overte-HifiExperiments/libraries/gpu-gl/src/gpu/gl/GLShared.cpp

916 lines
35 KiB
C++

//
// Created by Bradley Austin Davis on 2016/05/14
// Copyright 2013-2016 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "GLShared.h"
#include <mutex>
#include <GPUIdent.h>
#include <NumericalConstants.h>
Q_LOGGING_CATEGORY(gpugllogging, "hifi.gpu.gl")
namespace gpu { namespace gl {
bool checkGLError(const char* name) {
GLenum error = glGetError();
if (!error) {
return false;
} else {
switch (error) {
case GL_INVALID_ENUM:
qCDebug(gpugllogging) << "GLBackend::" << name << ": An unacceptable value is specified for an enumerated argument.The offending command is ignored and has no other side effect than to set the error flag.";
break;
case GL_INVALID_VALUE:
qCDebug(gpugllogging) << "GLBackend" << name << ": A numeric argument is out of range.The offending command is ignored and has no other side effect than to set the error flag";
break;
case GL_INVALID_OPERATION:
qCDebug(gpugllogging) << "GLBackend" << name << ": The specified operation is not allowed in the current state.The offending command is ignored and has no other side effect than to set the error flag..";
break;
case GL_INVALID_FRAMEBUFFER_OPERATION:
qCDebug(gpugllogging) << "GLBackend" << name << ": The framebuffer object is not complete.The offending command is ignored and has no other side effect than to set the error flag.";
break;
case GL_OUT_OF_MEMORY:
qCDebug(gpugllogging) << "GLBackend" << name << ": There is not enough memory left to execute the command.The state of the GL is undefined, except for the state of the error flags, after this error is recorded.";
break;
case GL_STACK_UNDERFLOW:
qCDebug(gpugllogging) << "GLBackend" << name << ": An attempt has been made to perform an operation that would cause an internal stack to underflow.";
break;
case GL_STACK_OVERFLOW:
qCDebug(gpugllogging) << "GLBackend" << name << ": An attempt has been made to perform an operation that would cause an internal stack to overflow.";
break;
}
return true;
}
}
bool checkGLErrorDebug(const char* name) {
#ifdef DEBUG
return checkGLError(name);
#else
Q_UNUSED(name);
return false;
#endif
}
gpu::Size getDedicatedMemory() {
static Size dedicatedMemory { 0 };
static std::once_flag once;
std::call_once(once, [&] {
#ifdef Q_OS_WIN
if (!dedicatedMemory && wglGetGPUIDsAMD && wglGetGPUInfoAMD) {
UINT maxCount = wglGetGPUIDsAMD(0, 0);
std::vector<UINT> ids;
ids.resize(maxCount);
wglGetGPUIDsAMD(maxCount, &ids[0]);
GLuint memTotal;
wglGetGPUInfoAMD(ids[0], WGL_GPU_RAM_AMD, GL_UNSIGNED_INT, sizeof(GLuint), &memTotal);
dedicatedMemory = MB_TO_BYTES(memTotal);
}
#endif
if (!dedicatedMemory) {
GLint atiGpuMemory[4];
// not really total memory, but close enough if called early enough in the application lifecycle
glGetIntegerv(GL_TEXTURE_FREE_MEMORY_ATI, atiGpuMemory);
if (GL_NO_ERROR == glGetError()) {
dedicatedMemory = KB_TO_BYTES(atiGpuMemory[0]);
}
}
if (!dedicatedMemory) {
GLint nvGpuMemory { 0 };
glGetIntegerv(GL_GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX, &nvGpuMemory);
if (GL_NO_ERROR == glGetError()) {
dedicatedMemory = KB_TO_BYTES(nvGpuMemory);
}
}
if (!dedicatedMemory) {
auto gpuIdent = GPUIdent::getInstance();
if (gpuIdent && gpuIdent->isValid()) {
dedicatedMemory = MB_TO_BYTES(gpuIdent->getMemory());
}
}
});
return dedicatedMemory;
}
ComparisonFunction comparisonFuncFromGL(GLenum func) {
if (func == GL_NEVER) {
return NEVER;
} else if (func == GL_LESS) {
return LESS;
} else if (func == GL_EQUAL) {
return EQUAL;
} else if (func == GL_LEQUAL) {
return LESS_EQUAL;
} else if (func == GL_GREATER) {
return GREATER;
} else if (func == GL_NOTEQUAL) {
return NOT_EQUAL;
} else if (func == GL_GEQUAL) {
return GREATER_EQUAL;
} else if (func == GL_ALWAYS) {
return ALWAYS;
}
return ALWAYS;
}
State::StencilOp stencilOpFromGL(GLenum stencilOp) {
if (stencilOp == GL_KEEP) {
return State::STENCIL_OP_KEEP;
} else if (stencilOp == GL_ZERO) {
return State::STENCIL_OP_ZERO;
} else if (stencilOp == GL_REPLACE) {
return State::STENCIL_OP_REPLACE;
} else if (stencilOp == GL_INCR_WRAP) {
return State::STENCIL_OP_INCR_SAT;
} else if (stencilOp == GL_DECR_WRAP) {
return State::STENCIL_OP_DECR_SAT;
} else if (stencilOp == GL_INVERT) {
return State::STENCIL_OP_INVERT;
} else if (stencilOp == GL_INCR) {
return State::STENCIL_OP_INCR;
} else if (stencilOp == GL_DECR) {
return State::STENCIL_OP_DECR;
}
return State::STENCIL_OP_KEEP;
}
State::BlendOp blendOpFromGL(GLenum blendOp) {
if (blendOp == GL_FUNC_ADD) {
return State::BLEND_OP_ADD;
} else if (blendOp == GL_FUNC_SUBTRACT) {
return State::BLEND_OP_SUBTRACT;
} else if (blendOp == GL_FUNC_REVERSE_SUBTRACT) {
return State::BLEND_OP_REV_SUBTRACT;
} else if (blendOp == GL_MIN) {
return State::BLEND_OP_MIN;
} else if (blendOp == GL_MAX) {
return State::BLEND_OP_MAX;
}
return State::BLEND_OP_ADD;
}
State::BlendArg blendArgFromGL(GLenum blendArg) {
if (blendArg == GL_ZERO) {
return State::ZERO;
} else if (blendArg == GL_ONE) {
return State::ONE;
} else if (blendArg == GL_SRC_COLOR) {
return State::SRC_COLOR;
} else if (blendArg == GL_ONE_MINUS_SRC_COLOR) {
return State::INV_SRC_COLOR;
} else if (blendArg == GL_DST_COLOR) {
return State::DEST_COLOR;
} else if (blendArg == GL_ONE_MINUS_DST_COLOR) {
return State::INV_DEST_COLOR;
} else if (blendArg == GL_SRC_ALPHA) {
return State::SRC_ALPHA;
} else if (blendArg == GL_ONE_MINUS_SRC_ALPHA) {
return State::INV_SRC_ALPHA;
} else if (blendArg == GL_DST_ALPHA) {
return State::DEST_ALPHA;
} else if (blendArg == GL_ONE_MINUS_DST_ALPHA) {
return State::INV_DEST_ALPHA;
} else if (blendArg == GL_CONSTANT_COLOR) {
return State::FACTOR_COLOR;
} else if (blendArg == GL_ONE_MINUS_CONSTANT_COLOR) {
return State::INV_FACTOR_COLOR;
} else if (blendArg == GL_CONSTANT_ALPHA) {
return State::FACTOR_ALPHA;
} else if (blendArg == GL_ONE_MINUS_CONSTANT_ALPHA) {
return State::INV_FACTOR_ALPHA;
}
return State::ONE;
}
void getCurrentGLState(State::Data& state) {
{
GLint modes[2];
glGetIntegerv(GL_POLYGON_MODE, modes);
if (modes[0] == GL_FILL) {
state.fillMode = State::FILL_FACE;
} else {
if (modes[0] == GL_LINE) {
state.fillMode = State::FILL_LINE;
} else {
state.fillMode = State::FILL_POINT;
}
}
}
{
if (glIsEnabled(GL_CULL_FACE)) {
GLint mode;
glGetIntegerv(GL_CULL_FACE_MODE, &mode);
state.cullMode = (mode == GL_FRONT ? State::CULL_FRONT : State::CULL_BACK);
} else {
state.cullMode = State::CULL_NONE;
}
}
{
GLint winding;
glGetIntegerv(GL_FRONT_FACE, &winding);
state.frontFaceClockwise = (winding == GL_CW);
state.depthClampEnable = glIsEnabled(GL_DEPTH_CLAMP);
state.scissorEnable = glIsEnabled(GL_SCISSOR_TEST);
state.multisampleEnable = glIsEnabled(GL_MULTISAMPLE);
state.antialisedLineEnable = glIsEnabled(GL_LINE_SMOOTH);
}
{
if (glIsEnabled(GL_POLYGON_OFFSET_FILL)) {
glGetFloatv(GL_POLYGON_OFFSET_FACTOR, &state.depthBiasSlopeScale);
glGetFloatv(GL_POLYGON_OFFSET_UNITS, &state.depthBias);
}
}
{
GLboolean isEnabled = glIsEnabled(GL_DEPTH_TEST);
GLboolean writeMask;
glGetBooleanv(GL_DEPTH_WRITEMASK, &writeMask);
GLint func;
glGetIntegerv(GL_DEPTH_FUNC, &func);
state.depthTest = State::DepthTest(isEnabled, writeMask, comparisonFuncFromGL(func));
}
{
GLboolean isEnabled = glIsEnabled(GL_STENCIL_TEST);
GLint frontWriteMask;
GLint frontReadMask;
GLint frontRef;
GLint frontFail;
GLint frontDepthFail;
GLint frontPass;
GLint frontFunc;
glGetIntegerv(GL_STENCIL_WRITEMASK, &frontWriteMask);
glGetIntegerv(GL_STENCIL_VALUE_MASK, &frontReadMask);
glGetIntegerv(GL_STENCIL_REF, &frontRef);
glGetIntegerv(GL_STENCIL_FAIL, &frontFail);
glGetIntegerv(GL_STENCIL_PASS_DEPTH_FAIL, &frontDepthFail);
glGetIntegerv(GL_STENCIL_PASS_DEPTH_PASS, &frontPass);
glGetIntegerv(GL_STENCIL_FUNC, &frontFunc);
GLint backWriteMask;
GLint backReadMask;
GLint backRef;
GLint backFail;
GLint backDepthFail;
GLint backPass;
GLint backFunc;
glGetIntegerv(GL_STENCIL_BACK_WRITEMASK, &backWriteMask);
glGetIntegerv(GL_STENCIL_BACK_VALUE_MASK, &backReadMask);
glGetIntegerv(GL_STENCIL_BACK_REF, &backRef);
glGetIntegerv(GL_STENCIL_BACK_FAIL, &backFail);
glGetIntegerv(GL_STENCIL_BACK_PASS_DEPTH_FAIL, &backDepthFail);
glGetIntegerv(GL_STENCIL_BACK_PASS_DEPTH_PASS, &backPass);
glGetIntegerv(GL_STENCIL_BACK_FUNC, &backFunc);
state.stencilActivation = State::StencilActivation(isEnabled, frontWriteMask, backWriteMask);
state.stencilTestFront = State::StencilTest(frontRef, frontReadMask, comparisonFuncFromGL(frontFunc), stencilOpFromGL(frontFail), stencilOpFromGL(frontDepthFail), stencilOpFromGL(frontPass));
state.stencilTestBack = State::StencilTest(backRef, backReadMask, comparisonFuncFromGL(backFunc), stencilOpFromGL(backFail), stencilOpFromGL(backDepthFail), stencilOpFromGL(backPass));
}
{
GLint mask = 0xFFFFFFFF;
if (glIsEnabled(GL_SAMPLE_MASK)) {
glGetIntegerv(GL_SAMPLE_MASK, &mask);
state.sampleMask = mask;
}
state.sampleMask = mask;
}
{
state.alphaToCoverageEnable = glIsEnabled(GL_SAMPLE_ALPHA_TO_COVERAGE);
}
{
GLboolean isEnabled = glIsEnabled(GL_BLEND);
GLint srcRGB;
GLint srcA;
GLint dstRGB;
GLint dstA;
glGetIntegerv(GL_BLEND_SRC_RGB, &srcRGB);
glGetIntegerv(GL_BLEND_SRC_ALPHA, &srcA);
glGetIntegerv(GL_BLEND_DST_RGB, &dstRGB);
glGetIntegerv(GL_BLEND_DST_ALPHA, &dstA);
GLint opRGB;
GLint opA;
glGetIntegerv(GL_BLEND_EQUATION_RGB, &opRGB);
glGetIntegerv(GL_BLEND_EQUATION_ALPHA, &opA);
state.blendFunction = State::BlendFunction(isEnabled,
blendArgFromGL(srcRGB), blendOpFromGL(opRGB), blendArgFromGL(dstRGB),
blendArgFromGL(srcA), blendOpFromGL(opA), blendArgFromGL(dstA));
}
{
GLboolean mask[4];
glGetBooleanv(GL_COLOR_WRITEMASK, mask);
state.colorWriteMask = (mask[0] ? State::WRITE_RED : 0)
| (mask[1] ? State::WRITE_GREEN : 0)
| (mask[2] ? State::WRITE_BLUE : 0)
| (mask[3] ? State::WRITE_ALPHA : 0);
}
(void)CHECK_GL_ERROR();
}
class ElementResource {
public:
gpu::Element _element;
uint16 _resource;
ElementResource(Element&& elem, uint16 resource) : _element(elem), _resource(resource) {}
};
ElementResource getFormatFromGLUniform(GLenum gltype) {
switch (gltype) {
case GL_FLOAT: return ElementResource(Element(SCALAR, gpu::FLOAT, UNIFORM), Resource::BUFFER);
case GL_FLOAT_VEC2: return ElementResource(Element(VEC2, gpu::FLOAT, UNIFORM), Resource::BUFFER);
case GL_FLOAT_VEC3: return ElementResource(Element(VEC3, gpu::FLOAT, UNIFORM), Resource::BUFFER);
case GL_FLOAT_VEC4: return ElementResource(Element(VEC4, gpu::FLOAT, UNIFORM), Resource::BUFFER);
/*
case GL_DOUBLE: return ElementResource(Element(SCALAR, gpu::FLOAT, UNIFORM), Resource::BUFFER);
case GL_DOUBLE_VEC2: return ElementResource(Element(VEC2, gpu::FLOAT, UNIFORM), Resource::BUFFER);
case GL_DOUBLE_VEC3: return ElementResource(Element(VEC3, gpu::FLOAT, UNIFORM), Resource::BUFFER);
case GL_DOUBLE_VEC4: return ElementResource(Element(VEC4, gpu::FLOAT, UNIFORM), Resource::BUFFER);
*/
case GL_INT: return ElementResource(Element(SCALAR, gpu::INT32, UNIFORM), Resource::BUFFER);
case GL_INT_VEC2: return ElementResource(Element(VEC2, gpu::INT32, UNIFORM), Resource::BUFFER);
case GL_INT_VEC3: return ElementResource(Element(VEC3, gpu::INT32, UNIFORM), Resource::BUFFER);
case GL_INT_VEC4: return ElementResource(Element(VEC4, gpu::INT32, UNIFORM), Resource::BUFFER);
case GL_UNSIGNED_INT: return ElementResource(Element(SCALAR, gpu::UINT32, UNIFORM), Resource::BUFFER);
#if defined(Q_OS_WIN)
case GL_UNSIGNED_INT_VEC2: return ElementResource(Element(VEC2, gpu::UINT32, UNIFORM), Resource::BUFFER);
case GL_UNSIGNED_INT_VEC3: return ElementResource(Element(VEC3, gpu::UINT32, UNIFORM), Resource::BUFFER);
case GL_UNSIGNED_INT_VEC4: return ElementResource(Element(VEC4, gpu::UINT32, UNIFORM), Resource::BUFFER);
#endif
case GL_BOOL: return ElementResource(Element(SCALAR, gpu::BOOL, UNIFORM), Resource::BUFFER);
case GL_BOOL_VEC2: return ElementResource(Element(VEC2, gpu::BOOL, UNIFORM), Resource::BUFFER);
case GL_BOOL_VEC3: return ElementResource(Element(VEC3, gpu::BOOL, UNIFORM), Resource::BUFFER);
case GL_BOOL_VEC4: return ElementResource(Element(VEC4, gpu::BOOL, UNIFORM), Resource::BUFFER);
case GL_FLOAT_MAT2: return ElementResource(Element(gpu::MAT2, gpu::FLOAT, UNIFORM), Resource::BUFFER);
case GL_FLOAT_MAT3: return ElementResource(Element(MAT3, gpu::FLOAT, UNIFORM), Resource::BUFFER);
case GL_FLOAT_MAT4: return ElementResource(Element(MAT4, gpu::FLOAT, UNIFORM), Resource::BUFFER);
/* {GL_FLOAT_MAT2x3 mat2x3},
{GL_FLOAT_MAT2x4 mat2x4},
{GL_FLOAT_MAT3x2 mat3x2},
{GL_FLOAT_MAT3x4 mat3x4},
{GL_FLOAT_MAT4x2 mat4x2},
{GL_FLOAT_MAT4x3 mat4x3},
{GL_DOUBLE_MAT2 dmat2},
{GL_DOUBLE_MAT3 dmat3},
{GL_DOUBLE_MAT4 dmat4},
{GL_DOUBLE_MAT2x3 dmat2x3},
{GL_DOUBLE_MAT2x4 dmat2x4},
{GL_DOUBLE_MAT3x2 dmat3x2},
{GL_DOUBLE_MAT3x4 dmat3x4},
{GL_DOUBLE_MAT4x2 dmat4x2},
{GL_DOUBLE_MAT4x3 dmat4x3},
*/
case GL_SAMPLER_1D: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER), Resource::TEXTURE_1D);
case GL_SAMPLER_2D: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER), Resource::TEXTURE_2D);
case GL_SAMPLER_3D: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER), Resource::TEXTURE_3D);
case GL_SAMPLER_CUBE: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER), Resource::TEXTURE_CUBE);
#if defined(Q_OS_WIN)
case GL_SAMPLER_2D_MULTISAMPLE: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER_MULTISAMPLE), Resource::TEXTURE_2D);
case GL_SAMPLER_1D_ARRAY: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER), Resource::TEXTURE_1D_ARRAY);
case GL_SAMPLER_2D_ARRAY: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER), Resource::TEXTURE_2D_ARRAY);
case GL_SAMPLER_2D_MULTISAMPLE_ARRAY: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER_MULTISAMPLE), Resource::TEXTURE_2D_ARRAY);
#endif
case GL_SAMPLER_2D_SHADOW: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER_SHADOW), Resource::TEXTURE_2D);
#if defined(Q_OS_WIN)
case GL_SAMPLER_CUBE_SHADOW: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER_SHADOW), Resource::TEXTURE_CUBE);
case GL_SAMPLER_2D_ARRAY_SHADOW: return ElementResource(Element(SCALAR, gpu::FLOAT, SAMPLER_SHADOW), Resource::TEXTURE_2D_ARRAY);
#endif
// {GL_SAMPLER_1D_SHADOW sampler1DShadow},
// {GL_SAMPLER_1D_ARRAY_SHADOW sampler1DArrayShadow},
// {GL_SAMPLER_BUFFER samplerBuffer},
// {GL_SAMPLER_2D_RECT sampler2DRect},
// {GL_SAMPLER_2D_RECT_SHADOW sampler2DRectShadow},
#if defined(Q_OS_WIN)
case GL_INT_SAMPLER_1D: return ElementResource(Element(SCALAR, gpu::INT32, SAMPLER), Resource::TEXTURE_1D);
case GL_INT_SAMPLER_2D: return ElementResource(Element(SCALAR, gpu::INT32, SAMPLER), Resource::TEXTURE_2D);
case GL_INT_SAMPLER_2D_MULTISAMPLE: return ElementResource(Element(SCALAR, gpu::INT32, SAMPLER_MULTISAMPLE), Resource::TEXTURE_2D);
case GL_INT_SAMPLER_3D: return ElementResource(Element(SCALAR, gpu::INT32, SAMPLER), Resource::TEXTURE_3D);
case GL_INT_SAMPLER_CUBE: return ElementResource(Element(SCALAR, gpu::INT32, SAMPLER), Resource::TEXTURE_CUBE);
case GL_INT_SAMPLER_1D_ARRAY: return ElementResource(Element(SCALAR, gpu::INT32, SAMPLER), Resource::TEXTURE_1D_ARRAY);
case GL_INT_SAMPLER_2D_ARRAY: return ElementResource(Element(SCALAR, gpu::INT32, SAMPLER), Resource::TEXTURE_2D_ARRAY);
case GL_INT_SAMPLER_2D_MULTISAMPLE_ARRAY: return ElementResource(Element(SCALAR, gpu::INT32, SAMPLER_MULTISAMPLE), Resource::TEXTURE_2D_ARRAY);
// {GL_INT_SAMPLER_BUFFER isamplerBuffer},
// {GL_INT_SAMPLER_2D_RECT isampler2DRect},
case GL_UNSIGNED_INT_SAMPLER_1D: return ElementResource(Element(SCALAR, gpu::UINT32, SAMPLER), Resource::TEXTURE_1D);
case GL_UNSIGNED_INT_SAMPLER_2D: return ElementResource(Element(SCALAR, gpu::UINT32, SAMPLER), Resource::TEXTURE_2D);
case GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE: return ElementResource(Element(SCALAR, gpu::UINT32, SAMPLER_MULTISAMPLE), Resource::TEXTURE_2D);
case GL_UNSIGNED_INT_SAMPLER_3D: return ElementResource(Element(SCALAR, gpu::UINT32, SAMPLER), Resource::TEXTURE_3D);
case GL_UNSIGNED_INT_SAMPLER_CUBE: return ElementResource(Element(SCALAR, gpu::UINT32, SAMPLER), Resource::TEXTURE_CUBE);
case GL_UNSIGNED_INT_SAMPLER_1D_ARRAY: return ElementResource(Element(SCALAR, gpu::UINT32, SAMPLER), Resource::TEXTURE_1D_ARRAY);
case GL_UNSIGNED_INT_SAMPLER_2D_ARRAY: return ElementResource(Element(SCALAR, gpu::UINT32, SAMPLER), Resource::TEXTURE_2D_ARRAY);
case GL_UNSIGNED_INT_SAMPLER_2D_MULTISAMPLE_ARRAY: return ElementResource(Element(SCALAR, gpu::UINT32, SAMPLER_MULTISAMPLE), Resource::TEXTURE_2D_ARRAY);
#endif
// {GL_UNSIGNED_INT_SAMPLER_BUFFER usamplerBuffer},
// {GL_UNSIGNED_INT_SAMPLER_2D_RECT usampler2DRect},
/*
{GL_IMAGE_1D image1D},
{GL_IMAGE_2D image2D},
{GL_IMAGE_3D image3D},
{GL_IMAGE_2D_RECT image2DRect},
{GL_IMAGE_CUBE imageCube},
{GL_IMAGE_BUFFER imageBuffer},
{GL_IMAGE_1D_ARRAY image1DArray},
{GL_IMAGE_2D_ARRAY image2DArray},
{GL_IMAGE_2D_MULTISAMPLE image2DMS},
{GL_IMAGE_2D_MULTISAMPLE_ARRAY image2DMSArray},
{GL_INT_IMAGE_1D iimage1D},
{GL_INT_IMAGE_2D iimage2D},
{GL_INT_IMAGE_3D iimage3D},
{GL_INT_IMAGE_2D_RECT iimage2DRect},
{GL_INT_IMAGE_CUBE iimageCube},
{GL_INT_IMAGE_BUFFER iimageBuffer},
{GL_INT_IMAGE_1D_ARRAY iimage1DArray},
{GL_INT_IMAGE_2D_ARRAY iimage2DArray},
{GL_INT_IMAGE_2D_MULTISAMPLE iimage2DMS},
{GL_INT_IMAGE_2D_MULTISAMPLE_ARRAY iimage2DMSArray},
{GL_UNSIGNED_INT_IMAGE_1D uimage1D},
{GL_UNSIGNED_INT_IMAGE_2D uimage2D},
{GL_UNSIGNED_INT_IMAGE_3D uimage3D},
{GL_UNSIGNED_INT_IMAGE_2D_RECT uimage2DRect},
{GL_UNSIGNED_INT_IMAGE_CUBE uimageCube},+ [0] {_name="fInnerRadius" _location=0 _element={_semantic=15 '\xf' _dimension=0 '\0' _type=0 '\0' } } gpu::Shader::Slot
{GL_UNSIGNED_INT_IMAGE_BUFFER uimageBuffer},
{GL_UNSIGNED_INT_IMAGE_1D_ARRAY uimage1DArray},
{GL_UNSIGNED_INT_IMAGE_2D_ARRAY uimage2DArray},
{GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE uimage2DMS},
{GL_UNSIGNED_INT_IMAGE_2D_MULTISAMPLE_ARRAY uimage2DMSArray},
{GL_UNSIGNED_INT_ATOMIC_COUNTER atomic_uint}
*/
default:
return ElementResource(Element(), Resource::BUFFER);
}
};
int makeUniformSlots(GLuint glprogram, const Shader::BindingSet& slotBindings,
Shader::SlotSet& uniforms, Shader::SlotSet& textures, Shader::SlotSet& samplers) {
GLint uniformsCount = 0;
glGetProgramiv(glprogram, GL_ACTIVE_UNIFORMS, &uniformsCount);
for (int i = 0; i < uniformsCount; i++) {
const GLint NAME_LENGTH = 256;
GLchar name[NAME_LENGTH];
GLint length = 0;
GLint size = 0;
GLenum type = 0;
glGetActiveUniform(glprogram, i, NAME_LENGTH, &length, &size, &type, name);
GLint location = glGetUniformLocation(glprogram, name);
const GLint INVALID_UNIFORM_LOCATION = -1;
// Try to make sense of the gltype
auto elementResource = getFormatFromGLUniform(type);
// The uniform as a standard var type
if (location != INVALID_UNIFORM_LOCATION) {
// Let's make sure the name doesn't contains an array element
std::string sname(name);
auto foundBracket = sname.find_first_of('[');
if (foundBracket != std::string::npos) {
// std::string arrayname = sname.substr(0, foundBracket);
if (sname[foundBracket + 1] == '0') {
sname = sname.substr(0, foundBracket);
} else {
// skip this uniform since it's not the first element of an array
continue;
}
}
if (elementResource._resource == Resource::BUFFER) {
uniforms.insert(Shader::Slot(sname, location, elementResource._element, elementResource._resource));
} else {
// For texture/Sampler, the location is the actual binding value
GLint binding = -1;
glGetUniformiv(glprogram, location, &binding);
auto requestedBinding = slotBindings.find(std::string(sname));
if (requestedBinding != slotBindings.end()) {
if (binding != (*requestedBinding)._location) {
binding = (*requestedBinding)._location;
glProgramUniform1i(glprogram, location, binding);
}
}
textures.insert(Shader::Slot(name, binding, elementResource._element, elementResource._resource));
samplers.insert(Shader::Slot(name, binding, elementResource._element, elementResource._resource));
}
}
}
return uniformsCount;
}
const GLint UNUSED_SLOT = -1;
bool isUnusedSlot(GLint binding) {
return (binding == UNUSED_SLOT);
}
int makeUniformBlockSlots(GLuint glprogram, const Shader::BindingSet& slotBindings, Shader::SlotSet& buffers) {
GLint buffersCount = 0;
glGetProgramiv(glprogram, GL_ACTIVE_UNIFORM_BLOCKS, &buffersCount);
// fast exit
if (buffersCount == 0) {
return 0;
}
GLint maxNumUniformBufferSlots = 0;
glGetIntegerv(GL_MAX_UNIFORM_BUFFER_BINDINGS, &maxNumUniformBufferSlots);
std::vector<GLint> uniformBufferSlotMap(maxNumUniformBufferSlots, -1);
for (int i = 0; i < buffersCount; i++) {
const GLint NAME_LENGTH = 256;
GLchar name[NAME_LENGTH];
GLint length = 0;
GLint size = 0;
GLint binding = -1;
glGetActiveUniformBlockiv(glprogram, i, GL_UNIFORM_BLOCK_NAME_LENGTH, &length);
glGetActiveUniformBlockName(glprogram, i, NAME_LENGTH, &length, name);
glGetActiveUniformBlockiv(glprogram, i, GL_UNIFORM_BLOCK_BINDING, &binding);
glGetActiveUniformBlockiv(glprogram, i, GL_UNIFORM_BLOCK_DATA_SIZE, &size);
GLuint blockIndex = glGetUniformBlockIndex(glprogram, name);
// CHeck if there is a requested binding for this block
auto requestedBinding = slotBindings.find(std::string(name));
if (requestedBinding != slotBindings.end()) {
// If yes force it
if (binding != (*requestedBinding)._location) {
binding = (*requestedBinding)._location;
glUniformBlockBinding(glprogram, blockIndex, binding);
}
} else if (binding == 0) {
// If no binding was assigned then just do it finding a free slot
auto slotIt = std::find_if(uniformBufferSlotMap.begin(), uniformBufferSlotMap.end(), isUnusedSlot);
if (slotIt != uniformBufferSlotMap.end()) {
binding = slotIt - uniformBufferSlotMap.begin();
glUniformBlockBinding(glprogram, blockIndex, binding);
} else {
// This should neve happen, an active ubo cannot find an available slot among the max available?!
binding = -1;
}
}
// If binding is valid record it
if (binding >= 0) {
uniformBufferSlotMap[binding] = blockIndex;
}
Element element(SCALAR, gpu::UINT32, gpu::UNIFORM_BUFFER);
buffers.insert(Shader::Slot(name, binding, element, Resource::BUFFER));
}
return buffersCount;
}
int makeInputSlots(GLuint glprogram, const Shader::BindingSet& slotBindings, Shader::SlotSet& inputs) {
GLint inputsCount = 0;
glGetProgramiv(glprogram, GL_ACTIVE_ATTRIBUTES, &inputsCount);
for (int i = 0; i < inputsCount; i++) {
const GLint NAME_LENGTH = 256;
GLchar name[NAME_LENGTH];
GLint length = 0;
GLint size = 0;
GLenum type = 0;
glGetActiveAttrib(glprogram, i, NAME_LENGTH, &length, &size, &type, name);
GLint binding = glGetAttribLocation(glprogram, name);
auto elementResource = getFormatFromGLUniform(type);
inputs.insert(Shader::Slot(name, binding, elementResource._element, -1));
}
return inputsCount;
}
int makeOutputSlots(GLuint glprogram, const Shader::BindingSet& slotBindings, Shader::SlotSet& outputs) {
/* GLint outputsCount = 0;
glGetProgramiv(glprogram, GL_ACTIVE_, &outputsCount);
for (int i = 0; i < inputsCount; i++) {
const GLint NAME_LENGTH = 256;
GLchar name[NAME_LENGTH];
GLint length = 0;
GLint size = 0;
GLenum type = 0;
glGetActiveAttrib(glprogram, i, NAME_LENGTH, &length, &size, &type, name);
auto element = getFormatFromGLUniform(type);
outputs.insert(Shader::Slot(name, i, element));
}
*/
return 0; //inputsCount;
}
bool compileShader(GLenum shaderDomain, const std::string& shaderSource, const std::string& defines, GLuint &shaderObject, GLuint &programObject) {
if (shaderSource.empty()) {
qCDebug(gpugllogging) << "GLShader::compileShader - no GLSL shader source code ? so failed to create";
return false;
}
// Create the shader object
GLuint glshader = glCreateShader(shaderDomain);
if (!glshader) {
qCDebug(gpugllogging) << "GLShader::compileShader - failed to create the gl shader object";
return false;
}
// Assign the source
const int NUM_SOURCE_STRINGS = 2;
const GLchar* srcstr[] = { defines.c_str(), shaderSource.c_str() };
glShaderSource(glshader, NUM_SOURCE_STRINGS, srcstr, NULL);
// Compile !
glCompileShader(glshader);
// check if shader compiled
GLint compiled = 0;
glGetShaderiv(glshader, GL_COMPILE_STATUS, &compiled);
// if compilation fails
if (!compiled) {
// save the source code to a temp file so we can debug easily
/* std::ofstream filestream;
filestream.open("debugshader.glsl");
if (filestream.is_open()) {
filestream << shaderSource->source;
filestream.close();
}
*/
GLint infoLength = 0;
glGetShaderiv(glshader, GL_INFO_LOG_LENGTH, &infoLength);
char* temp = new char[infoLength];
glGetShaderInfoLog(glshader, infoLength, NULL, temp);
/*
filestream.open("debugshader.glsl.info.txt");
if (filestream.is_open()) {
filestream << std::string(temp);
filestream.close();
}
*/
qCWarning(gpugllogging) << "GLShader::compileShader - failed to compile the gl shader object:";
for (auto s : srcstr) {
qCWarning(gpugllogging) << s;
}
qCWarning(gpugllogging) << "GLShader::compileShader - errors:";
qCWarning(gpugllogging) << temp;
delete[] temp;
glDeleteShader(glshader);
return false;
}
GLuint glprogram = 0;
#ifdef SEPARATE_PROGRAM
// so far so good, program is almost done, need to link:
GLuint glprogram = glCreateProgram();
if (!glprogram) {
qCDebug(gpugllogging) << "GLShader::compileShader - failed to create the gl shader & gl program object";
return false;
}
glProgramParameteri(glprogram, GL_PROGRAM_SEPARABLE, GL_TRUE);
glAttachShader(glprogram, glshader);
glLinkProgram(glprogram);
GLint linked = 0;
glGetProgramiv(glprogram, GL_LINK_STATUS, &linked);
if (!linked) {
/*
// save the source code to a temp file so we can debug easily
std::ofstream filestream;
filestream.open("debugshader.glsl");
if (filestream.is_open()) {
filestream << shaderSource->source;
filestream.close();
}
*/
GLint infoLength = 0;
glGetProgramiv(glprogram, GL_INFO_LOG_LENGTH, &infoLength);
char* temp = new char[infoLength];
glGetProgramInfoLog(glprogram, infoLength, NULL, temp);
qCDebug(gpugllogging) << "GLShader::compileShader - failed to LINK the gl program object :";
qCDebug(gpugllogging) << temp;
/*
filestream.open("debugshader.glsl.info.txt");
if (filestream.is_open()) {
filestream << String(temp);
filestream.close();
}
*/
delete[] temp;
glDeleteShader(glshader);
glDeleteProgram(glprogram);
return false;
}
#endif
shaderObject = glshader;
programObject = glprogram;
return true;
}
GLuint compileProgram(const std::vector<GLuint>& glshaders) {
// A brand new program:
GLuint glprogram = glCreateProgram();
if (!glprogram) {
qCDebug(gpugllogging) << "GLShader::compileProgram - failed to create the gl program object";
return 0;
}
// glProgramParameteri(glprogram, GL_PROGRAM_, GL_TRUE);
// Create the program from the sub shaders
for (auto so : glshaders) {
glAttachShader(glprogram, so);
}
// Link!
glLinkProgram(glprogram);
GLint linked = 0;
glGetProgramiv(glprogram, GL_LINK_STATUS, &linked);
if (!linked) {
/*
// save the source code to a temp file so we can debug easily
std::ofstream filestream;
filestream.open("debugshader.glsl");
if (filestream.is_open()) {
filestream << shaderSource->source;
filestream.close();
}
*/
GLint infoLength = 0;
glGetProgramiv(glprogram, GL_INFO_LOG_LENGTH, &infoLength);
char* temp = new char[infoLength];
glGetProgramInfoLog(glprogram, infoLength, NULL, temp);
qCDebug(gpugllogging) << "GLShader::compileProgram - failed to LINK the gl program object :";
qCDebug(gpugllogging) << temp;
/*
filestream.open("debugshader.glsl.info.txt");
if (filestream.is_open()) {
filestream << std::string(temp);
filestream.close();
}
*/
delete[] temp;
glDeleteProgram(glprogram);
return 0;
}
return glprogram;
}
void makeProgramBindings(ShaderObject& shaderObject) {
if (!shaderObject.glprogram) {
return;
}
GLuint glprogram = shaderObject.glprogram;
GLint loc = -1;
//Check for gpu specific attribute slotBindings
loc = glGetAttribLocation(glprogram, "inPosition");
if (loc >= 0 && loc != gpu::Stream::POSITION) {
glBindAttribLocation(glprogram, gpu::Stream::POSITION, "inPosition");
}
loc = glGetAttribLocation(glprogram, "inNormal");
if (loc >= 0 && loc != gpu::Stream::NORMAL) {
glBindAttribLocation(glprogram, gpu::Stream::NORMAL, "inNormal");
}
loc = glGetAttribLocation(glprogram, "inColor");
if (loc >= 0 && loc != gpu::Stream::COLOR) {
glBindAttribLocation(glprogram, gpu::Stream::COLOR, "inColor");
}
loc = glGetAttribLocation(glprogram, "inTexCoord0");
if (loc >= 0 && loc != gpu::Stream::TEXCOORD) {
glBindAttribLocation(glprogram, gpu::Stream::TEXCOORD, "inTexCoord0");
}
loc = glGetAttribLocation(glprogram, "inTangent");
if (loc >= 0 && loc != gpu::Stream::TANGENT) {
glBindAttribLocation(glprogram, gpu::Stream::TANGENT, "inTangent");
}
loc = glGetAttribLocation(glprogram, "inTexCoord1");
if (loc >= 0 && loc != gpu::Stream::TEXCOORD1) {
glBindAttribLocation(glprogram, gpu::Stream::TEXCOORD1, "inTexCoord1");
}
loc = glGetAttribLocation(glprogram, "inSkinClusterIndex");
if (loc >= 0 && loc != gpu::Stream::SKIN_CLUSTER_INDEX) {
glBindAttribLocation(glprogram, gpu::Stream::SKIN_CLUSTER_INDEX, "inSkinClusterIndex");
}
loc = glGetAttribLocation(glprogram, "inSkinClusterWeight");
if (loc >= 0 && loc != gpu::Stream::SKIN_CLUSTER_WEIGHT) {
glBindAttribLocation(glprogram, gpu::Stream::SKIN_CLUSTER_WEIGHT, "inSkinClusterWeight");
}
loc = glGetAttribLocation(glprogram, "_drawCallInfo");
if (loc >= 0 && loc != gpu::Stream::DRAW_CALL_INFO) {
glBindAttribLocation(glprogram, gpu::Stream::DRAW_CALL_INFO, "_drawCallInfo");
}
// Link again to take into account the assigned attrib location
glLinkProgram(glprogram);
GLint linked = 0;
glGetProgramiv(glprogram, GL_LINK_STATUS, &linked);
if (!linked) {
qCDebug(gpugllogging) << "GLShader::makeBindings - failed to link after assigning slotBindings?";
}
// now assign the ubo binding, then DON't relink!
//Check for gpu specific uniform slotBindings
#ifdef GPU_SSBO_DRAW_CALL_INFO
loc = glGetProgramResourceIndex(glprogram, GL_SHADER_STORAGE_BLOCK, "transformObjectBuffer");
if (loc >= 0) {
glShaderStorageBlockBinding(glprogram, loc, gpu::TRANSFORM_OBJECT_SLOT);
shaderObject.transformObjectSlot = gpu::TRANSFORM_OBJECT_SLOT;
}
#else
loc = glGetUniformLocation(glprogram, "transformObjectBuffer");
if (loc >= 0) {
glProgramUniform1i(glprogram, loc, gpu::TRANSFORM_OBJECT_SLOT);
shaderObject.transformObjectSlot = gpu::TRANSFORM_OBJECT_SLOT;
}
#endif
loc = glGetUniformBlockIndex(glprogram, "transformCameraBuffer");
if (loc >= 0) {
glUniformBlockBinding(glprogram, loc, gpu::TRANSFORM_CAMERA_SLOT);
shaderObject.transformCameraSlot = gpu::TRANSFORM_CAMERA_SLOT;
}
(void)CHECK_GL_ERROR();
}
} }
using namespace gpu;