overte-HifiExperiments/interface/src/Audio.cpp
2013-12-04 14:21:00 -08:00

581 lines
24 KiB
C++

//
// Audio.cpp
// interface
//
// Created by Stephen Birarda on 1/22/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#include <cstring>
#include <sys/stat.h>
#ifdef __APPLE__
#include <CoreAudio/AudioHardware.h>
#endif
#include <QtMultimedia/QAudioInput>
#include <QtMultimedia/QAudioOutput>
#include <AngleUtil.h>
#include <NodeList.h>
#include <NodeTypes.h>
#include <PacketHeaders.h>
#include <SharedUtil.h>
#include <StdDev.h>
#include <QSvgRenderer>
#include "Application.h"
#include "Audio.h"
#include "Menu.h"
#include "Util.h"
static const float JITTER_BUFFER_LENGTH_MSECS = 12;
static const short JITTER_BUFFER_SAMPLES = JITTER_BUFFER_LENGTH_MSECS *
NUM_AUDIO_CHANNELS * (SAMPLE_RATE / 1000.0);
static const float AUDIO_CALLBACK_MSECS = (float)BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float)SAMPLE_RATE * 1000.0;
// Mute icon configration
static const int ICON_SIZE = 24;
static const int ICON_LEFT = 20;
static const int BOTTOM_PADDING = 110;
Audio::Audio(int16_t initialJitterBufferSamples, QObject* parent) :
QObject(parent),
_inputDevice(NULL),
_ringBuffer(true),
_averagedLatency(0.0),
_measuredJitter(0),
_jitterBufferSamples(initialJitterBufferSamples),
_lastInputLoudness(0),
_lastVelocity(0),
_lastAcceleration(0),
_totalPacketsReceived(0),
_collisionSoundMagnitude(0.0f),
_collisionSoundFrequency(0.0f),
_collisionSoundNoise(0.0f),
_collisionSoundDuration(0.0f),
_proceduralEffectSample(0),
_heartbeatMagnitude(0.0f),
_muted(false)
{
}
void Audio::init(QGLWidget *parent) {
switchToResourcesParentIfRequired();
_micTextureId = parent->bindTexture(QImage("./resources/images/mic.svg"));
_muteTextureId = parent->bindTexture(QImage("./resources/images/mute.svg"));
}
void Audio::reset() {
_ringBuffer.reset();
}
QAudioDeviceInfo defaultAudioDeviceForMode(QAudio::Mode mode) {
#ifdef __APPLE__
if (QAudioDeviceInfo::availableDevices(mode).size() > 1) {
AudioDeviceID defaultDeviceID = 0;
uint32_t propertySize = sizeof(AudioDeviceID);
AudioObjectPropertyAddress propertyAddress = {
kAudioHardwarePropertyDefaultInputDevice,
kAudioObjectPropertyScopeGlobal,
kAudioObjectPropertyElementMaster
};
if (mode == QAudio::AudioOutput) {
propertyAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
}
OSStatus getPropertyError = AudioObjectGetPropertyData(kAudioObjectSystemObject,
&propertyAddress,
0,
NULL,
&propertySize,
&defaultDeviceID);
if (!getPropertyError && propertySize) {
CFStringRef deviceName = NULL;
propertySize = sizeof(deviceName);
propertyAddress.mSelector = kAudioDevicePropertyDeviceNameCFString;
getPropertyError = AudioObjectGetPropertyData(defaultDeviceID, &propertyAddress, 0,
NULL, &propertySize, &deviceName);
if (!getPropertyError && propertySize) {
// find a device in the list that matches the name we have and return it
foreach(QAudioDeviceInfo audioDevice, QAudioDeviceInfo::availableDevices(mode)) {
if (audioDevice.deviceName() == CFStringGetCStringPtr(deviceName, kCFStringEncodingMacRoman)) {
return audioDevice;
}
}
}
}
}
#endif
// fallback for failed lookup is the default device
return (mode == QAudio::AudioInput) ? QAudioDeviceInfo::defaultInputDevice() : QAudioDeviceInfo::defaultOutputDevice();
}
const int QT_SAMPLE_RATE = 44100;
const int SAMPLE_RATE_RATIO = QT_SAMPLE_RATE / SAMPLE_RATE;
void Audio::start() {
QAudioFormat audioFormat;
// set up the desired audio format
audioFormat.setSampleRate(QT_SAMPLE_RATE);
audioFormat.setSampleSize(16);
audioFormat.setCodec("audio/pcm");
audioFormat.setSampleType(QAudioFormat::SignedInt);
audioFormat.setByteOrder(QAudioFormat::LittleEndian);
audioFormat.setChannelCount(2);
qDebug() << "The format for audio I/O is" << audioFormat << "\n";
QAudioDeviceInfo inputAudioDevice = defaultAudioDeviceForMode(QAudio::AudioInput);
qDebug() << "Audio input device is" << inputAudioDevice.deviceName() << "\n";
if (!inputAudioDevice.isFormatSupported(audioFormat)) {
qDebug() << "The desired audio input format is not supported by this device. Not starting audio input.\n";
return;
}
_audioInput = new QAudioInput(inputAudioDevice, audioFormat, this);
_audioInput->setBufferSize(BUFFER_LENGTH_BYTES_STEREO * SAMPLE_RATE_RATIO);
_inputDevice = _audioInput->start();
connect(_inputDevice, SIGNAL(readyRead()), SLOT(handleAudioInput()));
QAudioDeviceInfo outputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioOutput);
qDebug() << outputDeviceInfo.supportedSampleRates() << "\n";
qDebug() << "Audio output device is" << outputDeviceInfo.deviceName() << "\n";
if (!outputDeviceInfo.isFormatSupported(audioFormat)) {
qDebug() << "The desired audio output format is not supported by this device.\n";
return;
}
_audioOutput = new QAudioOutput(outputDeviceInfo, audioFormat, this);
_audioOutput->setBufferSize(BUFFER_LENGTH_BYTES_STEREO * SAMPLE_RATE_RATIO);
_outputDevice = _audioOutput->start();
gettimeofday(&_lastReceiveTime, NULL);
}
void Audio::handleAudioInput() {
static int16_t stereoInputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2 * SAMPLE_RATE_RATIO];
static int16_t stereoOutputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2 * SAMPLE_RATE_RATIO];
static char monoAudioDataPacket[MAX_PACKET_SIZE];
// read out the current samples from the _inputDevice
_inputDevice->read((char*) stereoInputBuffer, BUFFER_LENGTH_BYTES_STEREO * SAMPLE_RATE_RATIO);
NodeList* nodeList = NodeList::getInstance();
Node* audioMixer = nodeList->soloNodeOfType(NODE_TYPE_AUDIO_MIXER);
if (Menu::getInstance()->isOptionChecked(MenuOption::EchoLocalAudio) && !_muted) {
// if local loopback enabled, copy input to output
memcpy(stereoOutputBuffer, stereoInputBuffer, sizeof(stereoOutputBuffer));
} else {
// zero out the stereoOutputBuffer
memset(stereoOutputBuffer, 0, sizeof(stereoOutputBuffer));
}
if (audioMixer) {
if (audioMixer->getActiveSocket()) {
Avatar* interfaceAvatar = Application::getInstance()->getAvatar();
glm::vec3 headPosition = interfaceAvatar->getHeadJointPosition();
glm::quat headOrientation = interfaceAvatar->getHead().getOrientation();
int numBytesPacketHeader = numBytesForPacketHeader((unsigned char*) &PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO);
int leadingBytes = numBytesPacketHeader + sizeof(headPosition) + sizeof(headOrientation);
// we need the amount of bytes in the buffer + 1 for type
// + 12 for 3 floats for position + float for bearing + 1 attenuation byte
PACKET_TYPE packetType = Menu::getInstance()->isOptionChecked(MenuOption::EchoServerAudio)
? PACKET_TYPE_MICROPHONE_AUDIO_WITH_ECHO
: PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO;
char* currentPacketPtr = monoAudioDataPacket + populateTypeAndVersion((unsigned char*) monoAudioDataPacket, packetType);
// pack Source Data
QByteArray rfcUUID = NodeList::getInstance()->getOwnerUUID().toRfc4122();
memcpy(currentPacketPtr, rfcUUID.constData(), rfcUUID.size());
currentPacketPtr += rfcUUID.size();
leadingBytes += rfcUUID.size();
// memcpy the three float positions
memcpy(currentPacketPtr, &headPosition, sizeof(headPosition));
currentPacketPtr += (sizeof(headPosition));
// memcpy our orientation
memcpy(currentPacketPtr, &headOrientation, sizeof(headOrientation));
currentPacketPtr += sizeof(headOrientation);
if (!_muted) {
// we aren't muted, average each set of four samples together to set up the mono input buffers
for (int i = 2; i < BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2 * SAMPLE_RATE_RATIO; i += 4) {
int16_t averagedSample = 0;
if (i + 2 == BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2 * SAMPLE_RATE_RATIO) {
averagedSample = (stereoInputBuffer[i - 2] / 2) + (stereoInputBuffer[i] / 2);
} else {
averagedSample = (stereoInputBuffer[i - 2] / 4) + (stereoInputBuffer[i] / 2)
+ (stereoInputBuffer[i + 2] / 4);
}
// copy the averaged sample to our array
memcpy(currentPacketPtr + (((i - 2) / 4) * sizeof(int16_t)), &averagedSample, sizeof(int16_t));
}
} else {
// zero out the audio part of the array
memset(currentPacketPtr, 0, BUFFER_LENGTH_BYTES_PER_CHANNEL);
}
// Add procedural effects to input samples
addProceduralSounds((int16_t*) currentPacketPtr, stereoOutputBuffer, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
nodeList->getNodeSocket()->send(audioMixer->getActiveSocket(),
monoAudioDataPacket,
BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes);
} else {
nodeList->pingPublicAndLocalSocketsForInactiveNode(audioMixer);
}
}
AudioRingBuffer* ringBuffer = &_ringBuffer;
// if there is anything in the ring buffer, decide what to do
if (ringBuffer->getEndOfLastWrite()) {
if (ringBuffer->isStarved() && ringBuffer->diffLastWriteNextOutput() <
(PACKET_LENGTH_SAMPLES + _jitterBufferSamples * (ringBuffer->isStereo() ? 2 : 1))) {
// If not enough audio has arrived to start playback, keep waiting
} else if (!ringBuffer->isStarved() && ringBuffer->diffLastWriteNextOutput() == 0) {
// If we have started and now have run out of audio to send to the audio device,
// this means we've starved and should restart.
ringBuffer->setIsStarved(true);
} else {
// We are either already playing back, or we have enough audio to start playing back.
if (ringBuffer->isStarved()) {
ringBuffer->setIsStarved(false);
ringBuffer->setHasStarted(true);
}
// play whatever we have in the audio buffer
for (int s = 0; s < PACKET_LENGTH_SAMPLES_PER_CHANNEL; s++) {
int16_t leftSample = ringBuffer->getNextOutput()[s];
int16_t rightSample = ringBuffer->getNextOutput()[s + PACKET_LENGTH_SAMPLES_PER_CHANNEL];
stereoOutputBuffer[(s * 4)] += leftSample;
stereoOutputBuffer[(s * 4) + 2] += leftSample;
stereoOutputBuffer[(s * 4) + 1] += rightSample;
stereoOutputBuffer[(s * 4) + 3] += rightSample;
}
ringBuffer->setNextOutput(ringBuffer->getNextOutput() + PACKET_LENGTH_SAMPLES);
if (ringBuffer->getNextOutput() == ringBuffer->getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
ringBuffer->setNextOutput(ringBuffer->getBuffer());
}
}
}
eventuallySendRecvPing(inputLeft, outputLeft, outputRight);
// add output (@speakers) data just written to the scope
_scope->addSamples(1, outputLeft, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
_scope->addSamples(2, outputRight, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
gettimeofday(&_lastCallbackTime, NULL);
}
// inputBuffer A pointer to an internal portaudio data buffer containing data read by portaudio.
// outputBuffer A pointer to an internal portaudio data buffer to be read by the configured output device.
// frames Number of frames that portaudio requests to be read/written.
// timeInfo Portaudio time info. Currently unused.
// statusFlags Portaudio status flags. Currently unused.
// userData Pointer to supplied user data (in this case, a pointer to the parent Audio object
int Audio::audioCallback (const void* inputBuffer,
void* outputBuffer,
unsigned long frames,
const PaStreamCallbackTimeInfo *timeInfo,
PaStreamCallbackFlags statusFlags,
void* userData) {
// copy the audio data to the output device
_outputDevice->write((char*) stereoOutputBuffer, sizeof(stereoOutputBuffer));
_outputDevice->write((char*) stereoOutputBuffer, sizeof(stereoOutputBuffer));
// add output (@speakers) data just written to the scope
// _scope->addSamples(1, outputLeft, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
// _scope->addSamples(2, outputRight, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
gettimeofday(&_lastCallbackTime, NULL);
}
void Audio::addReceivedAudioToBuffer(unsigned char* receivedData, int receivedBytes) {
const int NUM_INITIAL_PACKETS_DISCARD = 3;
const int STANDARD_DEVIATION_SAMPLE_COUNT = 500;
timeval currentReceiveTime;
gettimeofday(&currentReceiveTime, NULL);
_totalPacketsReceived++;
double timeDiff = diffclock(&_lastReceiveTime, &currentReceiveTime);
// Discard first few received packets for computing jitter (often they pile up on start)
if (_totalPacketsReceived > NUM_INITIAL_PACKETS_DISCARD) {
_stdev.addValue(timeDiff);
}
if (_stdev.getSamples() > STANDARD_DEVIATION_SAMPLE_COUNT) {
_measuredJitter = _stdev.getStDev();
_stdev.reset();
// Set jitter buffer to be a multiple of the measured standard deviation
const int MAX_JITTER_BUFFER_SAMPLES = RING_BUFFER_LENGTH_SAMPLES / 2;
const float NUM_STANDARD_DEVIATIONS = 3.f;
if (Menu::getInstance()->getAudioJitterBufferSamples() == 0) {
float newJitterBufferSamples = (NUM_STANDARD_DEVIATIONS * _measuredJitter)
/ 1000.f
* SAMPLE_RATE;
setJitterBufferSamples(glm::clamp((int)newJitterBufferSamples, 0, MAX_JITTER_BUFFER_SAMPLES));
}
}
if (_ringBuffer.diffLastWriteNextOutput() + PACKET_LENGTH_SAMPLES >
PACKET_LENGTH_SAMPLES + (ceilf((float) (_jitterBufferSamples * 2) / PACKET_LENGTH_SAMPLES) * PACKET_LENGTH_SAMPLES)) {
// this packet would give us more than the required amount for play out
// discard the first packet in the buffer
_ringBuffer.setNextOutput(_ringBuffer.getNextOutput() + PACKET_LENGTH_SAMPLES);
if (_ringBuffer.getNextOutput() == _ringBuffer.getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
_ringBuffer.setNextOutput(_ringBuffer.getBuffer());
}
}
_ringBuffer.parseData((unsigned char*) receivedData, receivedBytes);
Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::AUDIO)
.updateValue(PACKET_LENGTH_BYTES + sizeof(PACKET_TYPE));
_lastReceiveTime = currentReceiveTime;
}
bool Audio::mousePressEvent(int x, int y) {
if (_iconBounds.contains(x, y)) {
_muted = !_muted;
return true;
}
return false;
}
void Audio::render(int screenWidth, int screenHeight) {
if (true) {
glLineWidth(2.0);
glBegin(GL_LINES);
glColor3f(1,1,1);
int startX = 20.0;
int currentX = startX;
int topY = screenHeight - 40;
int bottomY = screenHeight - 20;
float frameWidth = 20.0;
float halfY = topY + ((bottomY - topY) / 2.0);
// draw the lines for the base of the ring buffer
glVertex2f(currentX, topY);
glVertex2f(currentX, bottomY);
for (int i = 0; i < RING_BUFFER_LENGTH_FRAMES / 2; i++) {
glVertex2f(currentX, halfY);
glVertex2f(currentX + frameWidth, halfY);
currentX += frameWidth;
glVertex2f(currentX, topY);
glVertex2f(currentX, bottomY);
}
glEnd();
// Show a bar with the amount of audio remaining in ring buffer beyond current playback
float remainingBuffer = 0;
timeval currentTime;
gettimeofday(&currentTime, NULL);
float timeLeftInCurrentBuffer = 0;
if (_lastCallbackTime.tv_usec > 0) {
timeLeftInCurrentBuffer = AUDIO_CALLBACK_MSECS - diffclock(&_lastCallbackTime, &currentTime);
}
if (_ringBuffer.getEndOfLastWrite() != NULL)
remainingBuffer = _ringBuffer.diffLastWriteNextOutput() / PACKET_LENGTH_SAMPLES * AUDIO_CALLBACK_MSECS;
if (_wasStarved == 0) {
glColor3f(0, 1, 0);
} else {
glColor3f(0.5 + (_wasStarved / 20.0f), 0, 0);
_wasStarved--;
}
glBegin(GL_QUADS);
glVertex2f(startX, topY + 2);
glVertex2f(startX + (remainingBuffer + timeLeftInCurrentBuffer)/AUDIO_CALLBACK_MSECS*frameWidth, topY + 2);
glVertex2f(startX + (remainingBuffer + timeLeftInCurrentBuffer)/AUDIO_CALLBACK_MSECS*frameWidth, bottomY - 2);
glVertex2f(startX, bottomY - 2);
glEnd();
if (_averagedLatency == 0.0) {
_averagedLatency = remainingBuffer + timeLeftInCurrentBuffer;
} else {
_averagedLatency = 0.99f * _averagedLatency + 0.01f * (remainingBuffer + timeLeftInCurrentBuffer);
}
// Show a yellow bar with the averaged msecs latency you are hearing (from time of packet receipt)
glColor3f(1,1,0);
glBegin(GL_QUADS);
glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth - 2, topY - 2);
glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth + 2, topY - 2);
glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth + 2, bottomY + 2);
glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth - 2, bottomY + 2);
glEnd();
char out[40];
sprintf(out, "%3.0f\n", _averagedLatency);
drawtext(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth - 10, topY - 9, 0.10, 0, 1, 0, out, 1,1,0);
// Show a red bar with the 'start' point of one frame plus the jitter buffer
glColor3f(1, 0, 0);
int jitterBufferPels = (1.f + (float)getJitterBufferSamples() / (float)PACKET_LENGTH_SAMPLES_PER_CHANNEL) * frameWidth;
sprintf(out, "%.0f\n", getJitterBufferSamples() / SAMPLE_RATE * 1000.f);
drawtext(startX + jitterBufferPels - 5, topY - 9, 0.10, 0, 1, 0, out, 1, 0, 0);
sprintf(out, "j %.1f\n", _measuredJitter);
if (Menu::getInstance()->getAudioJitterBufferSamples() == 0) {
drawtext(startX + jitterBufferPels - 5, bottomY + 12, 0.10, 0, 1, 0, out, 1, 0, 0);
} else {
drawtext(startX, bottomY + 12, 0.10, 0, 1, 0, out, 1, 0, 0);
}
glBegin(GL_QUADS);
glVertex2f(startX + jitterBufferPels - 2, topY - 2);
glVertex2f(startX + jitterBufferPels + 2, topY - 2);
glVertex2f(startX + jitterBufferPels + 2, bottomY + 2);
glVertex2f(startX + jitterBufferPels - 2, bottomY + 2);
glEnd();
}
renderToolIcon(screenHeight);
}
// Take a pointer to the acquired microphone input samples and add procedural sounds
void Audio::addProceduralSounds(int16_t* inputBuffer, int16_t* stereoOutput, int numSamples) {
const float MAX_AUDIBLE_VELOCITY = 6.0;
const float MIN_AUDIBLE_VELOCITY = 0.1;
const int VOLUME_BASELINE = 400;
const float SOUND_PITCH = 8.f;
float speed = glm::length(_lastVelocity);
float volume = VOLUME_BASELINE * (1.f - speed / MAX_AUDIBLE_VELOCITY);
float sample;
// Travelling noise
// Add a noise-modulated sinewave with volume that tapers off with speed increasing
if ((speed > MIN_AUDIBLE_VELOCITY) && (speed < MAX_AUDIBLE_VELOCITY)) {
for (int i = 0; i < numSamples; i++) {
inputBuffer[i] += (int16_t)(sinf((float) (_proceduralEffectSample + i) / SOUND_PITCH )
* volume * (1.f + randFloat() * 0.25f) * speed);
}
}
const float COLLISION_SOUND_CUTOFF_LEVEL = 0.01f;
const float COLLISION_SOUND_MAX_VOLUME = 1000.f;
const float UP_MAJOR_FIFTH = powf(1.5f, 4.0f);
const float DOWN_TWO_OCTAVES = 4.f;
const float DOWN_FOUR_OCTAVES = 16.f;
float t;
if (_collisionSoundMagnitude > COLLISION_SOUND_CUTOFF_LEVEL) {
for (int i = 0; i < numSamples; i++) {
t = (float) _proceduralEffectSample + (float) i;
sample = sinf(t * _collisionSoundFrequency) +
sinf(t * _collisionSoundFrequency / DOWN_TWO_OCTAVES) +
sinf(t * _collisionSoundFrequency / DOWN_FOUR_OCTAVES * UP_MAJOR_FIFTH);
sample *= _collisionSoundMagnitude * COLLISION_SOUND_MAX_VOLUME;
int16_t collisionSample = (int16_t) sample;
inputBuffer[i] += collisionSample;
for (int j = (i * 4); j < (i * 4) + 4; j++) {
stereoOutput[j] = collisionSample;
}
_collisionSoundMagnitude *= _collisionSoundDuration;
}
}
_proceduralEffectSample += numSamples;
}
// Starts a collision sound. magnitude is 0-1, with 1 the loudest possible sound.
void Audio::startCollisionSound(float magnitude, float frequency, float noise, float duration, bool flashScreen) {
_collisionSoundMagnitude = magnitude;
_collisionSoundFrequency = frequency;
_collisionSoundNoise = noise;
_collisionSoundDuration = duration;
_collisionFlashesScreen = flashScreen;
}
void Audio::renderToolIcon(int screenHeight) {
_iconBounds = QRect(ICON_LEFT, screenHeight - BOTTOM_PADDING, ICON_SIZE, ICON_SIZE);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, _micTextureId);
glColor3f(1, 1, 1);
glBegin(GL_QUADS);
glTexCoord2f(1, 1);
glVertex2f(_iconBounds.left(), _iconBounds.top());
glTexCoord2f(0, 1);
glVertex2f(_iconBounds.right(), _iconBounds.top());
glTexCoord2f(0, 0);
glVertex2f(_iconBounds.right(), _iconBounds.bottom());
glTexCoord2f(1, 0);
glVertex2f(_iconBounds.left(), _iconBounds.bottom());
glEnd();
if (_muted) {
glBindTexture(GL_TEXTURE_2D, _muteTextureId);
glBegin(GL_QUADS);
glTexCoord2f(1, 1);
glVertex2f(_iconBounds.left(), _iconBounds.top());
glTexCoord2f(0, 1);
glVertex2f(_iconBounds.right(), _iconBounds.top());
glTexCoord2f(0, 0);
glVertex2f(_iconBounds.right(), _iconBounds.bottom());
glTexCoord2f(1, 0);
glVertex2f(_iconBounds.left(), _iconBounds.bottom());
glEnd();
}
glDisable(GL_TEXTURE_2D);
}