overte-HifiExperiments/libraries/shared/src/ShapeInfo.cpp
2016-05-20 09:41:26 -07:00

254 lines
8.6 KiB
C++

//
// ShapeInfo.cpp
// libraries/physcis/src
//
// Created by Andrew Meadows 2014.10.29
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "ShapeInfo.h"
#include <math.h>
#include "NumericalConstants.h" // for MILLIMETERS_PER_METER
void ShapeInfo::clear() {
_type = SHAPE_TYPE_NONE;
_halfExtents = _offset = glm::vec3(0.0f);
_doubleHashKey.clear();
}
void ShapeInfo::setParams(ShapeType type, const glm::vec3& halfExtents, QString url) {
_type = type;
_points.clear();
switch(type) {
case SHAPE_TYPE_NONE:
_halfExtents = glm::vec3(0.0f);
break;
case SHAPE_TYPE_BOX:
_halfExtents = halfExtents;
break;
case SHAPE_TYPE_SPHERE: {
// sphere radius is max of halfExtents
float radius = glm::max(glm::max(halfExtents.x, halfExtents.y), halfExtents.z);
_halfExtents = glm::vec3(radius);
break;
}
case SHAPE_TYPE_COMPOUND:
_url = QUrl(url);
_halfExtents = halfExtents;
break;
default:
_halfExtents = halfExtents;
break;
}
_doubleHashKey.clear();
}
void ShapeInfo::setBox(const glm::vec3& halfExtents) {
_url = "";
_type = SHAPE_TYPE_BOX;
_halfExtents = halfExtents;
_points.clear();
_doubleHashKey.clear();
}
void ShapeInfo::setSphere(float radius) {
_url = "";
_type = SHAPE_TYPE_SPHERE;
_halfExtents = glm::vec3(radius, radius, radius);
_points.clear();
_doubleHashKey.clear();
}
void ShapeInfo::setEllipsoid(const glm::vec3& halfExtents) {
_url = "";
_type = SHAPE_TYPE_ELLIPSOID;
_halfExtents = halfExtents;
_points.clear();
_doubleHashKey.clear();
}
void ShapeInfo::setConvexHulls(const QVector<QVector<glm::vec3>>& points) {
_points = points;
_type = (_points.size() > 0) ? SHAPE_TYPE_COMPOUND : SHAPE_TYPE_NONE;
_doubleHashKey.clear();
}
void ShapeInfo::setCapsuleY(float radius, float halfHeight) {
_url = "";
_type = SHAPE_TYPE_CAPSULE_Y;
_halfExtents = glm::vec3(radius, halfHeight, radius);
_points.clear();
_doubleHashKey.clear();
}
void ShapeInfo::setOffset(const glm::vec3& offset) {
_offset = offset;
_doubleHashKey.clear();
}
uint32_t ShapeInfo::getNumSubShapes() const {
if (_type == SHAPE_TYPE_NONE) {
return 0;
} else if (_type == SHAPE_TYPE_COMPOUND) {
return _points.size();
}
return 1;
}
int ShapeInfo::getMaxNumPoints() const {
int numPoints = 0;
for (int i = 0; i < _points.size(); ++i) {
int n = _points[i].size();
if (n > numPoints) {
numPoints = n;
}
}
return numPoints;
}
float ShapeInfo::computeVolume() const {
const float DEFAULT_VOLUME = 1.0f;
float volume = DEFAULT_VOLUME;
switch(_type) {
case SHAPE_TYPE_BOX: {
// factor of 8.0 because the components of _halfExtents are all halfExtents
volume = 8.0f * _halfExtents.x * _halfExtents.y * _halfExtents.z;
break;
}
case SHAPE_TYPE_SPHERE: {
float radius = _halfExtents.x;
volume = 4.0f * PI * radius * radius * radius / 3.0f;
break;
}
case SHAPE_TYPE_CYLINDER_Y: {
float radius = _halfExtents.x;
volume = PI * radius * radius * 2.0f * _halfExtents.y;
break;
}
case SHAPE_TYPE_CAPSULE_Y: {
float radius = _halfExtents.x;
volume = PI * radius * radius * (2.0f * (_halfExtents.y - _halfExtents.x) + 4.0f * radius / 3.0f);
break;
}
default:
break;
}
assert(volume > 0.0f);
return volume;
}
bool ShapeInfo::contains(const glm::vec3& point) const {
switch(_type) {
case SHAPE_TYPE_SPHERE:
return glm::length(point) <= _halfExtents.x;
case SHAPE_TYPE_ELLIPSOID: {
glm::vec3 scaledPoint = glm::abs(point) / _halfExtents;
return glm::length(scaledPoint) <= 1.0f;
}
case SHAPE_TYPE_CYLINDER_X:
return glm::length(glm::vec2(point.y, point.z)) <= _halfExtents.z;
case SHAPE_TYPE_CYLINDER_Y:
return glm::length(glm::vec2(point.x, point.z)) <= _halfExtents.x;
case SHAPE_TYPE_CYLINDER_Z:
return glm::length(glm::vec2(point.x, point.y)) <= _halfExtents.y;
case SHAPE_TYPE_CAPSULE_X: {
if (glm::abs(point.x) <= _halfExtents.x) {
return glm::length(glm::vec2(point.y, point.z)) <= _halfExtents.z;
} else {
glm::vec3 absPoint = glm::abs(point) - _halfExtents.x;
return glm::length(absPoint) <= _halfExtents.z;
}
}
case SHAPE_TYPE_CAPSULE_Y: {
if (glm::abs(point.y) <= _halfExtents.y) {
return glm::length(glm::vec2(point.x, point.z)) <= _halfExtents.x;
} else {
glm::vec3 absPoint = glm::abs(point) - _halfExtents.y;
return glm::length(absPoint) <= _halfExtents.x;
}
}
case SHAPE_TYPE_CAPSULE_Z: {
if (glm::abs(point.z) <= _halfExtents.z) {
return glm::length(glm::vec2(point.x, point.y)) <= _halfExtents.y;
} else {
glm::vec3 absPoint = glm::abs(point) - _halfExtents.z;
return glm::length(absPoint) <= _halfExtents.y;
}
}
case SHAPE_TYPE_BOX:
default: {
glm::vec3 absPoint = glm::abs(point);
return absPoint.x <= _halfExtents.x
&& absPoint.y <= _halfExtents.y
&& absPoint.z <= _halfExtents.z;
}
}
}
const DoubleHashKey& ShapeInfo::getHash() const {
// NOTE: we cache the key so we only ever need to compute it once for any valid ShapeInfo instance.
if (_doubleHashKey.isNull() && _type != SHAPE_TYPE_NONE) {
bool useOffset = glm::length2(_offset) > MIN_SHAPE_OFFSET * MIN_SHAPE_OFFSET;
// The key is not yet cached therefore we must compute it! To this end we bypass the const-ness
// of this method by grabbing a non-const pointer to "this" and a non-const reference to _doubleHashKey.
ShapeInfo* thisPtr = const_cast<ShapeInfo*>(this);
DoubleHashKey& key = thisPtr->_doubleHashKey;
// compute hash1
// TODO?: provide lookup table for hash/hash2 of _type rather than recompute?
uint32_t primeIndex = 0;
key.computeHash((uint32_t)_type, primeIndex++);
// compute hash1
uint32_t hash = key.getHash();
for (int j = 0; j < 3; ++j) {
// NOTE: 0.49f is used to bump the float up almost half a millimeter
// so the cast to int produces a round() effect rather than a floor()
hash ^= DoubleHashKey::hashFunction(
(uint32_t)(_halfExtents[j] * MILLIMETERS_PER_METER + copysignf(1.0f, _halfExtents[j]) * 0.49f),
primeIndex++);
if (useOffset) {
hash ^= DoubleHashKey::hashFunction(
(uint32_t)(_offset[j] * MILLIMETERS_PER_METER + copysignf(1.0f, _offset[j]) * 0.49f),
primeIndex++);
}
}
key.setHash(hash);
// compute hash2
hash = key.getHash2();
for (int j = 0; j < 3; ++j) {
// NOTE: 0.49f is used to bump the float up almost half a millimeter
// so the cast to int produces a round() effect rather than a floor()
uint32_t floatHash = DoubleHashKey::hashFunction2(
(uint32_t)(_halfExtents[j] * MILLIMETERS_PER_METER + copysignf(1.0f, _halfExtents[j]) * 0.49f));
if (useOffset) {
floatHash ^= DoubleHashKey::hashFunction2(
(uint32_t)(_offset[j] * MILLIMETERS_PER_METER + copysignf(1.0f, _offset[j]) * 0.49f));
}
hash += ~(floatHash << 17);
hash ^= (floatHash >> 11);
hash += (floatHash << 4);
hash ^= (floatHash >> 7);
hash += ~(floatHash << 10);
hash = (hash << 16) | (hash >> 16);
}
key.setHash2(hash);
QString url = _url.toString();
if (!url.isEmpty()) {
// fold the urlHash into both parts
QByteArray baUrl = url.toLocal8Bit();
const char *cUrl = baUrl.data();
uint32_t urlHash = qChecksum(cUrl, baUrl.count());
key.setHash(key.getHash() ^ urlHash);
key.setHash2(key.getHash2() ^ urlHash);
}
}
return _doubleHashKey;
}