphere::computeSphereCollision(const glm::vec3& point, float radius) const {
FlowCollisionResult result;
auto centerToJoint = point - _position;
result._distance = glm::length(centerToJoint) - radius;
result._offset = _radius - result._distance;
result._normal = glm::normalize(centerToJoint);
result._radius = _radius;
result._position = _position;
return result;
}
FlowCollisionResult FlowCollisionSphere::checkSegmentCollision(const glm::vec3& point1, const glm::vec3& point2, const FlowCollisionResult& collisionResult1, const FlowCollisionResult& collisionResult2) {
FlowCollisionResult result;
auto segment = point2 - point1;
auto segmentLength = glm::length(segment);
auto maxDistance = glm::sqrt(glm::pow(collisionResult1._radius, 2) + glm::pow(segmentLength, 2));
if (collisionResult1._distance < maxDistance && collisionResult2._distance < maxDistance) {
float segmentPercentage = collisionResult1._distance / (collisionResult1._distance + collisionResult2._distance);
glm::vec3 collisionPoint = point1 + segment * segmentPercentage;
glm::vec3 centerToSegment = collisionPoint - _position;
float distance = glm::length(centerToSegment);
if (distance < _radius) {
result._offset = _radius - distance;
result._position = _position;
result._radius = _radius;
result._normal = glm::normalize(centerToSegment);
result._distance = distance;
}
}
return result;
}
void FlowCollisionSystem::addCollisionSphere(int jointIndex, const FlowCollisionSettings& settings, const glm::vec3& position, bool isSelfCollision, bool isTouch) {
auto collision = FlowCollisionSphere(jointIndex, settings, isTouch);
collision.setPosition(position);
if (isSelfCollision) {
_selfCollisions.push_back(collision);
} else {
_othersCollisions.push_back(collision);
}
};
void FlowCollisionSystem::resetCollisions() {
_allCollisions.clear();
_othersCollisions.clear();
_selfCollisions.clear();
}
FlowCollisionResult FlowCollisionSystem::computeCollision(const std::vector<FlowCollisionResult> collisions) {
FlowCollisionResult result;
if (collisions.size() > 1) {
for (size_t i = 0; i < collisions.size(); i++) {
result._offset += collisions[i]._offset;
result._normal = result._normal + collisions[i]._normal * collisions[i]._distance;
result._position = result._position + collisions[i]._position;
result._radius += collisions[i]._radius;
result._distance += collisions[i]._distance;
}
result._offset = result._offset / collisions.size();
result._radius = 0.5f * glm::length(result._normal);
result._normal = glm::normalize(result._normal);
result._position = result._position / (float)collisions.size();
result._distance = result._distance / collisions.size();
} else if (collisions.size() == 1) {
result = collisions[0];
}
result._count = (int)collisions.size();
return result;
};
void FlowCollisionSystem::setScale(float scale) {
_scale = scale;
for (size_t j = 0; j < _selfCollisions.size(); j++) {
_selfCollisions[j]._radius = _selfCollisions[j]._initialRadius * scale;
_selfCollisions[j]._offset = _selfCollisions[j]._initialOffset * scale;
}
};
std::vector<FlowCollisionResult> FlowCollisionSystem::checkFlowThreadCollisions(FlowThread* flowThread) {
std::vector<std::vector<FlowCollisionResult>> FlowThreadResults;
FlowThreadResults.resize(flowThread->_joints.size());
for (size_t j = 0; j < _allCollisions.size(); j++) {
FlowCollisionSphere &sphere = _allCollisions[j];
FlowCollisionResult rootCollision = sphere.computeSphereCollision(flowThread->_positions[0], flowThread->_radius);
std::vector<FlowCollisionResult> collisionData = { rootCollision };
bool tooFar = rootCollision._distance >(flowThread->_length + rootCollision._radius);
FlowCollisionResult nextCollision;
if (!tooFar) {
if (sphere._isTouch) {
for (size_t i = 1; i < flowThread->_joints.size(); i++) {
auto prevCollision = collisionData[i - 1];
nextCollision = _allCollisions[j].computeSphereCollision(flowThread->_positions[i], flowThread->_radius);
collisionData.push_back(nextCollision);
bool isTouching = false;
if (prevCollision._offset > 0.0f) {
if (i == 1) {
FlowThreadResults[i - 1].push_back(prevCollision);
isTouching = true;
}
} else if (nextCollision._offset > 0.0f) {
FlowThreadResults[i].push_back(nextCollision);
isTouching = true;
} else {
FlowCollisionResult segmentCollision = _allCollisions[j].checkSegmentCollision(flowThread->_positions[i - 1], flowThread->_positions[i], prevCollision, nextCollision);
if (segmentCollision._offset > 0) {
FlowThreadResults[i - 1].push_back(segmentCollision);
FlowThreadResults[i].push_back(segmentCollision);
isTouching = true;
}
}
}
} else {
if (rootCollision._offset > 0.0f) {
FlowThreadResults[0].push_back(rootCollision);
}
for (size_t i = 1; i < flowThread->_joints.size(); i++) {
nextCollision = _allCollisions[j].computeSphereCollision(flowThread->_positions[i], flowThread->_radius);
if (nextCollision._offset > 0.0f) {
FlowThreadResults[i].push_back(nextCollision);
}
}
}
}
}
std::vector<FlowCollisionResult> results;
for (size_t i = 0; i < flowThread->_joints.size(); i++) {
results.push_back(computeCollision(FlowThreadResults[i]));
}
return results;
};
FlowCollisionSettings FlowCollisionSystem::getCollisionSettingsByJoint(int jointIndex) {
for (auto &collision : _selfCollisions) {
if (collision._jointIndex == jointIndex) {
return FlowCollisionSettings(collision._entityID, FlowCollisionType::CollisionSphere, collision._initialOffset, collision._initialRadius);
}
}
return FlowCollisionSettings();
}
void FlowCollisionSystem::setCollisionSettingsByJoint(int jointIndex, const FlowCollisionSettings& settings) {
for (auto &collision : _selfCollisions) {
if (collision._jointIndex == jointIndex) {
collision._initialRadius = settings._radius;
collision._initialOffset = settings._offset;
collision._radius = _scale * settings._radius;
collision._offset = _scale * settings._offset;
}
}
}
void FlowCollisionSystem::prepareCollisions() {
_allCollisions.clear();
_allCollisions.resize(_selfCollisions.size() + _othersCollisions.size());
std::copy(_selfCollisions.begin(), _selfCollisions.begin() + _selfCollisions.size(), _allCollisions.begin());
std::copy(_othersCollisions.begin(), _othersCollisions.begin() + _othersCollisions.size(), _allCollisions.begin() + _selfCollisions.size());
_othersCollisions.clear();
}
FlowNode::FlowNode(const glm::vec3& initialPosition, FlowPhysicsSettings settings) {
_initialPosition = _previousPosition = _currentPosition = initialPosition;
_initialRadius = settings._radius;
}
void FlowNode::update(float deltaTime, const glm::vec3& accelerationOffset) {
_acceleration = glm::vec3(0.0f, _settings._gravity, 0.0f);
_previousVelocity = _currentVelocity;
_currentVelocity = _currentPosition - _previousPosition;
_previousPosition = _currentPosition;
if (!_anchored) {
// Add inertia
const float FPS = 60.0f;
float timeRatio = (FPS * deltaTime);
float invertedTimeRatio = timeRatio > 0.0f ? 1.0f / timeRatio : 1.0f;
auto deltaVelocity = _previousVelocity - _currentVelocity;
auto centrifugeVector = glm::length(deltaVelocity) != 0.0f ? glm::normalize(deltaVelocity) : glm::vec3();
_acceleration = _acceleration + centrifugeVector * _settings._inertia * glm::length(_currentVelocity) * invertedTimeRatio;
// Add offset
_acceleration += accelerationOffset;
float accelerationFactor = glm::pow(_settings._delta, 2) * timeRatio;
glm::vec3 deltaAcceleration = _acceleration * accelerationFactor;
// Calculate new position
_currentPosition = _currentPosition + (_currentVelocity * _settings._damping) + deltaAcceleration;
} else {
_acceleration = glm::vec3(0.0f);
_currentVelocity = glm::vec3(0.0f);
}
};
void FlowNode::solve(const glm::vec3& constrainPoint, float maxDistance, const FlowCollisionResult& collision) {
solveConstraints(constrainPoint, maxDistance);
solveCollisions(collision);
};
void FlowNode::solveConstraints(const glm::vec3& constrainPoint, float maxDistance) {
glm::vec3 constrainVector = _currentPosition - constrainPoint;
float difference = maxDistance / glm::length(constrainVector);
_currentPosition = difference < 1.0 ? constrainPoint + constrainVector * difference : _currentPosition;
};
void FlowNode::solveCollisions(const FlowCollisionResult& collision) {
_colliding = collision._offset > 0.0f;
_collision = collision;
if (_colliding) {
_currentPosition = _currentPosition + collision._normal * collision._offset;
_previousCollision = collision;
} else {
_previousCollision = FlowCollisionResult();
}
};
FlowJoint::FlowJoint(int jointIndex, int parentIndex, int childIndex, const QString& name, const QString& group, const FlowPhysicsSettings& settings) {
_index = jointIndex;
_name = name;
_group = group;
_childIndex = childIndex;
_parentIndex = parentIndex;
_node = FlowNode(glm::vec3(), settings);
};
void FlowJoint::setInitialData(const glm::vec3& initialPosition, const glm::vec3& initialTranslation, const glm::quat& initialRotation, const glm::vec3& parentPosition) {
_initialPosition = initialPosition;
_node._initialPosition = initialPosition;
_node._previousPosition = initialPosition;
_node._currentPosition = initialPosition;
_initialTranslation = initialTranslation;
_initialRotation = initialRotation;
_translationDirection = glm::normalize(_initialTranslation);
_parentPosition = parentPosition;
_initialLength = _length = glm::length(_initialPosition - parentPosition);
}
void FlowJoint::setUpdatedData(const glm::vec3& updatedPosition, const glm::vec3& updatedTranslation, const glm::quat& updatedRotation, const glm::vec3& parentPosition, const glm::quat& parentWorldRotation) {
_updatedPosition = updatedPosition;
_updatedRotation = updatedRotation;
_updatedTranslation = updatedTranslation;
_parentPosition = parentPosition;
_parentWorldRotation = parentWorldRotation;
}
void FlowJoint::setRecoveryPosition(const glm::vec3& recoveryPosition) {
_recoveryPosition = recoveryPosition;
_applyRecovery = true;
}
void FlowJoint::update(float deltaTime) {
glm::vec3 accelerationOffset = glm::vec3(0.0f);
if (_node._settings._stiffness > 0.0f) {
glm::vec3 recoveryVector = _recoveryPosition - _node._currentPosition;
float recoveryFactor = glm::pow(_node._settings._stiffness, 3);
accelerationOffset = recoveryVector * recoveryFactor;
}
_node.update(deltaTime, accelerationOffset);
if (_node._anchored) {
if (!_isDummy) {
_node._currentPosition = _updatedPosition;
} else {
_node._currentPosition = _parentPosition;
}
}
};
void FlowJoint::solve(const FlowCollisionResult& collision) {
_node.solve(_parentPosition, _length, collision);
};
FlowDummyJoint::FlowDummyJoint(const glm::vec3& initialPosition, int index, int parentIndex, int childIndex, FlowPhysicsSettings settings) :
FlowJoint(index, parentIndex, childIndex, DUMMY_KEYWORD + "_" + index, DUMMY_KEYWORD, settings) {
_isDummy = true;
_initialPosition = initialPosition;
_node = FlowNode(_initialPosition, settings);
_length = DUMMY_JOINT_DISTANCE;
}
FlowThread::FlowThread(int rootIndex, std::map<int, FlowJoint>* joints) {
_jointsPointer = joints;
computeFlowThread(rootIndex);
}
void FlowThread::resetLength() {
_length = 0.0f;
for (size_t i = 1; i < _joints.size(); i++) {
int index = _joints[i];
_length += _jointsPointer->at(index)._length;
}
}
void FlowThread::computeFlowThread(int rootIndex) {
int parentIndex = rootIndex;
if (_jointsPointer->size() == 0) {
return;
}
int childIndex = _jointsPointer->at(parentIndex)._childIndex;
std::vector<int> indexes = { parentIndex };
for (size_t i = 0; i < _jointsPointer->size(); i++) {
if (childIndex > -1) {
indexes.push_back(childIndex);
childIndex = _jointsPointer->at(childIndex)._childIndex;
} else {
break;
}
}
for (size_t i = 0; i < indexes.size(); i++) {
int index = indexes[i];
_joints.push_back(index);
if (i > 0) {
_length += _jointsPointer->at(index)._length;
}
}
};
void FlowThread::computeRecovery() {
int parentIndex = _joints[0];
auto parentJoint = _jointsPointer->at(parentIndex);
_jointsPointer->at(parentIndex)._recoveryPosition = parentJoint._recoveryPosition = parentJoint._node._currentPosition;
glm::quat parentRotation = parentJoint._parentWorldRotation * parentJoint._initialRotation;
for (size_t i = 1; i < _joints.size(); i++) {
auto joint = _jointsPointer->at(_joints[i]);
glm::quat rotation;
rotation = (i == 1) ? parentRotation : parentJoint._initialRotation;
_jointsPointer->at(_joints[i])._recoveryPosition = joint._recoveryPosition = parentJoint._recoveryPosition + (rotation * (joint._initialTranslation * 0.01f));
parentJoint = joint;
}
};
void FlowThread::update(float deltaTime) {
if (getActive()) {
_positions.clear();
auto &firstJoint = _jointsPointer->at(_joints[0]);
_radius = firstJoint._node._settings._radius;
if (firstJoint._node._settings._stiffness > 0.0f) {
computeRecovery();
}
for (size_t i = 0; i < _joints.size(); i++) {
auto &joint = _jointsPointer->at(_joints[i]);
joint.update(deltaTime);
_positions.push_back(joint._node._currentPosition);
}
}
};
void FlowThread::solve(FlowCollisionSystem& collisionSystem) {
if (getActive()) {
if (collisionSystem.getActive()) {
auto bodyCollisions = collisionSystem.checkFlowThreadCollisions(this);
for (size_t i = 0; i < _joints.size(); i++) {
int index = _joints[i];
_jointsPointer->at(index).solve(bodyCollisions[i]);
}
} else {
for (size_t i = 0; i < _joints.size(); i++) {
int index = _joints[i];
_jointsPointer->at(index).solve(FlowCollisionResult());
}
}
}
};
void FlowThread::computeJointRotations() {
auto pos0 = _rootFramePositions[0];
auto pos1 = _rootFramePositions[1];
auto joint0 = _jointsPointer->at(_joints[0]);
auto joint1 = _jointsPointer->at(_joints[1]);
auto initial_pos1 = pos0 + (joint0._initialRotation * (joint1._initialTranslation * 0.01f));
auto vec0 = initial_pos1 - pos0;
auto vec1 = pos1 - pos0;
auto delta = rotationBetween(vec0, vec1);
joint0._currentRotation = _jointsPointer->at(_joints[0])._currentRotation = delta * joint0._initialRotation;
for (size_t i = 1; i < _joints.size() - 1; i++) {
auto nextJoint = _jointsPointer->at(_joints[i + 1]);
for (size_t j = i; j < _joints.size(); j++) {
_rootFramePositions[j] = glm::inverse(joint0._currentRotation) * _rootFramePositions[j] - (joint0._initialTranslation * 0.01f);
}
pos0 = _rootFramePositions[i];
pos1 = _rootFramePositions[i + 1];
initial_pos1 = pos0 + joint1._initialRotation * (nextJoint._initialTranslation * 0.01f);
vec0 = initial_pos1 - pos0;
vec1 = pos1 - pos0;
delta = rotationBetween(vec0, vec1);
joint1._currentRotation = _jointsPointer->at(joint1._index)._currentRotation = delta * joint1._initialRotation;
joint0 = joint1;
joint1 = nextJoint;
}
};
void FlowThread::apply() {
if (!getActive()) {
return;
}
computeJointRotations();
};
bool FlowThread::getActive() {
return _jointsPointer->at(_joints[0])._node._active;
};
void Flow::init(bool isActive, bool isCollidable) {
if (isActive) {
if (!_initialized) {
calculateConstraints();
}
} else {
cleanUp();
}
}
void Flow::calculateConstraints() {
cleanUp();
if (!_rig) {
return;
}
int rightHandIndex = -1;
auto flowPrefix = FLOW_JOINT_PREFIX.toUpper();
auto simPrefix = SIM_JOINT_PREFIX.toUpper();
auto skeleton = _rig->getAnimSkeleton();
std::vector<int> handsIndices;
if (skeleton) {
for (int i = 0; i < skeleton->getNumJoints(); i++) {
auto name = skeleton->getJointName(i);
if (name == "RightHand") {
rightHandIndex = i;
}
if (std::find(HAND_COLLISION_JOINTS.begin(), HAND_COLLISION_JOINTS.end(), name) != HAND_COLLISION_JOINTS.end()) {
handsIndices.push_back(i);
}
auto parentIndex = skeleton->getParentIndex(i);
if (parentIndex == -1) {
continue;
}
auto jointChildren = skeleton->getChildrenOfJoint(i);
// auto childIndex = jointChildren.size() > 0 ? jointChildren[0] : -1;
auto group = QStringRef(&name, 0, 3).toString().toUpper();
auto split = name.split("_");
bool isSimJoint = (group == simPrefix);
bool isFlowJoint = split.size() > 2 && split[0].toUpper() == flowPrefix;
if (isFlowJoint || isSimJoint) {
group = "";
if (isSimJoint) {
for (int j = 1; j < name.size() - 1; j++) {
bool toFloatSuccess;
QStringRef(&name, (int)(name.size() - j), 1).toString().toFloat(&toFloatSuccess);
if (!toFloatSuccess && (name.size() - j) > (int)simPrefix.size()) {
group = QStringRef(&name, (int)simPrefix.size(), (int)(name.size() - j + 1)).toString();
break;
}
}
if (group.isEmpty()) {
group = QStringRef(&name, (int)simPrefix.size(), name.size() - 1).toString();
}
qCDebug(animation) << "Sim joint added to flow: " << name;
} else {
group = split[1];
}
if (!group.isEmpty()) {
_flowJointKeywords.push_back(group);
FlowPhysicsSettings jointSettings;
if (PRESET_FLOW_DATA.find(group) != PRESET_FLOW_DATA.end()) {
jointSettings = PRESET_FLOW_DATA.at(group);
} else {
jointSettings = DEFAULT_JOINT_SETTINGS;
}
if (_flowJointData.find(i) == _flowJointData.end()) {
auto flowJoint = FlowJoint(i, parentIndex, -1, name, group, jointSettings);
_flowJointData.insert(std::pair<int, FlowJoint>(i, flowJoint));
}
}
} else {
if (PRESET_COLLISION_DATA.find(name) != PRESET_COLLISION_DATA.end()) {
_collisionSystem.addCollisionSphere(i, PRESET_COLLISION_DATA.at(name));
}
}
}
}
for (auto &jointData : _flowJointData) {
int jointIndex = jointData.first;
glm::vec3 jointPosition, parentPosition, jointTranslation;
glm::quat jointRotation;
_rig->getJointPositionInWorldFrame(jointIndex, jointPosition, _entityPosition, _entityRotation);
_rig->getJointPositionInWorldFrame(jointData.second._parentIndex, parentPosition, _entityPosition, _entityRotation);
_rig->getJointTranslation(jointIndex, jointTranslation);
_rig->getJointRotation(jointIndex, jointRotation);
jointData.second.setInitialData(jointPosition, jointTranslation, jointRotation, parentPosition);
}
std::vector<int> roots;
for (auto &joint :_flowJointData) {
if (_flowJointData.find(joint.second._parentIndex) == _flowJointData.end()) {
joint.second._node._anchored = true;
roots.push_back(joint.first);
} else {
_flowJointData[joint.second._parentIndex]._childIndex = joint.first;
}
}
for (size_t i = 0; i < roots.size(); i++) {
FlowThread thread = FlowThread(roots[i], &_flowJointData);
// add threads with at least 2 joints
if (thread._joints.size() > 0) {
if (thread._joints.size() == 1) {
int jointIndex = roots[i];
auto joint = _flowJointData[jointIndex];
auto jointPosition = joint._updatedPosition;
auto newSettings = FlowPhysicsSettings(joint._node._settings);
newSettings._stiffness = ISOLATED_JOINT_STIFFNESS;
int extraIndex = (int)_flowJointData.size();
auto newJoint = FlowDummyJoint(jointPosition, extraIndex, jointIndex, -1, newSettings);
newJoint._isDummy = false;
newJoint._length = ISOLATED_JOINT_LENGTH;
newJoint._childIndex = extraIndex;
newJoint._group = _flowJointData[jointIndex]._group;
thread = FlowThread(jointIndex, &_flowJointData);
}
_jointThreads.push_back(thread);
}
}
if (_jointThreads.size() == 0) {
_rig->clearJointStates();
}
if (SHOW_DUMMY_JOINTS && rightHandIndex > -1) {
int jointCount = (int)_flowJointData.size();
int extraIndex = (int)_flowJointData.size();
glm::vec3 rightHandPosition;
_rig->getJointPositionInWorldFrame(rightHandIndex, rightHandPosition, _entityPosition, _entityRotation);
int parentIndex = rightHandIndex;
for (int i = 0; i < DUMMY_JOINT_COUNT; i++) {
int childIndex = (i == (DUMMY_JOINT_COUNT - 1)) ? -1 : extraIndex + 1;
auto newJoint = FlowDummyJoint(rightHandPosition, extraIndex, parentIndex, childIndex, DEFAULT_JOINT_SETTINGS);
_flowJointData.insert(std::pair<int, FlowJoint>(extraIndex, newJoint));
parentIndex = extraIndex;
extraIndex++;
}
_flowJointData[jointCount]._node._anchored = true;
auto extraThread = FlowThread(jointCount, &_flowJointData);
_jointThreads.push_back(extraThread);
}
if (handsIndices.size() > 0) {
FlowCollisionSettings handSettings;
handSettings._radius = HAND_COLLISION_RADIUS;
for (size_t i = 0; i < handsIndices.size(); i++) {
_collisionSystem.addCollisionSphere(handsIndices[i], handSettings, glm::vec3(), true, true);
}
}
_initialized = _jointThreads.size() > 0;
}
void Flow::cleanUp() {
_flowJointData.clear();
_jointThreads.clear();
_flowJointKeywords.clear();
_collisionSystem.resetCollisions();
_initialized = false;
_isScaleSet = false;
_active = false;
if (_rig) {
_rig->clearJointStates();
}
}
void Flow::setTransform(float scale, const glm::vec3& position, const glm::quat& rotation) {
_scale = scale;
_entityPosition = position;
_entityRotation = rotation;
_active = _initialized;
}
void Flow::setScale(float scale) {
if (!_isScaleSet) {
for (auto &joint : _flowJointData) {
joint.second._initialLength = joint.second._length / _scale;
}
_isScaleSet = true;
}
_lastScale = _scale;
_collisionSystem.setScale(_scale);
for (size_t i = 0; i < _jointThreads.size(); i++) {
for (size_t j = 0; j < _jointThreads[i]._joints.size(); j++) {
auto &joint = _flowJointData[_jointThreads[i]._joints[j]];
joint._node._settings._radius = joint._node._initialRadius * _scale;
joint._length = joint._initialLength * _scale;
}
_jointThreads[i].resetLength();
}
}
void Flow::update(float deltaTime) {
if (_initialized && _active) {
uint64_t startTime = usecTimestampNow();
uint64_t updateExpiry = startTime + MAX_UPDATE_FLOW_TIME_BUDGET;
if (_scale != _lastScale) {
setScale(_scale);
}
updateJoints();
for (size_t i = 0; i < _jointThreads.size(); i++) {
size_t index = _invertThreadLoop ? _jointThreads.size() - 1 - i : i;
auto &thread = _jointThreads[index];
thread.update(deltaTime);
thread.solve(_collisionSystem);
if (!updateRootFramePositions(index)) {
return;
}
thread.apply();
if (usecTimestampNow() > updateExpiry) {
break;
qWarning(animation) << "Flow Bones ran out of time updating threads";
}
}
setJoints();
_invertThreadLoop = !_invertThreadLoop;
}
}
bool Flow::worldToJointPoint(const glm::vec3& position, const int jointIndex, glm::vec3& jointSpacePosition) const {
glm::vec3 jointPos;
glm::quat jointRot;
if (_rig->getJointPositionInWorldFrame(jointIndex, jointPos, _entityPosition, _entityRotation) && _rig->getJointRotationInWorldFrame(jointIndex, jointRot, _entityRotation)) {
glm::vec3 modelOffset = position - jointPos;
jointSpacePosition = glm::inverse(jointRot) * modelOffset;
return true;
}
return false;
}
bool Flow::updateRootFramePositions(size_t threadIndex) {
auto &joints = _jointThreads[threadIndex]._joints;
int rootIndex = _flowJointData[joints[0]]._parentIndex;
_jointThreads[threadIndex]._rootFramePositions.clear();
for (size_t j = 0; j < joints.size(); j++) {
glm::vec3 jointPos;
if (worldToJointPoint(_flowJointData[joints[j]]._node._currentPosition, rootIndex, jointPos)) {
_jointThreads[threadIndex]._rootFramePositions.push_back(jointPos);
} else {
return false;
}
}
return true;
}
void Flow::updateJoints() {
for (auto &jointData : _flowJointData) {
int jointIndex = jointData.first;
glm::vec3 jointPosition, parentPosition, jointTranslation;
glm::quat jointRotation, parentWorldRotation;
_rig->getJointPositionInWorldFrame(jointIndex, jointPosition, _entityPosition, _entityRotation);
_rig->getJointPositionInWorldFrame(jointData.second._parentIndex, parentPosition, _entityPosition, _entityRotation);
_rig->getJointTranslation(jointIndex, jointTranslation);
_rig->getJointRotation(jointIndex, jointRotation);
_rig->getJointRotationInWorldFrame(jointData.second._parentIndex, parentWorldRotation, _entityRotation);
jointData.second.setUpdatedData(jointPosition, jointTranslation, jointRotation, parentPosition, parentWorldRotation);
}
auto &selfCollisions = _collisionSystem.getSelfCollisions();
for (auto &collision : selfCollisions) {
glm::quat jointRotation;
_rig->getJointPositionInWorldFrame(collision._jointIndex, collision._position, _entityPosition, _entityRotation);
_rig->getJointRotationInWorldFrame(collision._jointIndex, jointRotation, _entityRotation);
glm::vec3 worldOffset = jointRotation * collision._offset;
collision._position = collision._position + worldOffset;
}
_collisionSystem.prepareCollisions();
}
void Flow::setJoints() {
for (auto &thread : _jointThreads) {
auto &joints = thread._joints;
for (int jointIndex : joints) {
auto &joint = _flowJointData[jointIndex];
_rig->setJointRotation(jointIndex, true, joint._currentRotation, 2.0f);
}
}
}
void Flow::setOthersCollision(const QUuid& otherId, int jointIndex, const glm::vec3& position) {
FlowCollisionSettings settings;
settings._entityID = otherId;
settings._radius = HAND_COLLISION_RADIUS;
_collisionSystem.addCollisionSphere(jointIndex, settings, position, false, true);
}
void Flow::setPhysicsSettingsForGroup(const QString& group, const FlowPhysicsSettings& settings) {
for (auto &joint : _flowJointData) {
if (joint.second._group.toUpper() == group.toUpper()) {
joint.second._node._settings = settings;
}
}
}