overte-HifiExperiments/interface/src/VoxelSystem.cpp

364 lines
14 KiB
C++

//
// Cube.cpp
// interface
//
// Created by Philip on 12/31/12.
// Copyright (c) 2012 High Fidelity, Inc. All rights reserved.
//
#ifdef _WIN32
#define _timeval_
#define _USE_MATH_DEFINES
#endif
#include <cstring>
#include <cmath>
#include <iostream> // to load voxels from file
#include <fstream> // to load voxels from file
#include <SharedUtil.h>
#include <PacketHeaders.h>
#include <OctalCode.h>
#include <pthread.h>
#include "VoxelSystem.h"
const int MAX_VOXELS_PER_SYSTEM = 250000;
const int VERTICES_PER_VOXEL = 8;
const int VERTEX_POINTS_PER_VOXEL = 3 * VERTICES_PER_VOXEL;
const int INDICES_PER_VOXEL = 3 * 12;
float identityVertices[] = { 0, 0, 0,
1, 0, 0,
1, 1, 0,
0, 1, 0,
0, 0, 1,
1, 0, 1,
1, 1, 1,
0, 1, 1 };
GLubyte identityIndices[] = { 0,1,2, 0,2,3,
0,1,5, 0,4,5,
0,3,7, 0,4,7,
1,2,6, 1,5,6,
2,3,7, 2,6,7,
4,5,6, 4,6,7 };
VoxelSystem::VoxelSystem() {
voxelsRendered = 0;
tree = new VoxelTree();
pthread_mutex_init(&bufferWriteLock, NULL);
}
VoxelSystem::~VoxelSystem() {
delete[] readVerticesArray;
delete[] writeVerticesArray;
delete[] readColorsArray;
delete[] writeColorsArray;
delete tree;
pthread_mutex_destroy(&bufferWriteLock);
}
void VoxelSystem::setViewerHead(Head *newViewerHead) {
viewerHead = newViewerHead;
}
//////////////////////////////////////////////////////////////////////////////////////////
// Method: VoxelSystem::loadVoxelsFile()
// Description: Loads HiFidelity encoded Voxels from a binary file. The current file
// format is a stream of single voxels with NO color data. Currently
// colors are set randomly
// Complaints: Brad :)
// To Do: Need to add color data to the file.
void VoxelSystem::loadVoxelsFile(const char* fileName, bool wantColorRandomizer) {
tree->loadVoxelsFile(fileName,wantColorRandomizer);
copyWrittenDataToReadArrays();
}
//////////////////////////////////////////////////////////////////////////////////////////
// Method: VoxelSystem::createSphere()
// Description: Creates a sphere of voxels in the local system at a given location/radius
// To Do: Move this function someplace better? I put it here because we need a
// mechanism to tell the system to redraw it's arrays after voxels are done
// being added. This is a concept mostly only understood by VoxelSystem.
// Complaints: Brad :)
void VoxelSystem::createSphere(float r,float xc, float yc, float zc, float s, bool solid, bool wantColorRandomizer) {
tree->createSphere(r,xc,yc,zc,s,solid,wantColorRandomizer);
setupNewVoxelsForDrawing();
}
long int VoxelSystem::getVoxelsCreated() {
return tree->voxelsCreated;
}
long int VoxelSystem::getVoxelsCreatedRunningAverage() {
return tree->voxelsCreatedStats.getRunningAverage();
}
long int VoxelSystem::getVoxelsColored() {
return tree->voxelsColored;
}
long int VoxelSystem::getVoxelsColoredRunningAverage() {
return tree->voxelsColoredStats.getRunningAverage();
}
long int VoxelSystem::getVoxelsBytesRead() {
return tree->voxelsBytesRead;
}
long int VoxelSystem::getVoxelsBytesReadRunningAverage() {
return tree->voxelsBytesReadStats.getRunningAverage();
}
void VoxelSystem::parseData(unsigned char* sourceBuffer, int numBytes) {
unsigned char command = *sourceBuffer;
unsigned char *voxelData = sourceBuffer + 1;
switch(command) {
case PACKET_HEADER_VOXEL_DATA:
// ask the VoxelTree to read the bitstream into the tree
tree->readBitstreamToTree(voxelData, numBytes - 1);
break;
case PACKET_HEADER_ERASE_VOXEL:
// ask the tree to read the "remove" bitstream
tree->processRemoveVoxelBitstream(sourceBuffer, numBytes);
break;
case PACKET_HEADER_Z_COMMAND:
// the Z command is a special command that allows the sender to send high level semantic
// requests, like erase all, or add sphere scene, different receivers may handle these
// messages differently
char* packetData = (char *)sourceBuffer;
char* command = &packetData[1]; // start of the command
int commandLength = strlen(command); // commands are null terminated strings
int totalLength = 1+commandLength+1;
printf("got Z message len(%d)= %s\n", numBytes, command);
while (totalLength <= numBytes) {
if (0==strcmp(command,(char*)"erase all")) {
printf("got Z message == erase all\n");
tree->eraseAllVoxels();
}
if (0==strcmp(command,(char*)"add scene")) {
printf("got Z message == add scene - NOT SUPPORTED ON INTERFACE\n");
}
totalLength += commandLength+1;
}
break;
}
setupNewVoxelsForDrawing();
}
void VoxelSystem::setupNewVoxelsForDrawing() {
// reset the verticesEndPointer so we're writing to the beginning of the array
writeVerticesEndPointer = writeVerticesArray;
// call recursive function to populate in memory arrays
// it will return the number of voxels added
float treeRoot[3] = {0,0,0};
voxelsRendered = treeToArrays(tree->rootNode, treeRoot);
// copy the newly written data to the arrays designated for reading
copyWrittenDataToReadArrays();
}
void VoxelSystem::copyWrittenDataToReadArrays() {
// lock on the buffer write lock so we can't modify the data when the GPU is reading it
pthread_mutex_lock(&bufferWriteLock);
// store a pointer to the current end so it doesn't change during copy
GLfloat *endOfCurrentVerticesData = writeVerticesEndPointer;
// copy the vertices and colors
memcpy(readVerticesArray, writeVerticesArray, (endOfCurrentVerticesData - writeVerticesArray) * sizeof(GLfloat));
memcpy(readColorsArray, writeColorsArray, (endOfCurrentVerticesData - writeVerticesArray) * sizeof(GLubyte));
// set the read vertices end pointer to the correct spot so the GPU knows how much to pull
readVerticesEndPointer = readVerticesArray + (endOfCurrentVerticesData - writeVerticesArray);
pthread_mutex_unlock(&bufferWriteLock);
}
int VoxelSystem::treeToArrays(VoxelNode *currentNode, float nodePosition[3]) {
int voxelsAdded = 0;
float halfUnitForVoxel = powf(0.5, *currentNode->octalCode) * (0.5 * TREE_SCALE);
glm::vec3 viewerPosition = viewerHead->getBodyPosition();
// XXXBHG - Note: It appears as if the X and Z coordinates of Head or Agent are flip-flopped relative to the
// coords of the voxel space. This flip flop causes LOD behavior to be extremely odd. This is my temporary hack
// to fix this behavior. To disable this swap, set swapXandZ to false.
bool swapXandZ=true;
float viewerX = swapXandZ ? viewerPosition[2] : viewerPosition[0];
float viewerZ = swapXandZ ? viewerPosition[0] : viewerPosition[2];
// debugging code.
//printf("treeToArrays() halfUnitForVoxel=%f\n",halfUnitForVoxel);
//printf("treeToArrays() viewerPosition {x,y,z or [0],[1],[2]} ={%f,%f,%f}\n",
// viewerPosition[0],viewerPosition[1],viewerPosition[2]);
//printf("treeToArrays() nodePosition {x,y,z or [0],[1],[2]} = {%f,%f,%f}\n",
// nodePosition[0],nodePosition[1],nodePosition[2]);
//float* vertices = firstVertexForCode(currentNode->octalCode);
//printf("treeToArrays() firstVerticesForCode(currentNode->octalCode)={x,y,z or [0],[1],[2]} = {%f,%f,%f}\n",
// vertices[0],vertices[1],vertices[2]);
//delete []vertices;
float distanceToVoxelCenter = sqrtf(powf(viewerX - nodePosition[0] - halfUnitForVoxel, 2) +
powf(viewerPosition[1] - nodePosition[1] - halfUnitForVoxel, 2) +
powf(viewerZ - nodePosition[2] - halfUnitForVoxel, 2));
int boundaryPosition = boundaryDistanceForRenderLevel(*currentNode->octalCode + 1);
//printf("treeToArrays() distanceToVoxelCenter=%f boundaryPosition=%d\n",distanceToVoxelCenter,boundaryPosition);
bool alwaysDraw = false; // XXXBHG - temporary debug code. Flip this to true to disable LOD blurring
if (alwaysDraw || distanceToVoxelCenter < boundaryPosition) {
for (int i = 0; i < 8; i++) {
// check if there is a child here
if (currentNode->children[i] != NULL) {
// calculate the child's position based on the parent position
float childNodePosition[3];
for (int j = 0; j < 3; j++) {
childNodePosition[j] = nodePosition[j];
if (oneAtBit(branchIndexWithDescendant(currentNode->octalCode,
currentNode->children[i]->octalCode),
(7 - j))) {
childNodePosition[j] -= (powf(0.5, *currentNode->children[i]->octalCode) * TREE_SCALE);
}
}
voxelsAdded += treeToArrays(currentNode->children[i], childNodePosition);
}
}
}
// if we didn't get any voxels added then we're a leaf
// add our vertex and color information to the interleaved array
if (voxelsAdded == 0 && currentNode->color[3] == 1) {
float * startVertex = firstVertexForCode(currentNode->octalCode);
float voxelScale = 1 / powf(2, *currentNode->octalCode);
// populate the array with points for the 8 vertices
// and RGB color for each added vertex
for (int j = 0; j < VERTEX_POINTS_PER_VOXEL; j++ ) {
*writeVerticesEndPointer = startVertex[j % 3] + (identityVertices[j] * voxelScale);
*(writeColorsArray + (writeVerticesEndPointer - writeVerticesArray)) = currentNode->color[j % 3];
writeVerticesEndPointer++;
}
voxelsAdded++;
delete [] startVertex;
}
return voxelsAdded;
}
VoxelSystem* VoxelSystem::clone() const {
// this still needs to be implemented, will need to be used if VoxelSystem is attached to agent
return NULL;
}
void VoxelSystem::init() {
// prep the data structures for incoming voxel data
writeVerticesEndPointer = writeVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
readVerticesEndPointer = readVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
writeColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
readColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
GLuint *indicesArray = new GLuint[INDICES_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
// populate the indicesArray
// this will not change given new voxels, so we can set it all up now
for (int n = 0; n < MAX_VOXELS_PER_SYSTEM; n++) {
// fill the indices array
int voxelIndexOffset = n * INDICES_PER_VOXEL;
GLuint *currentIndicesPos = indicesArray + voxelIndexOffset;
int startIndex = (n * VERTICES_PER_VOXEL);
for (int i = 0; i < INDICES_PER_VOXEL; i++) {
// add indices for this side of the cube
currentIndicesPos[i] = startIndex + identityIndices[i];
}
}
// VBO for the verticesArray
glGenBuffers(1, &vboVerticesID);
glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
// VBO for colorsArray
glGenBuffers(1, &vboColorsID);
glBindBuffer(GL_ARRAY_BUFFER, vboColorsID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
// VBO for the indicesArray
glGenBuffers(1, &vboIndicesID);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
INDICES_PER_VOXEL * sizeof(GLuint) * MAX_VOXELS_PER_SYSTEM,
indicesArray, GL_STATIC_DRAW);
// delete the indices array that is no longer needed
delete[] indicesArray;
}
void VoxelSystem::render() {
glPushMatrix();
if (readVerticesEndPointer != readVerticesArray) {
// try to lock on the buffer write
// just avoid pulling new data if it is currently being written
if (pthread_mutex_trylock(&bufferWriteLock) == 0) {
glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, 0, (readVerticesEndPointer - readVerticesArray) * sizeof(GLfloat), readVerticesArray);
glBindBuffer(GL_ARRAY_BUFFER, vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, 0, (readVerticesEndPointer - readVerticesArray) * sizeof(GLubyte), readColorsArray);
readVerticesEndPointer = readVerticesArray;
pthread_mutex_unlock(&bufferWriteLock);
}
}
// tell OpenGL where to find vertex and color information
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID);
glVertexPointer(3, GL_FLOAT, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, vboColorsID);
glColorPointer(3, GL_UNSIGNED_BYTE, 0, 0);
// draw the number of voxels we have
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID);
glScalef(10, 10, 10);
glDrawElements(GL_TRIANGLES, 36 * voxelsRendered, GL_UNSIGNED_INT, 0);
// deactivate vertex and color arrays after drawing
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
// bind with 0 to switch back to normal operation
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// scale back down to 1 so heads aren't massive
glPopMatrix();
}
void VoxelSystem::simulate(float deltaTime) {
}