overte-HifiExperiments/libraries/fbx/src/GLTFSerializer.cpp
Brad Davis 911fd27fc5 wip
2019-09-25 09:30:35 -07:00

2294 lines
92 KiB
C++
Executable file

//
// GLTFSerializer.cpp
// libraries/fbx/src
//
// Created by Luis Cuenca on 8/30/17.
// Copyright 2017 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "GLTFSerializer.h"
#include <QtCore/QBuffer>
#include <QtCore/QIODevice>
#include <QtCore/QEventLoop>
#include <QtCore/qjsondocument.h>
#include <QtCore/qjsonobject.h>
#include <QtCore/qjsonarray.h>
#include <QtCore/qjsonvalue.h>
#include <QtCore/qpair.h>
#include <QtCore/qlist.h>
#include <QtNetwork/QNetworkAccessManager>
#include <QtNetwork/QNetworkRequest>
#include <unordered_set>
#include <map>
#include <qfile.h>
#include <qfileinfo.h>
#include <glm/gtc/type_ptr.hpp>
#include <shared/NsightHelpers.h>
#include <NetworkAccessManager.h>
#include <ResourceManager.h>
#include <PathUtils.h>
#include <image/ColorChannel.h>
#include <FaceshiftConstants.h>
#include "FBXSerializer.h"
#define GLTF_GET_INDICIES(accCount) \
int index1 = (indices[n + 0] * accCount); \
int index2 = (indices[n + 1] * accCount); \
int index3 = (indices[n + 2] * accCount);
#define GLTF_APPEND_ARRAY_1(newArray, oldArray) \
GLTF_GET_INDICIES(1) \
newArray.append(oldArray[index1]); \
newArray.append(oldArray[index2]); \
newArray.append(oldArray[index3]);
#define GLTF_APPEND_ARRAY_2(newArray, oldArray) \
GLTF_GET_INDICIES(2) \
newArray.append(oldArray[index1]); \
newArray.append(oldArray[index1 + 1]); \
newArray.append(oldArray[index2]); \
newArray.append(oldArray[index2 + 1]); \
newArray.append(oldArray[index3]); \
newArray.append(oldArray[index3 + 1]);
#define GLTF_APPEND_ARRAY_3(newArray, oldArray) \
GLTF_GET_INDICIES(3) \
newArray.append(oldArray[index1]); \
newArray.append(oldArray[index1 + 1]); \
newArray.append(oldArray[index1 + 2]); \
newArray.append(oldArray[index2]); \
newArray.append(oldArray[index2 + 1]); \
newArray.append(oldArray[index2 + 2]); \
newArray.append(oldArray[index3]); \
newArray.append(oldArray[index3 + 1]); \
newArray.append(oldArray[index3 + 2]);
#define GLTF_APPEND_ARRAY_4(newArray, oldArray) \
GLTF_GET_INDICIES(4) \
newArray.append(oldArray[index1]); \
newArray.append(oldArray[index1 + 1]); \
newArray.append(oldArray[index1 + 2]); \
newArray.append(oldArray[index1 + 3]); \
newArray.append(oldArray[index2]); \
newArray.append(oldArray[index2 + 1]); \
newArray.append(oldArray[index2 + 2]); \
newArray.append(oldArray[index2 + 3]); \
newArray.append(oldArray[index3]); \
newArray.append(oldArray[index3 + 1]); \
newArray.append(oldArray[index3 + 2]); \
newArray.append(oldArray[index3 + 3]);
bool GLTFSerializer::getStringVal(const QJsonObject& object,
const QString& fieldname,
QString& value,
QMap<QString, bool>& defined) {
bool _defined = (object.contains(fieldname) && object[fieldname].isString());
if (_defined) {
value = object[fieldname].toString();
}
defined.insert(fieldname, _defined);
return _defined;
}
bool GLTFSerializer::getBoolVal(const QJsonObject& object,
const QString& fieldname,
bool& value,
QMap<QString, bool>& defined) {
bool _defined = (object.contains(fieldname) && object[fieldname].isBool());
if (_defined) {
value = object[fieldname].toBool();
}
defined.insert(fieldname, _defined);
return _defined;
}
bool GLTFSerializer::getIntVal(const QJsonObject& object, const QString& fieldname, int& value, QMap<QString, bool>& defined) {
bool _defined = (object.contains(fieldname) && !object[fieldname].isNull());
if (_defined) {
value = object[fieldname].toInt();
}
defined.insert(fieldname, _defined);
return _defined;
}
bool GLTFSerializer::getDoubleVal(const QJsonObject& object,
const QString& fieldname,
double& value,
QMap<QString, bool>& defined) {
bool _defined = (object.contains(fieldname) && object[fieldname].isDouble());
if (_defined) {
value = object[fieldname].toDouble();
}
defined.insert(fieldname, _defined);
return _defined;
}
bool GLTFSerializer::getObjectVal(const QJsonObject& object,
const QString& fieldname,
QJsonObject& value,
QMap<QString, bool>& defined) {
bool _defined = (object.contains(fieldname) && object[fieldname].isObject());
if (_defined) {
value = object[fieldname].toObject();
}
defined.insert(fieldname, _defined);
return _defined;
}
bool GLTFSerializer::getIntArrayVal(const QJsonObject& object,
const QString& fieldname,
QVector<int>& values,
QMap<QString, bool>& defined) {
bool _defined = (object.contains(fieldname) && object[fieldname].isArray());
if (_defined) {
QJsonArray arr = object[fieldname].toArray();
for (const QJsonValue& v : arr) {
if (!v.isNull()) {
values.push_back(v.toInt());
}
}
}
defined.insert(fieldname, _defined);
return _defined;
}
bool GLTFSerializer::getDoubleArrayVal(const QJsonObject& object,
const QString& fieldname,
QVector<double>& values,
QMap<QString, bool>& defined) {
bool _defined = (object.contains(fieldname) && object[fieldname].isArray());
if (_defined) {
QJsonArray arr = object[fieldname].toArray();
for (const QJsonValue& v : arr) {
if (v.isDouble()) {
values.push_back(v.toDouble());
}
}
}
defined.insert(fieldname, _defined);
return _defined;
}
bool GLTFSerializer::getObjectArrayVal(const QJsonObject& object,
const QString& fieldname,
QJsonArray& objects,
QMap<QString, bool>& defined) {
bool _defined = (object.contains(fieldname) && object[fieldname].isArray());
if (_defined) {
objects = object[fieldname].toArray();
}
defined.insert(fieldname, _defined);
return _defined;
}
hifi::ByteArray GLTFSerializer::setGLBChunks(const hifi::ByteArray& data) {
int byte = 4;
int jsonStart = data.indexOf("JSON", Qt::CaseSensitive);
int binStart = data.indexOf("BIN", Qt::CaseSensitive);
int jsonLength, binLength;
hifi::ByteArray jsonLengthChunk, binLengthChunk;
jsonLengthChunk = data.mid(jsonStart - byte, byte);
QDataStream tempJsonLen(jsonLengthChunk);
tempJsonLen.setByteOrder(QDataStream::LittleEndian);
tempJsonLen >> jsonLength;
hifi::ByteArray jsonChunk = data.mid(jsonStart + byte, jsonLength);
if (binStart != -1) {
binLengthChunk = data.mid(binStart - byte, byte);
QDataStream tempBinLen(binLengthChunk);
tempBinLen.setByteOrder(QDataStream::LittleEndian);
tempBinLen >> binLength;
_glbBinary = data.mid(binStart + byte, binLength);
}
return jsonChunk;
}
int GLTFSerializer::getMeshPrimitiveRenderingMode(const QString& type) {
if (type == "POINTS") {
return GLTFMeshPrimitivesRenderingMode::POINTS;
}
if (type == "LINES") {
return GLTFMeshPrimitivesRenderingMode::LINES;
}
if (type == "LINE_LOOP") {
return GLTFMeshPrimitivesRenderingMode::LINE_LOOP;
}
if (type == "LINE_STRIP") {
return GLTFMeshPrimitivesRenderingMode::LINE_STRIP;
}
if (type == "TRIANGLES") {
return GLTFMeshPrimitivesRenderingMode::TRIANGLES;
}
if (type == "TRIANGLE_STRIP") {
return GLTFMeshPrimitivesRenderingMode::TRIANGLE_STRIP;
}
if (type == "TRIANGLE_FAN") {
return GLTFMeshPrimitivesRenderingMode::TRIANGLE_FAN;
}
return GLTFMeshPrimitivesRenderingMode::TRIANGLES;
}
int GLTFSerializer::getAccessorType(const QString& type) {
if (type == "SCALAR") {
return GLTFAccessorType::SCALAR;
}
if (type == "VEC2") {
return GLTFAccessorType::VEC2;
}
if (type == "VEC3") {
return GLTFAccessorType::VEC3;
}
if (type == "VEC4") {
return GLTFAccessorType::VEC4;
}
if (type == "MAT2") {
return GLTFAccessorType::MAT2;
}
if (type == "MAT3") {
return GLTFAccessorType::MAT3;
}
if (type == "MAT4") {
return GLTFAccessorType::MAT4;
}
return GLTFAccessorType::SCALAR;
}
int GLTFSerializer::getMaterialAlphaMode(const QString& type) {
if (type == "OPAQUE") {
return GLTFMaterialAlphaMode::OPAQUE;
}
if (type == "MASK") {
return GLTFMaterialAlphaMode::MASK;
}
if (type == "BLEND") {
return GLTFMaterialAlphaMode::BLEND;
}
return GLTFMaterialAlphaMode::OPAQUE;
}
int GLTFSerializer::getCameraType(const QString& type) {
if (type == "orthographic") {
return GLTFCameraTypes::ORTHOGRAPHIC;
}
if (type == "perspective") {
return GLTFCameraTypes::PERSPECTIVE;
}
return GLTFCameraTypes::PERSPECTIVE;
}
int GLTFSerializer::getImageMimeType(const QString& mime) {
if (mime == "image/jpeg") {
return GLTFImageMimetype::JPEG;
}
if (mime == "image/png") {
return GLTFImageMimetype::PNG;
}
return GLTFImageMimetype::JPEG;
}
int GLTFSerializer::getAnimationSamplerInterpolation(const QString& interpolation) {
if (interpolation == "LINEAR") {
return GLTFAnimationSamplerInterpolation::LINEAR;
}
return GLTFAnimationSamplerInterpolation::LINEAR;
}
bool GLTFSerializer::setAsset(const QJsonObject& object) {
QJsonObject jsAsset;
bool isAssetDefined = getObjectVal(object, "asset", jsAsset, _file.defined);
if (isAssetDefined) {
if (!getStringVal(jsAsset, "version", _file.asset.version, _file.asset.defined) || _file.asset.version != "2.0") {
return false;
}
getStringVal(jsAsset, "generator", _file.asset.generator, _file.asset.defined);
getStringVal(jsAsset, "copyright", _file.asset.copyright, _file.asset.defined);
}
return isAssetDefined;
}
GLTFAccessor::GLTFAccessorSparse::GLTFAccessorSparseIndices GLTFSerializer::createAccessorSparseIndices(
const QJsonObject& object) {
GLTFAccessor::GLTFAccessorSparse::GLTFAccessorSparseIndices accessorSparseIndices;
getIntVal(object, "bufferView", accessorSparseIndices.bufferView, accessorSparseIndices.defined);
getIntVal(object, "byteOffset", accessorSparseIndices.byteOffset, accessorSparseIndices.defined);
getIntVal(object, "componentType", accessorSparseIndices.componentType, accessorSparseIndices.defined);
return accessorSparseIndices;
}
GLTFAccessor::GLTFAccessorSparse::GLTFAccessorSparseValues GLTFSerializer::createAccessorSparseValues(
const QJsonObject& object) {
GLTFAccessor::GLTFAccessorSparse::GLTFAccessorSparseValues accessorSparseValues;
getIntVal(object, "bufferView", accessorSparseValues.bufferView, accessorSparseValues.defined);
getIntVal(object, "byteOffset", accessorSparseValues.byteOffset, accessorSparseValues.defined);
return accessorSparseValues;
}
GLTFAccessor::GLTFAccessorSparse GLTFSerializer::createAccessorSparse(const QJsonObject& object) {
GLTFAccessor::GLTFAccessorSparse accessorSparse;
getIntVal(object, "count", accessorSparse.count, accessorSparse.defined);
QJsonObject sparseIndicesObject;
if (getObjectVal(object, "indices", sparseIndicesObject, accessorSparse.defined)) {
accessorSparse.indices = createAccessorSparseIndices(sparseIndicesObject);
}
QJsonObject sparseValuesObject;
if (getObjectVal(object, "values", sparseValuesObject, accessorSparse.defined)) {
accessorSparse.values = createAccessorSparseValues(sparseValuesObject);
}
return accessorSparse;
}
bool GLTFSerializer::addAccessor(const QJsonObject& object) {
GLTFAccessor accessor;
getIntVal(object, "bufferView", accessor.bufferView, accessor.defined);
getIntVal(object, "byteOffset", accessor.byteOffset, accessor.defined);
getIntVal(object, "componentType", accessor.componentType, accessor.defined);
getIntVal(object, "count", accessor.count, accessor.defined);
getBoolVal(object, "normalized", accessor.normalized, accessor.defined);
QString type;
if (getStringVal(object, "type", type, accessor.defined)) {
accessor.type = getAccessorType(type);
}
QJsonObject sparseObject;
if (getObjectVal(object, "sparse", sparseObject, accessor.defined)) {
accessor.sparse = createAccessorSparse(sparseObject);
}
getDoubleArrayVal(object, "max", accessor.max, accessor.defined);
getDoubleArrayVal(object, "min", accessor.min, accessor.defined);
_file.accessors.push_back(accessor);
return true;
}
bool GLTFSerializer::addAnimation(const QJsonObject& object) {
GLTFAnimation animation;
QJsonArray channels;
if (getObjectArrayVal(object, "channels", channels, animation.defined)) {
for (const QJsonValue& v : channels) {
if (v.isObject()) {
GLTFChannel channel;
getIntVal(v.toObject(), "sampler", channel.sampler, channel.defined);
QJsonObject jsChannel;
if (getObjectVal(v.toObject(), "target", jsChannel, channel.defined)) {
getIntVal(jsChannel, "node", channel.target.node, channel.target.defined);
getIntVal(jsChannel, "path", channel.target.path, channel.target.defined);
}
}
}
}
QJsonArray samplers;
if (getObjectArrayVal(object, "samplers", samplers, animation.defined)) {
for (const QJsonValue& v : samplers) {
if (v.isObject()) {
GLTFAnimationSampler sampler;
getIntVal(v.toObject(), "input", sampler.input, sampler.defined);
getIntVal(v.toObject(), "output", sampler.input, sampler.defined);
QString interpolation;
if (getStringVal(v.toObject(), "interpolation", interpolation, sampler.defined)) {
sampler.interpolation = getAnimationSamplerInterpolation(interpolation);
}
}
}
}
_file.animations.push_back(animation);
return true;
}
bool GLTFSerializer::addBufferView(const QJsonObject& object) {
GLTFBufferView bufferview;
getIntVal(object, "buffer", bufferview.buffer, bufferview.defined);
getIntVal(object, "byteLength", bufferview.byteLength, bufferview.defined);
getIntVal(object, "byteOffset", bufferview.byteOffset, bufferview.defined);
getIntVal(object, "target", bufferview.target, bufferview.defined);
_file.bufferviews.push_back(bufferview);
return true;
}
bool GLTFSerializer::addBuffer(const QJsonObject& object) {
GLTFBuffer buffer;
getIntVal(object, "byteLength", buffer.byteLength, buffer.defined);
if (_url.toString().endsWith("glb")) {
if (!_glbBinary.isEmpty()) {
buffer.blob = _glbBinary;
} else {
return false;
}
}
if (getStringVal(object, "uri", buffer.uri, buffer.defined)) {
if (!readBinary(buffer.uri, buffer.blob)) {
return false;
}
}
_file.buffers.push_back(buffer);
return true;
}
bool GLTFSerializer::addCamera(const QJsonObject& object) {
GLTFCamera camera;
QJsonObject jsPerspective;
QJsonObject jsOrthographic;
QString type;
getStringVal(object, "name", camera.name, camera.defined);
if (getObjectVal(object, "perspective", jsPerspective, camera.defined)) {
getDoubleVal(jsPerspective, "aspectRatio", camera.perspective.aspectRatio, camera.perspective.defined);
getDoubleVal(jsPerspective, "yfov", camera.perspective.yfov, camera.perspective.defined);
getDoubleVal(jsPerspective, "zfar", camera.perspective.zfar, camera.perspective.defined);
getDoubleVal(jsPerspective, "znear", camera.perspective.znear, camera.perspective.defined);
camera.type = GLTFCameraTypes::PERSPECTIVE;
} else if (getObjectVal(object, "orthographic", jsOrthographic, camera.defined)) {
getDoubleVal(jsOrthographic, "zfar", camera.orthographic.zfar, camera.orthographic.defined);
getDoubleVal(jsOrthographic, "znear", camera.orthographic.znear, camera.orthographic.defined);
getDoubleVal(jsOrthographic, "xmag", camera.orthographic.xmag, camera.orthographic.defined);
getDoubleVal(jsOrthographic, "ymag", camera.orthographic.ymag, camera.orthographic.defined);
camera.type = GLTFCameraTypes::ORTHOGRAPHIC;
} else if (getStringVal(object, "type", type, camera.defined)) {
camera.type = getCameraType(type);
}
_file.cameras.push_back(camera);
return true;
}
bool GLTFSerializer::addImage(const QJsonObject& object) {
GLTFImage image;
QString mime;
getStringVal(object, "uri", image.uri, image.defined);
if (image.uri.contains("data:image/png;base64,")) {
image.mimeType = getImageMimeType("image/png");
} else if (image.uri.contains("data:image/jpeg;base64,")) {
image.mimeType = getImageMimeType("image/jpeg");
}
if (getStringVal(object, "mimeType", mime, image.defined)) {
image.mimeType = getImageMimeType(mime);
}
getIntVal(object, "bufferView", image.bufferView, image.defined);
_file.images.push_back(image);
return true;
}
bool GLTFSerializer::getIndexFromObject(const QJsonObject& object,
const QString& field,
int& outidx,
QMap<QString, bool>& defined) {
QJsonObject subobject;
if (getObjectVal(object, field, subobject, defined)) {
QMap<QString, bool> tmpdefined = QMap<QString, bool>();
return getIntVal(subobject, "index", outidx, tmpdefined);
}
return false;
}
bool GLTFSerializer::addMaterial(const QJsonObject& object) {
GLTFMaterial material;
getStringVal(object, "name", material.name, material.defined);
getDoubleArrayVal(object, "emissiveFactor", material.emissiveFactor, material.defined);
getIndexFromObject(object, "emissiveTexture", material.emissiveTexture, material.defined);
getIndexFromObject(object, "normalTexture", material.normalTexture, material.defined);
getIndexFromObject(object, "occlusionTexture", material.occlusionTexture, material.defined);
getBoolVal(object, "doubleSided", material.doubleSided, material.defined);
QString alphamode;
if (getStringVal(object, "alphaMode", alphamode, material.defined)) {
material.alphaMode = getMaterialAlphaMode(alphamode);
}
getDoubleVal(object, "alphaCutoff", material.alphaCutoff, material.defined);
QJsonObject jsMetallicRoughness;
if (getObjectVal(object, "pbrMetallicRoughness", jsMetallicRoughness, material.defined)) {
getDoubleArrayVal(jsMetallicRoughness, "baseColorFactor", material.pbrMetallicRoughness.baseColorFactor,
material.pbrMetallicRoughness.defined);
getIndexFromObject(jsMetallicRoughness, "baseColorTexture", material.pbrMetallicRoughness.baseColorTexture,
material.pbrMetallicRoughness.defined);
getDoubleVal(jsMetallicRoughness, "metallicFactor", material.pbrMetallicRoughness.metallicFactor,
material.pbrMetallicRoughness.defined);
getDoubleVal(jsMetallicRoughness, "roughnessFactor", material.pbrMetallicRoughness.roughnessFactor,
material.pbrMetallicRoughness.defined);
getIndexFromObject(jsMetallicRoughness, "metallicRoughnessTexture",
material.pbrMetallicRoughness.metallicRoughnessTexture, material.pbrMetallicRoughness.defined);
}
_file.materials.push_back(material);
return true;
}
bool GLTFSerializer::addMesh(const QJsonObject& object) {
GLTFMesh mesh;
getStringVal(object, "name", mesh.name, mesh.defined);
getDoubleArrayVal(object, "weights", mesh.weights, mesh.defined);
QJsonArray jsPrimitives;
object.keys();
if (getObjectArrayVal(object, "primitives", jsPrimitives, mesh.defined)) {
for (const QJsonValue& prim : jsPrimitives) {
if (prim.isObject()) {
GLTFMeshPrimitive primitive;
QJsonObject jsPrimitive = prim.toObject();
getIntVal(jsPrimitive, "mode", primitive.mode, primitive.defined);
getIntVal(jsPrimitive, "indices", primitive.indices, primitive.defined);
getIntVal(jsPrimitive, "material", primitive.material, primitive.defined);
QJsonObject jsAttributes;
if (getObjectVal(jsPrimitive, "attributes", jsAttributes, primitive.defined)) {
QStringList attrKeys = jsAttributes.keys();
for (const QString& attrKey : attrKeys) {
int attrVal;
getIntVal(jsAttributes, attrKey, attrVal, primitive.attributes.defined);
primitive.attributes.values.insert(attrKey, attrVal);
}
}
QJsonArray jsTargets;
if (getObjectArrayVal(jsPrimitive, "targets", jsTargets, primitive.defined)) {
for (const QJsonValue& tar : jsTargets) {
if (tar.isObject()) {
QJsonObject jsTarget = tar.toObject();
QStringList tarKeys = jsTarget.keys();
GLTFMeshPrimitiveAttr target;
for (const QString& tarKey : tarKeys) {
int tarVal;
getIntVal(jsTarget, tarKey, tarVal, target.defined);
target.values.insert(tarKey, tarVal);
}
primitive.targets.push_back(target);
}
}
}
mesh.primitives.push_back(primitive);
}
}
}
QJsonObject jsExtras;
GLTFMeshExtra extras;
if (getObjectVal(object, "extras", jsExtras, mesh.defined)) {
QJsonArray jsTargetNames;
if (getObjectArrayVal(jsExtras, "targetNames", jsTargetNames, extras.defined)) {
foreach (const QJsonValue& tarName, jsTargetNames) { extras.targetNames.push_back(tarName.toString()); }
}
mesh.extras = extras;
}
_file.meshes.push_back(mesh);
return true;
}
bool GLTFSerializer::addNode(const QJsonObject& object) {
GLTFNode node;
getStringVal(object, "name", node.name, node.defined);
getIntVal(object, "camera", node.camera, node.defined);
getIntVal(object, "mesh", node.mesh, node.defined);
getIntArrayVal(object, "children", node.children, node.defined);
getDoubleArrayVal(object, "translation", node.translation, node.defined);
getDoubleArrayVal(object, "rotation", node.rotation, node.defined);
getDoubleArrayVal(object, "scale", node.scale, node.defined);
getDoubleArrayVal(object, "matrix", node.matrix, node.defined);
getIntVal(object, "skin", node.skin, node.defined);
getStringVal(object, "jointName", node.jointName, node.defined);
getIntArrayVal(object, "skeletons", node.skeletons, node.defined);
_file.nodes.push_back(node);
return true;
}
bool GLTFSerializer::addSampler(const QJsonObject& object) {
GLTFSampler sampler;
getIntVal(object, "magFilter", sampler.magFilter, sampler.defined);
getIntVal(object, "minFilter", sampler.minFilter, sampler.defined);
getIntVal(object, "wrapS", sampler.wrapS, sampler.defined);
getIntVal(object, "wrapT", sampler.wrapT, sampler.defined);
_file.samplers.push_back(sampler);
return true;
}
bool GLTFSerializer::addScene(const QJsonObject& object) {
GLTFScene scene;
getStringVal(object, "name", scene.name, scene.defined);
getIntArrayVal(object, "nodes", scene.nodes, scene.defined);
_file.scenes.push_back(scene);
return true;
}
bool GLTFSerializer::addSkin(const QJsonObject& object) {
GLTFSkin skin;
getIntVal(object, "inverseBindMatrices", skin.inverseBindMatrices, skin.defined);
getIntVal(object, "skeleton", skin.skeleton, skin.defined);
getIntArrayVal(object, "joints", skin.joints, skin.defined);
_file.skins.push_back(skin);
return true;
}
bool GLTFSerializer::addTexture(const QJsonObject& object) {
GLTFTexture texture;
getIntVal(object, "sampler", texture.sampler, texture.defined);
getIntVal(object, "source", texture.source, texture.defined);
_file.textures.push_back(texture);
return true;
}
bool GLTFSerializer::parseGLTF(const hifi::ByteArray& data) {
PROFILE_RANGE_EX(resource_parse, __FUNCTION__, 0xffff0000, nullptr);
hifi::ByteArray jsonChunk = data;
if (_url.toString().endsWith("glb") && data.indexOf("glTF") == 0 && data.contains("JSON")) {
jsonChunk = setGLBChunks(data);
}
QJsonDocument d = QJsonDocument::fromJson(jsonChunk);
QJsonObject jsFile = d.object();
bool success = setAsset(jsFile);
if (success) {
QJsonArray accessors;
if (getObjectArrayVal(jsFile, "accessors", accessors, _file.defined)) {
for (const QJsonValue& accVal : accessors) {
if (accVal.isObject()) {
success = success && addAccessor(accVal.toObject());
}
}
}
QJsonArray animations;
if (getObjectArrayVal(jsFile, "animations", animations, _file.defined)) {
for (const QJsonValue& animVal : accessors) {
if (animVal.isObject()) {
success = success && addAnimation(animVal.toObject());
}
}
}
QJsonArray bufferViews;
if (getObjectArrayVal(jsFile, "bufferViews", bufferViews, _file.defined)) {
for (const QJsonValue& bufviewVal : bufferViews) {
if (bufviewVal.isObject()) {
success = success && addBufferView(bufviewVal.toObject());
}
}
}
QJsonArray buffers;
if (getObjectArrayVal(jsFile, "buffers", buffers, _file.defined)) {
for (const QJsonValue& bufVal : buffers) {
if (bufVal.isObject()) {
success = success && addBuffer(bufVal.toObject());
}
}
}
QJsonArray cameras;
if (getObjectArrayVal(jsFile, "cameras", cameras, _file.defined)) {
for (const QJsonValue& camVal : cameras) {
if (camVal.isObject()) {
success = success && addCamera(camVal.toObject());
}
}
}
QJsonArray images;
if (getObjectArrayVal(jsFile, "images", images, _file.defined)) {
for (const QJsonValue& imgVal : images) {
if (imgVal.isObject()) {
success = success && addImage(imgVal.toObject());
}
}
}
QJsonArray materials;
if (getObjectArrayVal(jsFile, "materials", materials, _file.defined)) {
for (const QJsonValue& matVal : materials) {
if (matVal.isObject()) {
success = success && addMaterial(matVal.toObject());
}
}
}
QJsonArray meshes;
if (getObjectArrayVal(jsFile, "meshes", meshes, _file.defined)) {
for (const QJsonValue& meshVal : meshes) {
if (meshVal.isObject()) {
success = success && addMesh(meshVal.toObject());
}
}
}
QJsonArray nodes;
if (getObjectArrayVal(jsFile, "nodes", nodes, _file.defined)) {
for (const QJsonValue& nodeVal : nodes) {
if (nodeVal.isObject()) {
success = success && addNode(nodeVal.toObject());
}
}
}
QJsonArray samplers;
if (getObjectArrayVal(jsFile, "samplers", samplers, _file.defined)) {
for (const QJsonValue& samVal : samplers) {
if (samVal.isObject()) {
success = success && addSampler(samVal.toObject());
}
}
}
QJsonArray scenes;
if (getObjectArrayVal(jsFile, "scenes", scenes, _file.defined)) {
for (const QJsonValue& sceneVal : scenes) {
if (sceneVal.isObject()) {
success = success && addScene(sceneVal.toObject());
}
}
}
QJsonArray skins;
if (getObjectArrayVal(jsFile, "skins", skins, _file.defined)) {
for (const QJsonValue& skinVal : skins) {
if (skinVal.isObject()) {
success = success && addSkin(skinVal.toObject());
}
}
}
QJsonArray textures;
if (getObjectArrayVal(jsFile, "textures", textures, _file.defined)) {
for (const QJsonValue& texVal : textures) {
if (texVal.isObject()) {
success = success && addTexture(texVal.toObject());
}
}
}
}
return success;
}
const glm::mat4& GLTFSerializer::getModelTransform(const GLTFNode& node) {
return node.transform;
}
void GLTFSerializer::getSkinInverseBindMatrices(std::vector<std::vector<float>>& inverseBindMatrixValues) {
for (auto& skin : _file.skins) {
GLTFAccessor& indicesAccessor = _file.accessors[skin.inverseBindMatrices];
QVector<float> matrices;
addArrayFromAccessor(indicesAccessor, matrices);
inverseBindMatrixValues.push_back(matrices.toStdVector());
}
}
void GLTFSerializer::generateTargetData(int index, float weight, QVector<glm::vec3>& returnVector) {
GLTFAccessor& accessor = _file.accessors[index];
QVector<float> storedValues;
addArrayFromAccessor(accessor, storedValues);
for (int n = 0; n < storedValues.size(); n = n + 3) {
returnVector.push_back(glm::vec3(weight * storedValues[n], weight * storedValues[n + 1], weight * storedValues[n + 2]));
}
}
namespace gltf {
using ParentIndexMap = std::unordered_map<int, int>;
ParentIndexMap findParentIndices(const QVector<GLTFNode>& nodes) {
ParentIndexMap parentIndices;
int numNodes = nodes.size();
for (int nodeIndex = 0; nodeIndex < numNodes; ++nodeIndex) {
auto& gltfNode = nodes[nodeIndex];
for (const auto& childIndex : gltfNode.children) {
parentIndices[childIndex] = nodeIndex;
}
}
return parentIndices;
}
bool requiresNodeReordering(const ParentIndexMap& map) {
for (const auto& entry : map) {
if (entry.first < entry.second) {
return true;
}
}
return false;
}
int findEdgeCount(const ParentIndexMap& parentIndices, int nodeIndex) {
auto parentsEnd = parentIndices.end();
ParentIndexMap::const_iterator itr;
int result = 0;
while (parentsEnd != (itr = parentIndices.find(nodeIndex))) {
nodeIndex = itr->second;
++result;
}
return result;
}
using IndexBag = std::unordered_set<int>;
using EdgeCountMap = std::map<int, IndexBag>;
EdgeCountMap findEdgeCounts(int numNodes, const ParentIndexMap& map) {
EdgeCountMap edgeCounts;
// For each item, determine how many tranversals to a root node
for (int nodeIndex = 0; nodeIndex < numNodes; ++nodeIndex) {
// How many steps between this node and a root node?
int edgeCount = findEdgeCount(map, nodeIndex);
// Populate the result map
edgeCounts[edgeCount].insert(nodeIndex);
}
return edgeCounts;
}
using ReorderMap = std::unordered_map<int, int>;
ReorderMap buildReorderMap(const EdgeCountMap& map) {
ReorderMap result;
int newIndex = 0;
for (const auto& entry : map) {
const IndexBag& oldIndices = entry.second;
for (const auto& oldIndex : oldIndices) {
result.insert({ oldIndex, newIndex });
++newIndex;
}
}
return result;
}
void reorderNodeIndices(QVector<int>& indices, const ReorderMap& oldToNewIndexMap) {
for (auto& index : indices) {
index = oldToNewIndexMap.at(index);
}
}
} // namespace gltf
void GLTFFile::populateMaterialNames() {
// Build material names
QSet<QString> usedNames;
for (const auto& material : materials) {
if (!material.name.isEmpty()) {
usedNames.insert(material.name);
}
}
int ukcount = 0;
const QString unknown{ "Default_%1" };
for (auto& material : materials) {
QString generatedName = unknown.arg(ukcount++);
while (usedNames.contains(generatedName)) {
generatedName = unknown.arg(ukcount++);
}
material.name = generatedName;
material.defined.insert("name", true);
usedNames.insert(generatedName);
}
}
void GLTFFile::reorderNodes(const std::unordered_map<int, int>& oldToNewIndexMap) {
int numNodes = nodes.size();
assert(numNodes == oldToNewIndexMap.size());
QVector<GLTFNode> newNodes;
newNodes.resize(numNodes);
for (int oldIndex = 0; oldIndex < numNodes; ++oldIndex) {
const auto& oldNode = nodes[oldIndex];
int newIndex = oldToNewIndexMap.at(oldIndex);
auto& newNode = newNodes[newIndex];
// Write the new node
newNode = oldNode;
// Fixup the child indices
gltf::reorderNodeIndices(newNode.children, oldToNewIndexMap);
}
newNodes.swap(nodes);
for (auto& subScene : scenes) {
gltf::reorderNodeIndices(subScene.nodes, oldToNewIndexMap);
}
}
// Ensure that the GLTF nodes are ordered so
void GLTFFile::sortNodes() {
// Find all the parents
auto parentIndices = gltf::findParentIndices(nodes);
// If the nodes are already in a good order, we're done
if (!gltf::requiresNodeReordering(parentIndices)) {
return;
}
auto edgeCounts = gltf::findEdgeCounts(nodes.size(), parentIndices);
auto oldToNewIndexMap = gltf::buildReorderMap(edgeCounts);
reorderNodes(oldToNewIndexMap);
assert(!gltf::requiresNodeReordering(gltf::findParentIndices(nodes)));
}
void GLTFNode::normalizeTransform() {
if (defined["matrix"] && matrix.size() == 16) {
transform = glm::make_mat4(matrix.constData());
} else {
transform = glm::mat4(1.0);
if (defined["scale"] && scale.size() == 3) {
glm::vec3 scaleVec = glm::make_vec3(scale.data());
transform = glm::scale(transform, scaleVec);
}
if (defined["rotation"] && rotation.size() == 4) {
glm::quat rotQ = glm::make_quat(rotation.data());
transform = glm::mat4_cast(rotQ) * transform;
}
if (defined["translation"] && translation.size() == 3) {
glm::vec3 transV = glm::make_vec3(translation.data());
transform = glm::translate(glm::mat4(1.0), transV) * transform;
}
}
}
void GLTFFile::normalizeNodeTransforms() {
for (auto& node : nodes) {
node.normalizeTransform();
}
}
bool GLTFSerializer::buildGeometry(HFMModel& hfmModel, const hifi::VariantHash& mapping, const hifi::URL& url) {
int numNodes = _file.nodes.size();
hfmModel.transforms.resize(numNodes);
auto parentIndices = gltf::findParentIndices(_file.nodes);
const auto parentsEnd = parentIndices.end();
for (int nodeIndex = 0; nodeIndex < numNodes; ++nodeIndex) {
auto& gltfNode = _file.nodes[nodeIndex];
auto& hmfTransform = hfmModel.transforms[nodeIndex];
auto parentItr = parentIndices.find(nodeIndex);
if (parentItr != parentsEnd ) {
hmfTransform.parent = parentItr->second;
}
hmfTransform.transform = getModelTransform(gltfNode);
}
// Build joints
HFMJoint joint;
hfmModel.jointIndices["x"] = numNodes;
QVector<glm::mat4> globalTransforms;
globalTransforms.resize(numNodes);
for (int nodeIndex = 0; nodeIndex < numNodes; ++nodeIndex) {
auto& node = _file.nodes[nodeIndex];
auto parentItr = parentIndices.find(nodeIndex);
if (parentsEnd == parentItr) {
joint.parentIndex = -1;
} else {
joint.parentIndex = parentItr->second;
}
joint.transform = getModelTransform(node);
joint.translation = extractTranslation(joint.transform);
joint.rotation = glmExtractRotation(joint.transform);
glm::vec3 scale = extractScale(joint.transform);
joint.postTransform = glm::scale(glm::mat4(), scale);
globalTransforms[nodeIndex] = joint.transform;
if (joint.parentIndex != -1) {
globalTransforms[nodeIndex] = globalTransforms[joint.parentIndex] * globalTransforms[nodeIndex];
}
joint.name = node.name;
joint.isSkeletonJoint = false;
hfmModel.joints.push_back(joint);
}
hfmModel.shapeVertices.resize(hfmModel.joints.size());
// get offset transform from mapping
float unitScaleFactor = 1.0f;
float offsetScale = mapping.value("scale", 1.0f).toFloat() * unitScaleFactor;
glm::quat offsetRotation = glm::quat(glm::radians(glm::vec3(mapping.value("rx").toFloat(), mapping.value("ry").toFloat(), mapping.value("rz").toFloat())));
hfmModel.offset = glm::translate(glm::mat4(), glm::vec3(mapping.value("tx").toFloat(), mapping.value("ty").toFloat(), mapping.value("tz").toFloat())) *
glm::mat4_cast(offsetRotation) * glm::scale(glm::mat4(), glm::vec3(offsetScale, offsetScale, offsetScale));
// Build skeleton
std::vector<glm::mat4> jointInverseBindTransforms;
std::vector<glm::mat4> globalBindTransforms;
jointInverseBindTransforms.resize(numNodes);
globalBindTransforms.resize(numNodes);
hfmModel.hasSkeletonJoints = !_file.skins.isEmpty();
if (hfmModel.hasSkeletonJoints) {
std::vector<std::vector<float>> inverseBindValues;
getSkinInverseBindMatrices(inverseBindValues);
for (int jointIndex = 0; jointIndex < numNodes; ++jointIndex) {
int nodeIndex = jointIndex;
auto joint = hfmModel.joints[jointIndex];
for (int s = 0; s < _file.skins.size(); ++s) {
const auto& skin = _file.skins[s];
int matrixIndex = skin.joints.indexOf(nodeIndex);
joint.isSkeletonJoint = skin.joints.contains(nodeIndex);
// build inverse bind matrices
if (joint.isSkeletonJoint) {
std::vector<float>& value = inverseBindValues[s];
int matrixCount = 16 * matrixIndex;
jointInverseBindTransforms[jointIndex] =
glm::mat4(value[matrixCount], value[matrixCount + 1], value[matrixCount + 2], value[matrixCount + 3],
value[matrixCount + 4], value[matrixCount + 5], value[matrixCount + 6], value[matrixCount + 7],
value[matrixCount + 8], value[matrixCount + 9], value[matrixCount + 10], value[matrixCount + 11],
value[matrixCount + 12], value[matrixCount + 13], value[matrixCount + 14], value[matrixCount + 15]);
} else {
jointInverseBindTransforms[jointIndex] = glm::mat4();
}
globalBindTransforms[jointIndex] = jointInverseBindTransforms[jointIndex];
if (joint.parentIndex != -1) {
globalBindTransforms[jointIndex] = globalBindTransforms[joint.parentIndex] * globalBindTransforms[jointIndex];
}
glm::vec3 bindTranslation = extractTranslation(hfmModel.offset * glm::inverse(jointInverseBindTransforms[jointIndex]));
hfmModel.bindExtents.addPoint(bindTranslation);
}
hfmModel.joints[jointIndex] = joint;
}
}
for (const auto& material : _file.materials) {
const QString& matid = material.name;
hfmModel.materials.emplace_back();
HFMMaterial& hfmMaterial = hfmModel.materials.back();
hfmMaterial._material = std::make_shared<graphics::Material>();
hfmMaterial.materialID = matid;
setHFMMaterial(hfmMaterial, material);
}
for (int nodeIndex = 0; nodeIndex < numNodes; ++nodeIndex) {
}
int meshCount = _file.meshes.size();
hfmModel.meshes.resize(meshCount);
hfmModel.meshExtents.reset();
hfmModel.meshes.resize(meshCount);
for (int meshIndex = 0; meshIndex < meshCount; ++meshIndex) {
const auto& gltfMesh = _file.meshes[meshIndex];
auto& mesh = hfmModel.meshes[meshIndex];
mesh.meshIndex = meshIndex;
if (!hfmModel.hasSkeletonJoints) {
HFMCluster cluster;
#if 0
cluster.jointIndex = nodeIndex;
#endif
cluster.inverseBindMatrix = glm::mat4();
cluster.inverseBindTransform = Transform(cluster.inverseBindMatrix);
mesh.clusters.append(cluster);
} else { // skinned model
for (int j = 0; j < numNodes; ++j) {
HFMCluster cluster;
cluster.jointIndex = j;
cluster.inverseBindMatrix = jointInverseBindTransforms[j];
cluster.inverseBindTransform = Transform(cluster.inverseBindMatrix);
mesh.clusters.append(cluster);
}
}
HFMCluster root;
root.jointIndex = 0;
root.inverseBindMatrix = jointInverseBindTransforms[root.jointIndex];
root.inverseBindTransform = Transform(root.inverseBindMatrix);
mesh.clusters.append(root);
QSet<QString> meshAttributes;
for(const auto &primitive : gltfMesh.primitives) {
for (const auto& attribute : primitive.attributes.values.keys()) {
meshAttributes.insert(attribute);
}
}
for(auto &primitive : gltfMesh.primitives) {
HFMMeshPart part = HFMMeshPart();
int indicesAccessorIdx = primitive.indices;
GLTFAccessor& indicesAccessor = _file.accessors[indicesAccessorIdx];
// Buffers
constexpr int VERTEX_STRIDE = 3;
constexpr int NORMAL_STRIDE = 3;
constexpr int TEX_COORD_STRIDE = 2;
QVector<int> indices;
QVector<float> vertices;
QVector<float> normals;
QVector<float> tangents;
QVector<float> texcoords;
QVector<float> texcoords2;
QVector<float> colors;
QVector<uint16_t> joints;
QVector<float> weights;
static int tangentStride = 4;
static int colorStride = 3;
static int jointStride = 4;
static int weightStride = 4;
bool success = addArrayFromAccessor(indicesAccessor, indices);
if (!success) {
qWarning(modelformat) << "There was a problem reading glTF INDICES data for model " << _url;
continue;
}
// Increment the triangle indices by the current mesh vertex count so each mesh part can all reference the same buffers within the mesh
int prevMeshVerticesCount = mesh.vertices.count();
QList<QString> keys = primitive.attributes.values.keys();
QVector<uint16_t> clusterJoints;
QVector<float> clusterWeights;
for(auto &key : keys) {
int accessorIdx = primitive.attributes.values[key];
GLTFAccessor& accessor = _file.accessors[accessorIdx];
const auto vertexAttribute = GLTFVertexAttribute::fromString(key);
switch (vertexAttribute) {
case GLTFVertexAttribute::POSITION:
success = addArrayFromAttribute(vertexAttribute, accessor, vertices);
break;
case GLTFVertexAttribute::NORMAL:
success = addArrayFromAttribute(vertexAttribute, accessor, normals);
break;
case GLTFVertexAttribute::TANGENT:
success = addArrayFromAttribute(vertexAttribute, accessor, tangents);
tangentStride = GLTFAccessorType::count((GLTFAccessorType::Value)accessor.type);
break;
case GLTFVertexAttribute::TEXCOORD_0:
success = addArrayFromAttribute(vertexAttribute, accessor, texcoords);
break;
case GLTFVertexAttribute::TEXCOORD_1:
success = addArrayFromAttribute(vertexAttribute, accessor, texcoords2);
break;
case GLTFVertexAttribute::COLOR_0:
success = addArrayFromAttribute(vertexAttribute, accessor, colors);
colorStride = GLTFAccessorType::count((GLTFAccessorType::Value)accessor.type);
break;
case GLTFVertexAttribute::JOINTS_0:
success = addArrayFromAttribute(vertexAttribute, accessor, colors);
jointStride = GLTFAccessorType::count((GLTFAccessorType::Value)accessor.type);
break;
case GLTFVertexAttribute::WEIGHTS_0:
success = addArrayFromAttribute(vertexAttribute, accessor, colors);
weightStride = GLTFAccessorType::count((GLTFAccessorType::Value)accessor.type);
break;
default:
success = false;
break;
}
if (!success) {
continue;
}
}
// Validation stage
if (indices.count() == 0) {
qWarning(modelformat) << "Missing indices for model " << _url;
continue;
}
if (vertices.count() == 0) {
qWarning(modelformat) << "Missing vertices for model " << _url;
continue;
}
int partVerticesCount = vertices.size() / 3;
// generate the normals if they don't exist
// FIXME move to GLTF post-load processing
if (normals.size() == 0) {
QVector<int> newIndices;
QVector<float> newVertices;
QVector<float> newNormals;
QVector<float> newTexcoords;
QVector<float> newTexcoords2;
QVector<float> newColors;
QVector<uint16_t> newJoints;
QVector<float> newWeights;
for (int n = 0; n < indices.size(); n = n + 3) {
int v1_index = (indices[n + 0] * 3);
int v2_index = (indices[n + 1] * 3);
int v3_index = (indices[n + 2] * 3);
glm::vec3 v1 = glm::vec3(vertices[v1_index], vertices[v1_index + 1], vertices[v1_index + 2]);
glm::vec3 v2 = glm::vec3(vertices[v2_index], vertices[v2_index + 1], vertices[v2_index + 2]);
glm::vec3 v3 = glm::vec3(vertices[v3_index], vertices[v3_index + 1], vertices[v3_index + 2]);
newVertices.append(v1.x);
newVertices.append(v1.y);
newVertices.append(v1.z);
newVertices.append(v2.x);
newVertices.append(v2.y);
newVertices.append(v2.z);
newVertices.append(v3.x);
newVertices.append(v3.y);
newVertices.append(v3.z);
glm::vec3 norm = glm::normalize(glm::cross(v2 - v1, v3 - v1));
newNormals.append(norm.x);
newNormals.append(norm.y);
newNormals.append(norm.z);
newNormals.append(norm.x);
newNormals.append(norm.y);
newNormals.append(norm.z);
newNormals.append(norm.x);
newNormals.append(norm.y);
newNormals.append(norm.z);
if (texcoords.size() == partVerticesCount * TEX_COORD_STRIDE) {
GLTF_APPEND_ARRAY_2(newTexcoords, texcoords)
}
if (texcoords2.size() == partVerticesCount * TEX_COORD_STRIDE) {
GLTF_APPEND_ARRAY_2(newTexcoords2, texcoords2)
}
if (colors.size() == partVerticesCount * colorStride) {
if (colorStride == 4) {
GLTF_APPEND_ARRAY_4(newColors, colors)
} else {
GLTF_APPEND_ARRAY_3(newColors, colors)
}
}
if (joints.size() == partVerticesCount * jointStride) {
if (jointStride == 4) {
GLTF_APPEND_ARRAY_4(newJoints, joints)
} else if (jointStride == 3) {
GLTF_APPEND_ARRAY_3(newJoints, joints)
} else if (jointStride == 2) {
GLTF_APPEND_ARRAY_2(newJoints, joints)
} else {
GLTF_APPEND_ARRAY_1(newJoints, joints)
}
}
if (weights.size() == partVerticesCount * weightStride) {
if (weightStride == 4) {
GLTF_APPEND_ARRAY_4(newWeights, weights)
} else if (weightStride == 3) {
GLTF_APPEND_ARRAY_3(newWeights, weights)
} else if (weightStride == 2) {
GLTF_APPEND_ARRAY_2(newWeights, weights)
} else {
GLTF_APPEND_ARRAY_1(newWeights, weights)
}
}
newIndices.append(n);
newIndices.append(n + 1);
newIndices.append(n + 2);
}
vertices = newVertices;
normals = newNormals;
tangents = QVector<float>();
texcoords = newTexcoords;
texcoords2 = newTexcoords2;
colors = newColors;
joints = newJoints;
weights = newWeights;
indices = newIndices;
partVerticesCount = vertices.size() / 3;
}
QVector<int> validatedIndices;
for (int n = 0; n < indices.count(); ++n) {
if (indices[n] < partVerticesCount) {
validatedIndices.push_back(indices[n] + prevMeshVerticesCount);
} else {
validatedIndices = QVector<int>();
break;
}
}
if (validatedIndices.size() == 0) {
qWarning(modelformat) << "Indices out of range for model " << _url;
continue;
}
part.triangleIndices.append(validatedIndices);
mesh.vertices.reserve(partVerticesCount);
for (int n = 0; n < vertices.size(); n = n + VERTEX_STRIDE) {
mesh.vertices.push_back(glm::vec3(vertices[n], vertices[n + 1], vertices[n + 2]));
}
mesh.normals.reserve(partVerticesCount);
for (int n = 0; n < normals.size(); n = n + NORMAL_STRIDE) {
mesh.normals.push_back(glm::vec3(normals[n], normals[n + 1], normals[n + 2]));
}
// TODO: add correct tangent generation
if (tangents.size() == partVerticesCount * tangentStride) {
mesh.tangents.reserve(partVerticesCount);
for (int n = 0; n < tangents.size(); n += tangentStride) {
float tanW = tangentStride == 4 ? tangents[n + 3] : 1;
mesh.tangents.push_back(glm::vec3(tanW * tangents[n], tangents[n + 1], tanW * tangents[n + 2]));
}
} else if (meshAttributes.contains("TANGENT")) {
mesh.tangents.resize(partVerticesCount);
}
if (texcoords.size() == partVerticesCount * TEX_COORD_STRIDE) {
mesh.texCoords.reserve(partVerticesCount);
for (int n = 0; n < texcoords.size(); n = n + 2) {
mesh.texCoords.push_back(glm::vec2(texcoords[n], texcoords[n + 1]));
}
} else if (meshAttributes.contains("TEXCOORD_0")) {
mesh.texCoords.resize(partVerticesCount);
}
if (texcoords2.size() == partVerticesCount * TEX_COORD_STRIDE) {
mesh.texCoords1.reserve(partVerticesCount);
for (int n = 0; n < texcoords2.size(); n = n + 2) {
mesh.texCoords1.push_back(glm::vec2(texcoords2[n], texcoords2[n + 1]));
}
} else if (meshAttributes.contains("TEXCOORD_1")) {
mesh.texCoords1.resize(partVerticesCount);
}
if (colors.size() == partVerticesCount * colorStride) {
mesh.colors.reserve(partVerticesCount);
for (int n = 0; n < colors.size(); n += colorStride) {
mesh.colors.push_back(glm::vec3(colors[n], colors[n + 1], colors[n + 2]));
}
} else if (meshAttributes.contains("COLOR_0")) {
mesh.colors.reserve(partVerticesCount);
for (int i = 0; i < partVerticesCount; ++i) {
mesh.colors.push_back(glm::vec3(1.0f, 1.0f, 1.0f));
}
}
if (joints.size() == partVerticesCount * jointStride) {
for (int n = 0; n < joints.size(); n += jointStride) {
clusterJoints.push_back(joints[n]);
if (jointStride > 1) {
clusterJoints.push_back(joints[n + 1]);
if (jointStride > 2) {
clusterJoints.push_back(joints[n + 2]);
if (jointStride > 3) {
clusterJoints.push_back(joints[n + 3]);
} else {
clusterJoints.push_back(0);
}
} else {
clusterJoints.push_back(0);
clusterJoints.push_back(0);
}
} else {
clusterJoints.push_back(0);
clusterJoints.push_back(0);
clusterJoints.push_back(0);
}
}
} else if (meshAttributes.contains("JOINTS_0")) {
for (int i = 0; i < partVerticesCount; ++i) {
for (int j = 0; j < 4; ++j) {
clusterJoints.push_back(0);
}
}
}
if (weights.size() == partVerticesCount * weightStride) {
for (int n = 0; n < weights.size(); n += weightStride) {
clusterWeights.push_back(weights[n]);
if (weightStride > 1) {
clusterWeights.push_back(weights[n + 1]);
if (weightStride > 2) {
clusterWeights.push_back(weights[n + 2]);
if (weightStride > 3) {
clusterWeights.push_back(weights[n + 3]);
} else {
clusterWeights.push_back(0.0f);
}
} else {
clusterWeights.push_back(0.0f);
clusterWeights.push_back(0.0f);
}
} else {
clusterWeights.push_back(0.0f);
clusterWeights.push_back(0.0f);
clusterWeights.push_back(0.0f);
}
}
} else if (meshAttributes.contains("WEIGHTS_0")) {
for (int i = 0; i < partVerticesCount; ++i) {
clusterWeights.push_back(1.0f);
for (int j = 1; j < 4; ++j) {
clusterWeights.push_back(0.0f);
}
}
}
// Build weights (adapted from FBXSerializer.cpp)
if (hfmModel.hasSkeletonJoints) {
const int WEIGHTS_PER_VERTEX = 4;
const float ALMOST_HALF = 0.499f;
int numVertices = mesh.vertices.size() - prevMeshVerticesCount;
// Append new cluster indices and weights for this mesh part
for (int i = 0; i < numVertices * WEIGHTS_PER_VERTEX; ++i) {
mesh.clusterIndices.push_back(mesh.clusters.size() - 1);
mesh.clusterWeights.push_back(0);
}
#if 0
int prevMeshClusterIndexCount = mesh.clusterIndices.count();
for (int c = 0; c < clusterJoints.size(); ++c) {
mesh.clusterIndices[prevMeshClusterIndexCount + c] =
originalToNewNodeIndexMap[_file.skins[node.skin].joints[clusterJoints[c]]];
}
#endif
// normalize and compress to 16-bits
int prevMeshClusterWeightCount = mesh.clusterWeights.count();
for (int i = 0; i < numVertices; ++i) {
int j = i * WEIGHTS_PER_VERTEX;
float totalWeight = 0.0f;
for (int k = j; k < j + WEIGHTS_PER_VERTEX; ++k) {
totalWeight += clusterWeights[k];
}
if (totalWeight > 0.0f) {
float weightScalingFactor = (float)(UINT16_MAX) / totalWeight;
for (int k = j; k < j + WEIGHTS_PER_VERTEX; ++k) {
mesh.clusterWeights[prevMeshClusterWeightCount + k] = (uint16_t)(weightScalingFactor * clusterWeights[k] + ALMOST_HALF);
}
} else {
mesh.clusterWeights[prevMeshClusterWeightCount + j] = (uint16_t)((float)(UINT16_MAX) + ALMOST_HALF);
}
}
}
#if 0
if (primitive.defined["material"]) {
part.materialID = materialIDs[primitive.material];
}
#endif
mesh.parts.push_back(part);
// populate the texture coordinates if they don't exist
if (mesh.texCoords.size() == 0 && !hfmModel.hasSkeletonJoints) {
for (int i = 0; i < part.triangleIndices.size(); ++i) { mesh.texCoords.push_back(glm::vec2(0.0, 1.0)); }
}
// Build morph targets (blend shapes)
if (!primitive.targets.isEmpty()) {
// Build list of blendshapes from FST
typedef QPair<int, float> WeightedIndex;
hifi::VariantHash blendshapeMappings = mapping.value("bs").toHash();
QMultiHash<QString, WeightedIndex> blendshapeIndices;
for (int i = 0;; ++i) {
hifi::ByteArray blendshapeName = FACESHIFT_BLENDSHAPES[i];
if (blendshapeName.isEmpty()) {
break;
}
QList<QVariant> mappings = blendshapeMappings.values(blendshapeName);
foreach (const QVariant& mapping, mappings) {
QVariantList blendshapeMapping = mapping.toList();
blendshapeIndices.insert(blendshapeMapping.at(0).toByteArray(), WeightedIndex(i, blendshapeMapping.at(1).toFloat()));
}
}
// glTF morph targets may or may not have names. if they are labeled, add them based on
// the corresponding names from the FST. otherwise, just add them in the order they are given
mesh.blendshapes.resize(blendshapeMappings.size());
auto values = blendshapeIndices.values();
auto keys = blendshapeIndices.keys();
auto names = gltfMesh.extras.targetNames;
QVector<double> weights = gltfMesh.weights;
for (int weightedIndex = 0; weightedIndex < values.size(); ++weightedIndex) {
float weight = 0.1f;
int indexFromMapping = weightedIndex;
int targetIndex = weightedIndex;
hfmModel.blendshapeChannelNames.push_back("target_" + QString::number(weightedIndex));
if (!names.isEmpty()) {
targetIndex = names.indexOf(keys[weightedIndex]);
indexFromMapping = values[weightedIndex].first;
weight = weight * values[weightedIndex].second;
hfmModel.blendshapeChannelNames[weightedIndex] = keys[weightedIndex];
}
HFMBlendshape& blendshape = mesh.blendshapes[indexFromMapping];
blendshape.indices = part.triangleIndices;
auto target = primitive.targets[targetIndex];
QVector<glm::vec3> normals;
QVector<glm::vec3> vertices;
if (weights.size() == primitive.targets.size()) {
int targetWeight = weights[targetIndex];
if (targetWeight != 0) {
weight = weight * targetWeight;
}
}
if (target.values.contains((QString) "NORMAL")) {
generateTargetData(target.values.value((QString) "NORMAL"), weight, normals);
}
if (target.values.contains((QString) "POSITION")) {
generateTargetData(target.values.value((QString) "POSITION"), weight, vertices);
}
bool isNewBlendshape = blendshape.vertices.size() < vertices.size();
int count = 0;
for (int i : blendshape.indices) {
if (isNewBlendshape) {
blendshape.vertices.push_back(vertices[i]);
blendshape.normals.push_back(normals[i]);
} else {
blendshape.vertices[count] = blendshape.vertices[count] + vertices[i];
blendshape.normals[count] = blendshape.normals[count] + normals[i];
++count;
}
}
}
}
#if 0
for(const glm::vec3& vertex : mesh.vertices) {
glm::vec3 transformedVertex = glm::vec3(globalTransforms[nodeIndex] * glm::vec4(vertex, 1.0f));
mesh.meshExtents.addPoint(transformedVertex);
hfmModel.meshExtents.addPoint(transformedVertex);
}
#endif
}
// Add epsilon to mesh extents to compensate for planar meshes
mesh.meshExtents.minimum -= glm::vec3(EPSILON, EPSILON, EPSILON);
mesh.meshExtents.maximum += glm::vec3(EPSILON, EPSILON, EPSILON);
hfmModel.meshExtents.minimum -= glm::vec3(EPSILON, EPSILON, EPSILON);
hfmModel.meshExtents.maximum += glm::vec3(EPSILON, EPSILON, EPSILON);
}
for (int nodeIndex = 0; nodeIndex < numNodes; ++nodeIndex) {
const auto& node = _file.nodes[nodeIndex];
if (-1 == node.mesh) {
continue;
}
const auto& mesh = _file.meshes[node.mesh];
int primCount = (int)mesh.primitives.size();
for (int primIndex = 0; primIndex < primCount; ++primIndex) {
const auto& primitive = mesh.primitives[primIndex];
hfmModel.shapes.push_back({});
auto& hfmShape = hfmModel.shapes.back();
hfmShape.transform = nodeIndex;
hfmShape.mesh = node.mesh;
hfmShape.meshPart = primIndex;
hfmShape.material = primitive.material;
}
}
return true;
}
MediaType GLTFSerializer::getMediaType() const {
MediaType mediaType("gltf");
mediaType.extensions.push_back("gltf");
mediaType.webMediaTypes.push_back("model/gltf+json");
mediaType.extensions.push_back("glb");
mediaType.webMediaTypes.push_back("model/gltf-binary");
return mediaType;
}
std::unique_ptr<hfm::Serializer::Factory> GLTFSerializer::getFactory() const {
return std::make_unique<hfm::Serializer::SimpleFactory<GLTFSerializer>>();
}
HFMModel::Pointer GLTFSerializer::read(const hifi::ByteArray& data, const hifi::VariantHash& mapping, const hifi::URL& url) {
_url = url;
// Normalize url for local files
hifi::URL normalizeUrl = DependencyManager::get<ResourceManager>()->normalizeURL(_url);
if (normalizeUrl.scheme().isEmpty() || (normalizeUrl.scheme() == "file")) {
QString localFileName = PathUtils::expandToLocalDataAbsolutePath(normalizeUrl).toLocalFile();
_url = hifi::URL(QFileInfo(localFileName).absoluteFilePath());
}
if (parseGLTF(data)) {
//_file.dump();
_file.sortNodes();
_file.populateMaterialNames();
_file.normalizeNodeTransforms();
auto hfmModelPtr = std::make_shared<HFMModel>();
HFMModel& hfmModel = *hfmModelPtr;
buildGeometry(hfmModel, mapping, _url);
//hfmDebugDump(data);
return hfmModelPtr;
} else {
qCDebug(modelformat) << "Error parsing GLTF file.";
}
return nullptr;
}
bool GLTFSerializer::readBinary(const QString& url, hifi::ByteArray& outdata) {
bool success;
if (url.contains("data:application/octet-stream;base64,")) {
outdata = requestEmbeddedData(url);
success = !outdata.isEmpty();
} else {
hifi::URL binaryUrl = _url.resolved(url);
std::tie<bool, hifi::ByteArray>(success, outdata) = requestData(binaryUrl);
}
return success;
}
bool GLTFSerializer::doesResourceExist(const QString& url) {
if (_url.isEmpty()) {
return false;
}
hifi::URL candidateUrl = _url.resolved(url);
return DependencyManager::get<ResourceManager>()->resourceExists(candidateUrl);
}
std::tuple<bool, hifi::ByteArray> GLTFSerializer::requestData(hifi::URL& url) {
auto request =
DependencyManager::get<ResourceManager>()->createResourceRequest(nullptr, url, true, -1, "GLTFSerializer::requestData");
if (!request) {
return std::make_tuple(false, hifi::ByteArray());
}
QEventLoop loop;
QObject::connect(request, &ResourceRequest::finished, &loop, &QEventLoop::quit);
request->send();
loop.exec();
if (request->getResult() == ResourceRequest::Success) {
return std::make_tuple(true, request->getData());
} else {
return std::make_tuple(false, hifi::ByteArray());
}
}
hifi::ByteArray GLTFSerializer::requestEmbeddedData(const QString& url) {
QString binaryUrl = url.split(",")[1];
return binaryUrl.isEmpty() ? hifi::ByteArray() : QByteArray::fromBase64(binaryUrl.toUtf8());
}
QNetworkReply* GLTFSerializer::request(hifi::URL& url, bool isTest) {
if (!qApp) {
return nullptr;
}
bool aboutToQuit{ false };
auto connection = QObject::connect(qApp, &QCoreApplication::aboutToQuit, [&] { aboutToQuit = true; });
QNetworkAccessManager& networkAccessManager = NetworkAccessManager::getInstance();
QNetworkRequest netRequest(url);
netRequest.setAttribute(QNetworkRequest::FollowRedirectsAttribute, true);
QNetworkReply* netReply = isTest ? networkAccessManager.head(netRequest) : networkAccessManager.get(netRequest);
if (!qApp || aboutToQuit) {
netReply->deleteLater();
return nullptr;
}
QEventLoop loop; // Create an event loop that will quit when we get the finished signal
QObject::connect(netReply, SIGNAL(finished()), &loop, SLOT(quit()));
loop.exec(); // Nothing is going to happen on this whole run thread until we get this
QObject::disconnect(connection);
return netReply; // trying to sync later on.
}
HFMTexture GLTFSerializer::getHFMTexture(const GLTFTexture& texture) {
HFMTexture fbxtex = HFMTexture();
fbxtex.texcoordSet = 0;
if (texture.defined["source"]) {
QString url = _file.images[texture.source].uri;
QString fname = hifi::URL(url).fileName();
hifi::URL textureUrl = _url.resolved(url);
fbxtex.name = fname;
fbxtex.filename = textureUrl.toEncoded();
if (_url.toString().endsWith("glb") && !_glbBinary.isEmpty()) {
int bufferView = _file.images[texture.source].bufferView;
GLTFBufferView& imagesBufferview = _file.bufferviews[bufferView];
int offset = imagesBufferview.byteOffset;
int length = imagesBufferview.byteLength;
fbxtex.content = _glbBinary.mid(offset, length);
fbxtex.filename = textureUrl.toEncoded().append(texture.source);
}
if (url.contains("data:image/jpeg;base64,") || url.contains("data:image/png;base64,")) {
fbxtex.content = requestEmbeddedData(url);
}
}
return fbxtex;
}
void GLTFSerializer::setHFMMaterial(HFMMaterial& fbxmat, const GLTFMaterial& material) {
if (material.defined["emissiveFactor"] && material.emissiveFactor.size() == 3) {
glm::vec3 emissive = glm::vec3(material.emissiveFactor[0], material.emissiveFactor[1], material.emissiveFactor[2]);
fbxmat._material->setEmissive(emissive);
}
if (material.defined["emissiveTexture"]) {
fbxmat.emissiveTexture = getHFMTexture(_file.textures[material.emissiveTexture]);
fbxmat.useEmissiveMap = true;
}
if (material.defined["normalTexture"]) {
fbxmat.normalTexture = getHFMTexture(_file.textures[material.normalTexture]);
fbxmat.useNormalMap = true;
}
if (material.defined["occlusionTexture"]) {
fbxmat.occlusionTexture = getHFMTexture(_file.textures[material.occlusionTexture]);
fbxmat.useOcclusionMap = true;
}
if (material.defined["pbrMetallicRoughness"]) {
fbxmat.isPBSMaterial = true;
if (material.pbrMetallicRoughness.defined["metallicFactor"]) {
fbxmat.metallic = material.pbrMetallicRoughness.metallicFactor;
}
if (material.pbrMetallicRoughness.defined["baseColorTexture"]) {
fbxmat.opacityTexture = getHFMTexture(_file.textures[material.pbrMetallicRoughness.baseColorTexture]);
fbxmat.albedoTexture = getHFMTexture(_file.textures[material.pbrMetallicRoughness.baseColorTexture]);
fbxmat.useAlbedoMap = true;
}
if (material.pbrMetallicRoughness.defined["metallicRoughnessTexture"]) {
fbxmat.roughnessTexture = getHFMTexture(_file.textures[material.pbrMetallicRoughness.metallicRoughnessTexture]);
fbxmat.roughnessTexture.sourceChannel = image::ColorChannel::GREEN;
fbxmat.useRoughnessMap = true;
fbxmat.metallicTexture = getHFMTexture(_file.textures[material.pbrMetallicRoughness.metallicRoughnessTexture]);
fbxmat.metallicTexture.sourceChannel = image::ColorChannel::BLUE;
fbxmat.useMetallicMap = true;
}
if (material.pbrMetallicRoughness.defined["roughnessFactor"]) {
fbxmat._material->setRoughness(material.pbrMetallicRoughness.roughnessFactor);
}
if (material.pbrMetallicRoughness.defined["baseColorFactor"] &&
material.pbrMetallicRoughness.baseColorFactor.size() == 4) {
glm::vec3 dcolor =
glm::vec3(material.pbrMetallicRoughness.baseColorFactor[0], material.pbrMetallicRoughness.baseColorFactor[1],
material.pbrMetallicRoughness.baseColorFactor[2]);
fbxmat.diffuseColor = dcolor;
fbxmat._material->setAlbedo(dcolor);
fbxmat._material->setOpacity(material.pbrMetallicRoughness.baseColorFactor[3]);
}
}
}
template <typename T, typename L>
bool GLTFSerializer::readArray(const hifi::ByteArray& bin, int byteOffset, int count, QVector<L>& outarray, int accessorType) {
QDataStream blobstream(bin);
blobstream.setByteOrder(QDataStream::LittleEndian);
blobstream.setVersion(QDataStream::Qt_5_9);
blobstream.setFloatingPointPrecision(QDataStream::FloatingPointPrecision::SinglePrecision);
blobstream.skipRawData(byteOffset);
int bufferCount = 0;
switch (accessorType) {
case GLTFAccessorType::SCALAR:
bufferCount = 1;
break;
case GLTFAccessorType::VEC2:
bufferCount = 2;
break;
case GLTFAccessorType::VEC3:
bufferCount = 3;
break;
case GLTFAccessorType::VEC4:
bufferCount = 4;
break;
case GLTFAccessorType::MAT2:
bufferCount = 4;
break;
case GLTFAccessorType::MAT3:
bufferCount = 9;
break;
case GLTFAccessorType::MAT4:
bufferCount = 16;
break;
default:
qWarning(modelformat) << "Unknown accessorType: " << accessorType;
blobstream.unsetDevice();
return false;
}
for (int i = 0; i < count; ++i) {
for (int j = 0; j < bufferCount; ++j) {
if (!blobstream.atEnd()) {
T value;
blobstream >> value;
outarray.push_back(value);
} else {
blobstream.unsetDevice();
return false;
}
}
}
blobstream.unsetDevice();
return true;
}
template <typename T>
bool GLTFSerializer::addArrayOfType(const hifi::ByteArray& bin,
int byteOffset,
int count,
QVector<T>& outarray,
int accessorType,
int componentType) {
switch (componentType) {
case GLTFAccessorComponentType::BYTE: {
}
case GLTFAccessorComponentType::UNSIGNED_BYTE: {
return readArray<uchar>(bin, byteOffset, count, outarray, accessorType);
}
case GLTFAccessorComponentType::SHORT: {
return readArray<short>(bin, byteOffset, count, outarray, accessorType);
}
case GLTFAccessorComponentType::UNSIGNED_INT: {
return readArray<uint>(bin, byteOffset, count, outarray, accessorType);
}
case GLTFAccessorComponentType::UNSIGNED_SHORT: {
return readArray<ushort>(bin, byteOffset, count, outarray, accessorType);
}
case GLTFAccessorComponentType::FLOAT: {
return readArray<float>(bin, byteOffset, count, outarray, accessorType);
}
}
return false;
}
template <typename T>
bool GLTFSerializer::addArrayFromAttribute(GLTFVertexAttribute::Value vertexAttribute, GLTFAccessor& accessor, QVector<T>& outarray) {
switch (vertexAttribute) {
case GLTFVertexAttribute::POSITION:
if (accessor.type != GLTFAccessorType::VEC3) {
qWarning(modelformat) << "Invalid accessor type on glTF POSITION data for model " << _url;
return false;
}
if (!addArrayFromAccessor(accessor, outarray)) {
qWarning(modelformat) << "There was a problem reading glTF POSITION data for model " << _url;
return false;
}
break;
case GLTFVertexAttribute::NORMAL:
if (accessor.type != GLTFAccessorType::VEC3) {
qWarning(modelformat) << "Invalid accessor type on glTF NORMAL data for model " << _url;
return false;
}
if (!addArrayFromAccessor(accessor, outarray)) {
qWarning(modelformat) << "There was a problem reading glTF NORMAL data for model " << _url;
return false;
}
break;
case GLTFVertexAttribute::TANGENT:
if (accessor.type != GLTFAccessorType::VEC4 && accessor.type != GLTFAccessorType::VEC3) {
qWarning(modelformat) << "Invalid accessor type on glTF TANGENT data for model " << _url;
return false;
}
break;
if (!addArrayFromAccessor(accessor, outarray)) {
qWarning(modelformat) << "There was a problem reading glTF TANGENT data for model " << _url;
return false;
}
break;
case GLTFVertexAttribute::TEXCOORD_0:
if (accessor.type != GLTFAccessorType::VEC2) {
qWarning(modelformat) << "Invalid accessor type on glTF TEXCOORD_0 data for model " << _url;
return false;
}
if (!addArrayFromAccessor(accessor, outarray)) {
qWarning(modelformat) << "There was a problem reading glTF TEXCOORD_0 data for model " << _url;
return false;
}
break;
case GLTFVertexAttribute::TEXCOORD_1:
if (accessor.type != GLTFAccessorType::VEC2) {
qWarning(modelformat) << "Invalid accessor type on glTF TEXCOORD_1 data for model " << _url;
return false;
}
if (!addArrayFromAccessor(accessor, outarray)) {
qWarning(modelformat) << "There was a problem reading glTF TEXCOORD_1 data for model " << _url;
return false;
}
break;
case GLTFVertexAttribute::COLOR_0:
if (accessor.type != GLTFAccessorType::VEC4 && accessor.type != GLTFAccessorType::VEC3) {
qWarning(modelformat) << "Invalid accessor type on glTF COLOR_0 data for model " << _url;
return false;
}
if (!addArrayFromAccessor(accessor, outarray)) {
qWarning(modelformat) << "There was a problem reading glTF COLOR_0 data for model " << _url;
return false;
}
break;
case GLTFVertexAttribute::JOINTS_0:
if (accessor.type < GLTFAccessorType::SCALAR || accessor.type > GLTFAccessorType::VEC4) {
qWarning(modelformat) << "Invalid accessor type on glTF JOINTS_0 data for model " << _url;
return false;
}
if (!addArrayFromAccessor(accessor, outarray)) {
qWarning(modelformat) << "There was a problem reading glTF JOINTS_0 data for model " << _url;
return false;
}
break;
case GLTFVertexAttribute::WEIGHTS_0:
if (accessor.type < GLTFAccessorType::SCALAR || accessor.type > GLTFAccessorType::VEC4) {
qWarning(modelformat) << "Invalid accessor type on glTF WEIGHTS_0 data for model " << _url;
return false;
}
if (!addArrayFromAccessor(accessor, outarray)) {
qWarning(modelformat) << "There was a problem reading glTF WEIGHTS_0 data for model " << _url;
return false;
}
default:
qWarning(modelformat) << "Unexpected attribute type" << _url;
return false;
}
return true;
}
template <typename T>
bool GLTFSerializer::addArrayFromAccessor(GLTFAccessor& accessor, QVector<T>& outarray) {
bool success = true;
if (accessor.defined["bufferView"]) {
GLTFBufferView& bufferview = _file.bufferviews[accessor.bufferView];
GLTFBuffer& buffer = _file.buffers[bufferview.buffer];
int accBoffset = accessor.defined["byteOffset"] ? accessor.byteOffset : 0;
success = addArrayOfType(buffer.blob, bufferview.byteOffset + accBoffset, accessor.count, outarray, accessor.type,
accessor.componentType);
} else {
for (int i = 0; i < accessor.count; ++i) {
T value;
memset(&value, 0, sizeof(T)); // Make sure the dummy array is initalised to zero.
outarray.push_back(value);
}
}
if (success) {
if (accessor.defined["sparse"]) {
QVector<int> out_sparse_indices_array;
GLTFBufferView& sparseIndicesBufferview = _file.bufferviews[accessor.sparse.indices.bufferView];
GLTFBuffer& sparseIndicesBuffer = _file.buffers[sparseIndicesBufferview.buffer];
int accSIBoffset = accessor.sparse.indices.defined["byteOffset"] ? accessor.sparse.indices.byteOffset : 0;
success = addArrayOfType(sparseIndicesBuffer.blob, sparseIndicesBufferview.byteOffset + accSIBoffset,
accessor.sparse.count, out_sparse_indices_array, GLTFAccessorType::SCALAR,
accessor.sparse.indices.componentType);
if (success) {
QVector<T> out_sparse_values_array;
GLTFBufferView& sparseValuesBufferview = _file.bufferviews[accessor.sparse.values.bufferView];
GLTFBuffer& sparseValuesBuffer = _file.buffers[sparseValuesBufferview.buffer];
int accSVBoffset = accessor.sparse.values.defined["byteOffset"] ? accessor.sparse.values.byteOffset : 0;
success = addArrayOfType(sparseValuesBuffer.blob, sparseValuesBufferview.byteOffset + accSVBoffset,
accessor.sparse.count, out_sparse_values_array, accessor.type, accessor.componentType);
if (success) {
for (int i = 0; i < accessor.sparse.count; ++i) {
if ((i * 3) + 2 < out_sparse_values_array.size()) {
if ((out_sparse_indices_array[i] * 3) + 2 < outarray.length()) {
for (int j = 0; j < 3; ++j) {
outarray[(out_sparse_indices_array[i] * 3) + j] = out_sparse_values_array[(i * 3) + j];
}
} else {
success = false;
break;
}
} else {
success = false;
break;
}
}
}
}
}
}
return success;
}
void GLTFSerializer::retriangulate(const QVector<int>& inIndices,
const QVector<glm::vec3>& in_vertices,
const QVector<glm::vec3>& in_normals,
QVector<int>& outIndices,
QVector<glm::vec3>& out_vertices,
QVector<glm::vec3>& out_normals) {
for (int i = 0; i < inIndices.size(); i = i + 3) {
int idx1 = inIndices[i];
int idx2 = inIndices[i + 1];
int idx3 = inIndices[i + 2];
out_vertices.push_back(in_vertices[idx1]);
out_vertices.push_back(in_vertices[idx2]);
out_vertices.push_back(in_vertices[idx3]);
out_normals.push_back(in_normals[idx1]);
out_normals.push_back(in_normals[idx2]);
out_normals.push_back(in_normals[idx3]);
outIndices.push_back(i);
outIndices.push_back(i + 1);
outIndices.push_back(i + 2);
}
}
void GLTFSerializer::glTFDebugDump() {
qCDebug(modelformat) << "---------------- Nodes ----------------";
for (GLTFNode node : _file.nodes) {
if (node.defined["mesh"]) {
qCDebug(modelformat) << "\n";
qCDebug(modelformat) << " node_transform" << node.transform;
qCDebug(modelformat) << "\n";
}
}
qCDebug(modelformat) << "---------------- Accessors ----------------";
for (GLTFAccessor accessor : _file.accessors) {
qCDebug(modelformat) << "\n";
qCDebug(modelformat) << "count: " << accessor.count;
qCDebug(modelformat) << "byteOffset: " << accessor.byteOffset;
qCDebug(modelformat) << "\n";
}
qCDebug(modelformat) << "---------------- Textures ----------------";
for (GLTFTexture texture : _file.textures) {
if (texture.defined["source"]) {
qCDebug(modelformat) << "\n";
QString url = _file.images[texture.source].uri;
QString fname = hifi::URL(url).fileName();
qCDebug(modelformat) << "fname: " << fname;
qCDebug(modelformat) << "\n";
}
}
qCDebug(modelformat) << "\n";
}
void GLTFSerializer::hfmDebugDump(const HFMModel& hfmModel) {
qCDebug(modelformat) << "---------------- hfmModel ----------------";
qCDebug(modelformat) << " hasSkeletonJoints =" << hfmModel.hasSkeletonJoints;
qCDebug(modelformat) << " offset =" << hfmModel.offset;
qCDebug(modelformat) << " neckPivot = " << hfmModel.neckPivot;
qCDebug(modelformat) << " bindExtents.size() = " << hfmModel.bindExtents.size();
qCDebug(modelformat) << " meshExtents.size() = " << hfmModel.meshExtents.size();
qCDebug(modelformat) << " jointIndices.size() =" << hfmModel.jointIndices.size();
qCDebug(modelformat) << " joints.count() =" << hfmModel.joints.size();
qCDebug(modelformat) << "---------------- Meshes ----------------";
qCDebug(modelformat) << " meshes.count() =" << hfmModel.meshes.size();
qCDebug(modelformat) << " blendshapeChannelNames = " << hfmModel.blendshapeChannelNames;
for (const HFMMesh& mesh : hfmModel.meshes) {
qCDebug(modelformat) << "\n";
qCDebug(modelformat) << " meshpointer =" << mesh._mesh.get();
qCDebug(modelformat) << " meshindex =" << mesh.meshIndex;
qCDebug(modelformat) << " vertices.count() =" << mesh.vertices.size();
qCDebug(modelformat) << " colors.count() =" << mesh.colors.count();
qCDebug(modelformat) << " normals.count() =" << mesh.normals.size();
qCDebug(modelformat) << " tangents.count() =" << mesh.tangents.size();
qCDebug(modelformat) << " colors.count() =" << mesh.colors.count();
qCDebug(modelformat) << " texCoords.count() =" << mesh.texCoords.count();
qCDebug(modelformat) << " texCoords1.count() =" << mesh.texCoords1.count();
//qCDebug(modelformat) << " clusterIndices.count() =" << mesh.clusterIndices.count();
//qCDebug(modelformat) << " clusterWeights.count() =" << mesh.clusterWeights.count();
//qCDebug(modelformat) << " modelTransform =" << mesh.modelTransform;
qCDebug(modelformat) << " parts.count() =" << mesh.parts.size();
qCDebug(modelformat) << "---------------- Meshes (blendshapes)--------";
for (HFMBlendshape bshape : mesh.blendshapes) {
qCDebug(modelformat) << "\n";
qCDebug(modelformat) << " bshape.indices.count() =" << bshape.indices.count();
qCDebug(modelformat) << " bshape.vertices.count() =" << bshape.vertices.count();
qCDebug(modelformat) << " bshape.normals.count() =" << bshape.normals.count();
qCDebug(modelformat) << "\n";
}
qCDebug(modelformat) << "---------------- Meshes (meshparts)--------";
for (HFMMeshPart meshPart : mesh.parts) {
qCDebug(modelformat) << "\n";
qCDebug(modelformat) << " quadIndices.count() =" << meshPart.quadIndices.count();
qCDebug(modelformat) << " triangleIndices.count() =" << meshPart.triangleIndices.count();
//qCDebug(modelformat) << " materialID =" << meshPart.materialID;
qCDebug(modelformat) << "\n";
}
qCDebug(modelformat) << "---------------- Meshes (clusters)--------";
//qCDebug(modelformat) << " clusters.count() =" << mesh.clusters.count();
//for(HFMCluster cluster : mesh.clusters) {
// qCDebug(modelformat) << "\n";
// qCDebug(modelformat) << " jointIndex =" << cluster.jointIndex;
// qCDebug(modelformat) << " inverseBindMatrix =" << cluster.inverseBindMatrix;
// qCDebug(modelformat) << "\n";
//}
//qCDebug(modelformat) << "\n";
}
qCDebug(modelformat) << "---------------- AnimationFrames ----------------";
for (HFMAnimationFrame anim : hfmModel.animationFrames) {
qCDebug(modelformat) << " anim.translations = " << anim.translations;
qCDebug(modelformat) << " anim.rotations = " << anim.rotations;
}
QList<int> mitomona_keys = hfmModel.meshIndicesToModelNames.keys();
for (int key : mitomona_keys) {
qCDebug(modelformat) << " meshIndicesToModelNames key =" << key
<< " val =" << hfmModel.meshIndicesToModelNames[key];
}
qCDebug(modelformat) << "---------------- Materials ----------------";
for (HFMMaterial mat : hfmModel.materials) {
qCDebug(modelformat) << "\n";
qCDebug(modelformat) << " mat.materialID =" << mat.materialID;
qCDebug(modelformat) << " diffuseColor =" << mat.diffuseColor;
qCDebug(modelformat) << " diffuseFactor =" << mat.diffuseFactor;
qCDebug(modelformat) << " specularColor =" << mat.specularColor;
qCDebug(modelformat) << " specularFactor =" << mat.specularFactor;
qCDebug(modelformat) << " emissiveColor =" << mat.emissiveColor;
qCDebug(modelformat) << " emissiveFactor =" << mat.emissiveFactor;
qCDebug(modelformat) << " shininess =" << mat.shininess;
qCDebug(modelformat) << " opacity =" << mat.opacity;
qCDebug(modelformat) << " metallic =" << mat.metallic;
qCDebug(modelformat) << " roughness =" << mat.roughness;
qCDebug(modelformat) << " emissiveIntensity =" << mat.emissiveIntensity;
qCDebug(modelformat) << " ambientFactor =" << mat.ambientFactor;
qCDebug(modelformat) << " materialID =" << mat.materialID;
qCDebug(modelformat) << " name =" << mat.name;
qCDebug(modelformat) << " shadingModel =" << mat.shadingModel;
qCDebug(modelformat) << " _material =" << mat._material.get();
qCDebug(modelformat) << " normalTexture =" << mat.normalTexture.filename;
qCDebug(modelformat) << " albedoTexture =" << mat.albedoTexture.filename;
qCDebug(modelformat) << " opacityTexture =" << mat.opacityTexture.filename;
qCDebug(modelformat) << " lightmapParams =" << mat.lightmapParams;
qCDebug(modelformat) << " isPBSMaterial =" << mat.isPBSMaterial;
qCDebug(modelformat) << " useNormalMap =" << mat.useNormalMap;
qCDebug(modelformat) << " useAlbedoMap =" << mat.useAlbedoMap;
qCDebug(modelformat) << " useOpacityMap =" << mat.useOpacityMap;
qCDebug(modelformat) << " useRoughnessMap =" << mat.useRoughnessMap;
qCDebug(modelformat) << " useSpecularMap =" << mat.useSpecularMap;
qCDebug(modelformat) << " useMetallicMap =" << mat.useMetallicMap;
qCDebug(modelformat) << " useEmissiveMap =" << mat.useEmissiveMap;
qCDebug(modelformat) << " useOcclusionMap =" << mat.useOcclusionMap;
qCDebug(modelformat) << "\n";
}
qCDebug(modelformat) << "---------------- Joints ----------------";
foreach (HFMJoint joint, hfmModel.joints) {
qCDebug(modelformat) << "\n";
qCDebug(modelformat) << " shapeInfo.avgPoint =" << joint.shapeInfo.avgPoint;
qCDebug(modelformat) << " shapeInfo.debugLines =" << joint.shapeInfo.debugLines;
qCDebug(modelformat) << " shapeInfo.dots =" << joint.shapeInfo.dots;
qCDebug(modelformat) << " shapeInfo.points =" << joint.shapeInfo.points;
qCDebug(modelformat) << " parentIndex" << joint.parentIndex;
qCDebug(modelformat) << " distanceToParent" << joint.distanceToParent;
qCDebug(modelformat) << " translation" << joint.translation;
qCDebug(modelformat) << " preTransform" << joint.preTransform;
qCDebug(modelformat) << " preRotation" << joint.preRotation;
qCDebug(modelformat) << " rotation" << joint.rotation;
qCDebug(modelformat) << " postRotation" << joint.postRotation;
qCDebug(modelformat) << " postTransform" << joint.postTransform;
qCDebug(modelformat) << " transform" << joint.transform;
qCDebug(modelformat) << " rotationMin" << joint.rotationMin;
qCDebug(modelformat) << " rotationMax" << joint.rotationMax;
qCDebug(modelformat) << " inverseDefaultRotation" << joint.inverseDefaultRotation;
qCDebug(modelformat) << " inverseBindRotation" << joint.inverseBindRotation;
qCDebug(modelformat) << " bindTransform" << joint.bindTransform;
qCDebug(modelformat) << " name" << joint.name;
qCDebug(modelformat) << " isSkeletonJoint" << joint.isSkeletonJoint;
qCDebug(modelformat) << " bindTransformFoundInCluster" << joint.hasGeometricOffset;
qCDebug(modelformat) << " bindTransformFoundInCluster" << joint.geometricTranslation;
qCDebug(modelformat) << " bindTransformFoundInCluster" << joint.geometricRotation;
qCDebug(modelformat) << " bindTransformFoundInCluster" << joint.geometricScaling;
qCDebug(modelformat) << "\n";
}
qCDebug(modelformat) << "---------------- GLTF Model ----------------";
glTFDebugDump();
qCDebug(modelformat) << "\n";
}