overte-HifiExperiments/libraries/render-utils/src/CauterizedModel.cpp
Anthony J. Thibault a1b67afabf Fix for rigidly bound mesh not being properly cauterized.
For example, sometimes in first person view, you can see the back of your avatar's eyes or the brim of your avatar's hat.
2018-02-01 11:57:50 -08:00

268 lines
11 KiB
C++

//
// Created by Andrew Meadows 2017.01.17
// Copyright 2017 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "CauterizedModel.h"
#include <PerfStat.h>
#include <DualQuaternion.h>
#include "AbstractViewStateInterface.h"
#include "MeshPartPayload.h"
#include "CauterizedMeshPartPayload.h"
#include "RenderUtilsLogging.h"
CauterizedModel::CauterizedModel(QObject* parent) :
Model(parent) {
}
CauterizedModel::~CauterizedModel() {
}
void CauterizedModel::deleteGeometry() {
Model::deleteGeometry();
_cauterizeMeshStates.clear();
}
bool CauterizedModel::updateGeometry() {
bool needsFullUpdate = Model::updateGeometry();
if (_isCauterized && needsFullUpdate) {
assert(_cauterizeMeshStates.empty());
const FBXGeometry& fbxGeometry = getFBXGeometry();
foreach (const FBXMesh& mesh, fbxGeometry.meshes) {
Model::MeshState state;
state.clusterTransforms.resize(mesh.clusters.size());
_cauterizeMeshStates.append(state);
}
}
return needsFullUpdate;
}
void CauterizedModel::createVisibleRenderItemSet() {
if (_isCauterized) {
assert(isLoaded());
const auto& meshes = _renderGeometry->getMeshes();
// all of our mesh vectors must match in size
if (meshes.size() != _meshStates.size()) {
qCDebug(renderutils) << "WARNING!!!! Mesh Sizes don't match! We will not segregate mesh groups yet.";
return;
}
// We should not have any existing renderItems if we enter this section of code
Q_ASSERT(_modelMeshRenderItems.isEmpty());
_modelMeshRenderItems.clear();
_modelMeshRenderItemShapes.clear();
Transform transform;
transform.setTranslation(_translation);
transform.setRotation(_rotation);
Transform offset;
offset.setScale(_scale);
offset.postTranslate(_offset);
// Run through all of the meshes, and place them into their segregated, but unsorted buckets
int shapeID = 0;
uint32_t numMeshes = (uint32_t)meshes.size();
for (uint32_t i = 0; i < numMeshes; i++) {
const auto& mesh = meshes.at(i);
if (!mesh) {
continue;
}
// Create the render payloads
int numParts = (int)mesh->getNumParts();
for (int partIndex = 0; partIndex < numParts; partIndex++) {
auto ptr = std::make_shared<CauterizedMeshPartPayload>(shared_from_this(), i, partIndex, shapeID, transform, offset);
_modelMeshRenderItems << std::static_pointer_cast<ModelMeshPartPayload>(ptr);
_modelMeshRenderItemShapes.emplace_back(ShapeInfo{ (int)i });
shapeID++;
}
}
} else {
Model::createVisibleRenderItemSet();
}
}
void CauterizedModel::createCollisionRenderItemSet() {
// Temporary HACK: use base class method for now
Model::createCollisionRenderItemSet();
}
void CauterizedModel::updateClusterMatrices() {
PerformanceTimer perfTimer("CauterizedModel::updateClusterMatrices");
if (!_needsUpdateClusterMatrices || !isLoaded()) {
return;
}
_needsUpdateClusterMatrices = false;
const FBXGeometry& geometry = getFBXGeometry();
for (int i = 0; i < (int)_meshStates.size(); i++) {
Model::MeshState& state = _meshStates[i];
const FBXMesh& mesh = geometry.meshes.at(i);
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
#if defined(SKIN_DQ)
auto jointPose = _rig.getJointPose(cluster.jointIndex);
Transform jointTransform(jointPose.rot(), jointPose.scale(), jointPose.trans());
Transform clusterTransform;
Transform::mult(clusterTransform, jointTransform, cluster.inverseBindTransform);
state.clusterTransforms[j] = Model::TransformDualQuaternion(clusterTransform);
state.clusterTransforms[j].setCauterizationParameters(0.0f, jointPose.trans());
#else
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
#endif
}
}
// as an optimization, don't build cautrizedClusterMatrices if the boneSet is empty.
if (!_cauterizeBoneSet.empty()) {
#if defined(SKIN_DQ)
AnimPose cauterizePose = _rig.getJointPose(geometry.neckJointIndex);
cauterizePose.scale() = glm::vec3(0.0001f, 0.0001f, 0.0001f);
#else
static const glm::mat4 zeroScale(
glm::vec4(0.0001f, 0.0f, 0.0f, 0.0f),
glm::vec4(0.0f, 0.0001f, 0.0f, 0.0f),
glm::vec4(0.0f, 0.0f, 0.0001f, 0.0f),
glm::vec4(0.0f, 0.0f, 0.0f, 1.0f));
auto cauterizeMatrix = _rig.getJointTransform(geometry.neckJointIndex) * zeroScale;
#endif
for (int i = 0; i < _cauterizeMeshStates.size(); i++) {
Model::MeshState& state = _cauterizeMeshStates[i];
const FBXMesh& mesh = geometry.meshes.at(i);
for (int j = 0; j < mesh.clusters.size(); j++) {
const FBXCluster& cluster = mesh.clusters.at(j);
if (_cauterizeBoneSet.find(cluster.jointIndex) == _cauterizeBoneSet.end()) {
// not cauterized so just copy the value from the non-cauterized version.
state.clusterTransforms[j] = _meshStates[i].clusterTransforms[j];
} else {
#if defined(SKIN_DQ)
Transform jointTransform(cauterizePose.rot(), cauterizePose.scale(), cauterizePose.trans());
Transform clusterTransform;
Transform::mult(clusterTransform, jointTransform, cluster.inverseBindTransform);
state.clusterTransforms[j] = Model::TransformDualQuaternion(clusterTransform);
state.clusterTransforms[j].setCauterizationParameters(1.0f, cauterizePose.trans());
#else
glm_mat4u_mul(cauterizeMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
#endif
}
}
}
}
// post the blender if we're not currently waiting for one to finish
if (geometry.hasBlendedMeshes() && _blendshapeCoefficients != _blendedBlendshapeCoefficients) {
_blendedBlendshapeCoefficients = _blendshapeCoefficients;
DependencyManager::get<ModelBlender>()->noteRequiresBlend(getThisPointer());
}
}
void CauterizedModel::updateRenderItems() {
if (_isCauterized) {
if (!_addedToScene) {
return;
}
glm::vec3 scale = getScale();
if (_collisionGeometry) {
// _collisionGeometry is already scaled
scale = glm::vec3(1.0f);
}
_needsUpdateClusterMatrices = true;
_renderItemsNeedUpdate = false;
// queue up this work for later processing, at the end of update and just before rendering.
// the application will ensure only the last lambda is actually invoked.
void* key = (void*)this;
std::weak_ptr<CauterizedModel> weakSelf = std::dynamic_pointer_cast<CauterizedModel>(shared_from_this());
AbstractViewStateInterface::instance()->pushPostUpdateLambda(key, [weakSelf]() {
// do nothing, if the model has already been destroyed.
auto self = weakSelf.lock();
if (!self || !self->isLoaded()) {
return;
}
// lazy update of cluster matrices used for rendering. We need to update them here, so we can correctly update the bounding box.
self->updateClusterMatrices();
render::ScenePointer scene = AbstractViewStateInterface::instance()->getMain3DScene();
Transform modelTransform;
modelTransform.setTranslation(self->getTranslation());
modelTransform.setRotation(self->getRotation());
bool isWireframe = self->isWireframe();
bool isVisible = self->isVisible();
bool isLayeredInFront = self->isLayeredInFront();
bool isLayeredInHUD = self->isLayeredInHUD();
bool enableCauterization = self->getEnableCauterization();
render::Transaction transaction;
for (int i = 0; i < (int)self->_modelMeshRenderItemIDs.size(); i++) {
auto itemID = self->_modelMeshRenderItemIDs[i];
auto meshIndex = self->_modelMeshRenderItemShapes[i].meshIndex;
auto clusterTransforms(self->getMeshState(meshIndex).clusterTransforms);
auto clusterTransformsCauterized(self->getCauterizeMeshState(meshIndex).clusterTransforms);
bool invalidatePayloadShapeKey = self->shouldInvalidatePayloadShapeKey(meshIndex);
transaction.updateItem<CauterizedMeshPartPayload>(itemID, [modelTransform, clusterTransforms, clusterTransformsCauterized, invalidatePayloadShapeKey,
isWireframe, isVisible, isLayeredInFront, isLayeredInHUD, enableCauterization](CauterizedMeshPartPayload& data) {
data.updateClusterBuffer(clusterTransforms, clusterTransformsCauterized);
Transform renderTransform = modelTransform;
if (clusterTransforms.size() == 1) {
#if defined(SKIN_DQ)
Transform transform(clusterTransforms[0].getRotation(),
clusterTransforms[0].getScale(),
clusterTransforms[0].getTranslation());
renderTransform = modelTransform.worldTransform(transform);
#else
renderTransform = modelTransform.worldTransform(Transform(clusterTransforms[0]));
#endif
}
data.updateTransformForSkinnedMesh(renderTransform, modelTransform);
renderTransform = modelTransform;
if (clusterTransformsCauterized.size() == 1) {
#if defined(SKIN_DQ)
Transform transform(clusterTransformsCauterized[0].getRotation(),
clusterTransformsCauterized[0].getScale(),
clusterTransformsCauterized[0].getTranslation());
renderTransform = modelTransform.worldTransform(Transform(transform));
#else
renderTransform = modelTransform.worldTransform(Transform(clusterTransformsCauterized[0]));
#endif
}
data.updateTransformForCauterizedMesh(renderTransform);
data.setEnableCauterization(enableCauterization);
data.setKey(isVisible, isLayeredInFront || isLayeredInHUD);
data.setLayer(isLayeredInFront, isLayeredInHUD);
data.setShapeKey(invalidatePayloadShapeKey, isWireframe);
});
}
scene->enqueueTransaction(transaction);
});
} else {
Model::updateRenderItems();
}
}
const Model::MeshState& CauterizedModel::getCauterizeMeshState(int index) const {
assert((size_t)index < _meshStates.size());
return _cauterizeMeshStates.at(index);
}