overte-HifiExperiments/libraries/audio-client/external/gverb/include/gverb.h
2015-01-21 11:49:06 -08:00

234 lines
6 KiB
C
Executable file

/*
Copyright (C) 1999 Juhana Sadeharju
kouhia at nic.funet.fi
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef GVERB_H
#define GVERB_H
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "gverbdsp.h"
#include "gverb.h"
#include "ladspa-util.h"
#define FDNORDER 4
typedef struct {
int rate;
float inputbandwidth;
float taillevel;
float earlylevel;
ty_damper *inputdamper;
float maxroomsize;
float roomsize;
float revtime;
float maxdelay;
float largestdelay;
ty_fixeddelay **fdndels;
float *fdngains;
int *fdnlens;
ty_damper **fdndamps;
float fdndamping;
ty_diffuser **ldifs;
ty_diffuser **rdifs;
ty_fixeddelay *tapdelay;
int *taps;
float *tapgains;
float *d;
float *u;
float *f;
double alpha;
} ty_gverb;
ty_gverb *gverb_new(int, float, float, float, float, float, float, float, float);
void gverb_free(ty_gverb *);
void gverb_flush(ty_gverb *);
static void gverb_do(ty_gverb *, float, float *, float *);
static void gverb_set_roomsize(ty_gverb *, float);
static void gverb_set_revtime(ty_gverb *, float);
static void gverb_set_damping(ty_gverb *, float);
static void gverb_set_inputbandwidth(ty_gverb *, float);
static void gverb_set_earlylevel(ty_gverb *, float);
static void gverb_set_taillevel(ty_gverb *, float);
/*
* This FDN reverb can be made smoother by setting matrix elements at the
* diagonal and near of it to zero or nearly zero. By setting diagonals to zero
* means we remove the effect of the parallel comb structure from the
* reverberation. A comb generates uniform impulse stream to the reverberation
* impulse response, and thus it is not good. By setting near diagonal elements
* to zero means we remove delay sequences having consequtive delays of the
* similar lenths, when the delays are in sorted in length with respect to
* matrix element index. The matrix described here could be generated by
* differencing Rocchesso's circulant matrix at max diffuse value and at low
* diffuse value (approaching parallel combs).
*
* Example 1:
* Set a(k,k), for all k, equal to 0.
*
* Example 2:
* Set a(k,k), a(k,k-1) and a(k,k+1) equal to 0.
*
* Example 3: The transition to zero gains could be smooth as well.
* a(k,k-1) and a(k,k+1) could be 0.3, and a(k,k-2) and a(k,k+2) could
* be 0.5, say.
*/
static __inline void gverb_fdnmatrix(float *a, float *b)
{
const float dl0 = a[0], dl1 = a[1], dl2 = a[2], dl3 = a[3];
b[0] = 0.5f*(+dl0 + dl1 - dl2 - dl3);
b[1] = 0.5f*(+dl0 - dl1 - dl2 + dl3);
b[2] = 0.5f*(-dl0 + dl1 - dl2 + dl3);
b[3] = 0.5f*(+dl0 + dl1 + dl2 + dl3);
}
static __inline void gverb_do(ty_gverb *p, float x, float *yl, float *yr)
{
float z;
unsigned int i;
float lsum,rsum,sum,sign;
if ((x != x) || fabsf(x) > 100000.0f) {
x = 0.0f;
}
z = damper_do(p->inputdamper, x);
z = diffuser_do(p->ldifs[0],z);
for(i = 0; i < FDNORDER; i++) {
p->u[i] = p->tapgains[i]*fixeddelay_read(p->tapdelay,p->taps[i]);
}
fixeddelay_write(p->tapdelay,z);
for(i = 0; i < FDNORDER; i++) {
p->d[i] = damper_do(p->fdndamps[i],
p->fdngains[i]*fixeddelay_read(p->fdndels[i],
p->fdnlens[i]));
}
sum = 0.0f;
sign = 1.0f;
for(i = 0; i < FDNORDER; i++) {
sum += sign*(p->taillevel*p->d[i] + p->earlylevel*p->u[i]);
sign = -sign;
}
sum += x*p->earlylevel;
lsum = sum;
rsum = sum;
gverb_fdnmatrix(p->d,p->f);
for(i = 0; i < FDNORDER; i++) {
fixeddelay_write(p->fdndels[i],p->u[i]+p->f[i]);
}
lsum = diffuser_do(p->ldifs[1],lsum);
lsum = diffuser_do(p->ldifs[2],lsum);
lsum = diffuser_do(p->ldifs[3],lsum);
rsum = diffuser_do(p->rdifs[1],rsum);
rsum = diffuser_do(p->rdifs[2],rsum);
rsum = diffuser_do(p->rdifs[3],rsum);
*yl = lsum;
*yr = rsum;
}
static __inline void gverb_set_roomsize(ty_gverb *p, const float a)
{
unsigned int i;
if (a <= 1.0 || (a != a)) {
p->roomsize = 1.0;
} else {
p->roomsize = a;
}
p->largestdelay = p->rate * p->roomsize * 0.00294f;
p->fdnlens[0] = f_round(1.000000f*p->largestdelay);
p->fdnlens[1] = f_round(0.816490f*p->largestdelay);
p->fdnlens[2] = f_round(0.707100f*p->largestdelay);
p->fdnlens[3] = f_round(0.632450f*p->largestdelay);
for(i = 0; i < FDNORDER; i++) {
p->fdngains[i] = -powf((float)p->alpha, p->fdnlens[i]);
}
p->taps[0] = 5+f_round(0.410f*p->largestdelay);
p->taps[1] = 5+f_round(0.300f*p->largestdelay);
p->taps[2] = 5+f_round(0.155f*p->largestdelay);
p->taps[3] = 5+f_round(0.000f*p->largestdelay);
for(i = 0; i < FDNORDER; i++) {
p->tapgains[i] = powf((float)p->alpha, p->taps[i]);
}
}
static __inline void gverb_set_revtime(ty_gverb *p,float a)
{
float ga,gt;
double n;
unsigned int i;
p->revtime = a;
ga = 60.0;
gt = p->revtime;
ga = powf(10.0f,-ga/20.0f);
n = p->rate*gt;
p->alpha = (double)powf(ga,1.0f/n);
for(i = 0; i < FDNORDER; i++) {
p->fdngains[i] = -powf((float)p->alpha, p->fdnlens[i]);
}
}
static __inline void gverb_set_damping(ty_gverb *p,float a)
{
unsigned int i;
p->fdndamping = a;
for(i = 0; i < FDNORDER; i++) {
damper_set(p->fdndamps[i],p->fdndamping);
}
}
static __inline void gverb_set_inputbandwidth(ty_gverb *p,float a)
{
p->inputbandwidth = a;
damper_set(p->inputdamper,1.0 - p->inputbandwidth);
}
static __inline void gverb_set_earlylevel(ty_gverb *p,float a)
{
p->earlylevel = a;
}
static __inline void gverb_set_taillevel(ty_gverb *p,float a)
{
p->taillevel = a;
}
#endif