overte-HifiExperiments/libraries/entities/src/EntityTreeElement.cpp
2018-09-26 09:33:12 -07:00

673 lines
29 KiB
C++

//
// EntityTreeElement.cpp
// libraries/entities/src
//
// Created by Brad Hefta-Gaub on 12/4/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "EntityTreeElement.h"
#include <glm/gtx/transform.hpp>
#include <GeometryUtil.h>
#include <OctreeUtils.h>
#include <Extents.h>
#include "EntitiesLogging.h"
#include "EntityNodeData.h"
#include "EntityItemProperties.h"
#include "EntityTree.h"
#include "EntityTypes.h"
EntityTreeElement::EntityTreeElement(unsigned char* octalCode) : OctreeElement() {
init(octalCode);
};
EntityTreeElement::~EntityTreeElement() {
_octreeMemoryUsage -= sizeof(EntityTreeElement);
}
OctreeElementPointer EntityTreeElement::createNewElement(unsigned char* octalCode) {
auto newChild = EntityTreeElementPointer(new EntityTreeElement(octalCode));
newChild->setTree(_myTree);
return newChild;
}
void EntityTreeElement::init(unsigned char* octalCode) {
OctreeElement::init(octalCode);
_octreeMemoryUsage += sizeof(EntityTreeElement);
}
OctreeElementPointer EntityTreeElement::addChildAtIndex(int index) {
OctreeElementPointer newElement = OctreeElement::addChildAtIndex(index);
std::static_pointer_cast<EntityTreeElement>(newElement)->setTree(_myTree);
return newElement;
}
void EntityTreeElement::debugExtraEncodeData(EncodeBitstreamParams& params) const {
qCDebug(entities) << "EntityTreeElement::debugExtraEncodeData()... ";
qCDebug(entities) << " element:" << _cube;
auto entityNodeData = static_cast<EntityNodeData*>(params.nodeData);
assert(entityNodeData);
OctreeElementExtraEncodeData* extraEncodeData = &entityNodeData->extraEncodeData;
assert(extraEncodeData); // EntityTrees always require extra encode data on their encoding passes
if (extraEncodeData->contains(this)) {
EntityTreeElementExtraEncodeDataPointer entityTreeElementExtraEncodeData
= std::static_pointer_cast<EntityTreeElementExtraEncodeData>((*extraEncodeData)[this]);
qCDebug(entities) << " encode data:" << &(*entityTreeElementExtraEncodeData);
} else {
qCDebug(entities) << " encode data: MISSING!!";
}
}
bool EntityTreeElement::containsEntityBounds(EntityItemPointer entity) const {
bool success;
auto queryCube = entity->getQueryAACube(success);
if (!success) {
return false;
}
return containsBounds(queryCube);
}
bool EntityTreeElement::bestFitEntityBounds(EntityItemPointer entity) const {
bool success;
auto queryCube = entity->getQueryAACube(success);
if (!success) {
qCDebug(entities) << "EntityTreeElement::bestFitEntityBounds couldn't get queryCube for" << entity->getName() << entity->getID();
return false;
}
return bestFitBounds(queryCube);
}
bool EntityTreeElement::containsBounds(const EntityItemProperties& properties) const {
return containsBounds(properties.getQueryAACube());
}
bool EntityTreeElement::bestFitBounds(const EntityItemProperties& properties) const {
return bestFitBounds(properties.getQueryAACube());
}
bool EntityTreeElement::containsBounds(const AACube& bounds) const {
return containsBounds(bounds.getMinimumPoint(), bounds.getMaximumPoint());
}
bool EntityTreeElement::bestFitBounds(const AACube& bounds) const {
return bestFitBounds(bounds.getMinimumPoint(), bounds.getMaximumPoint());
}
bool EntityTreeElement::containsBounds(const AABox& bounds) const {
return containsBounds(bounds.getMinimumPoint(), bounds.getMaximumPoint());
}
bool EntityTreeElement::bestFitBounds(const AABox& bounds) const {
return bestFitBounds(bounds.getMinimumPoint(), bounds.getMaximumPoint());
}
bool EntityTreeElement::containsBounds(const glm::vec3& minPoint, const glm::vec3& maxPoint) const {
glm::vec3 clampedMin = glm::clamp(minPoint, (float)-HALF_TREE_SCALE, (float)HALF_TREE_SCALE);
glm::vec3 clampedMax = glm::clamp(maxPoint, (float)-HALF_TREE_SCALE, (float)HALF_TREE_SCALE);
return _cube.contains(clampedMin) && _cube.contains(clampedMax);
}
bool EntityTreeElement::bestFitBounds(const glm::vec3& minPoint, const glm::vec3& maxPoint) const {
glm::vec3 clampedMin = glm::clamp(minPoint, (float)-HALF_TREE_SCALE, (float)HALF_TREE_SCALE);
glm::vec3 clampedMax = glm::clamp(maxPoint, (float)-HALF_TREE_SCALE, (float)HALF_TREE_SCALE);
if (_cube.contains(clampedMin) && _cube.contains(clampedMax)) {
// If our child would be smaller than our smallest reasonable element, then we are the best fit.
float childScale = _cube.getScale() / 2.0f;
if (childScale <= SMALLEST_REASONABLE_OCTREE_ELEMENT_SCALE) {
return true;
}
int childForMinimumPoint = getMyChildContainingPoint(clampedMin);
int childForMaximumPoint = getMyChildContainingPoint(clampedMax);
// If I contain both the minimum and maximum point, but two different children of mine
// contain those points, then I am the best fit for that entity
if (childForMinimumPoint != childForMaximumPoint) {
return true;
}
}
return false;
}
EntityItemID EntityTreeElement::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
OctreeElementPointer& element, float& distance, BoxFace& face, glm::vec3& surfaceNormal,
const QVector<EntityItemID>& entityIdsToInclude, const QVector<EntityItemID>& entityIdsToDiscard,
bool visibleOnly, bool collidableOnly, QVariantMap& extraInfo, bool precisionPicking) {
EntityItemID result;
BoxFace localFace { UNKNOWN_FACE };
glm::vec3 localSurfaceNormal;
if (!canPickIntersect()) {
return result;
}
QVariantMap localExtraInfo;
float distanceToElementDetails = distance;
EntityItemID entityID = findDetailedRayIntersection(origin, direction, element, distanceToElementDetails,
localFace, localSurfaceNormal, entityIdsToInclude, entityIdsToDiscard, visibleOnly, collidableOnly,
localExtraInfo, precisionPicking);
if (!entityID.isNull() && distanceToElementDetails < distance) {
distance = distanceToElementDetails;
face = localFace;
surfaceNormal = localSurfaceNormal;
extraInfo = localExtraInfo;
result = entityID;
}
return result;
}
EntityItemID EntityTreeElement::findDetailedRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
OctreeElementPointer& element, float& distance, BoxFace& face, glm::vec3& surfaceNormal,
const QVector<EntityItemID>& entityIdsToInclude, const QVector<EntityItemID>& entityIDsToDiscard,
bool visibleOnly, bool collidableOnly, QVariantMap& extraInfo, bool precisionPicking) {
// only called if we do intersect our bounding cube, but find if we actually intersect with entities...
int entityNumber = 0;
EntityItemID entityID;
forEachEntity([&](EntityItemPointer entity) {
// use simple line-sphere for broadphase check
// (this is faster and more likely to cull results than the filter check below so we do it first)
bool success;
AABox entityBox = entity->getAABox(success);
if (!success) {
return;
}
if (!entityBox.rayHitsBoundingSphere(origin, direction)) {
return;
}
// check RayPick filter settings
if ((visibleOnly && !entity->isVisible())
|| (collidableOnly && (entity->getCollisionless() || entity->getShapeType() == SHAPE_TYPE_NONE))
|| (entityIdsToInclude.size() > 0 && !entityIdsToInclude.contains(entity->getID()))
|| (entityIDsToDiscard.size() > 0 && entityIDsToDiscard.contains(entity->getID())) ) {
return;
}
// extents is the entity relative, scaled, centered extents of the entity
glm::mat4 rotation = glm::mat4_cast(entity->getWorldOrientation());
glm::mat4 translation = glm::translate(entity->getWorldPosition());
glm::mat4 entityToWorldMatrix = translation * rotation;
glm::mat4 worldToEntityMatrix = glm::inverse(entityToWorldMatrix);
glm::vec3 dimensions = entity->getRaycastDimensions();
glm::vec3 registrationPoint = entity->getRegistrationPoint();
glm::vec3 corner = -(dimensions * registrationPoint);
AABox entityFrameBox(corner, dimensions);
glm::vec3 entityFrameOrigin = glm::vec3(worldToEntityMatrix * glm::vec4(origin, 1.0f));
glm::vec3 entityFrameDirection = glm::vec3(worldToEntityMatrix * glm::vec4(direction, 0.0f));
// we can use the AABox's ray intersection by mapping our origin and direction into the entity frame
// and testing intersection there.
float localDistance;
BoxFace localFace { UNKNOWN_FACE };
glm::vec3 localSurfaceNormal;
if (entityFrameBox.findRayIntersection(entityFrameOrigin, entityFrameDirection, 1.0f / entityFrameDirection, localDistance,
localFace, localSurfaceNormal)) {
if (entityFrameBox.contains(entityFrameOrigin) || localDistance < distance) {
// now ask the entity if we actually intersect
if (entity->supportsDetailedIntersection()) {
QVariantMap localExtraInfo;
if (entity->findDetailedRayIntersection(origin, direction, element, localDistance,
localFace, localSurfaceNormal, localExtraInfo, precisionPicking)) {
if (localDistance < distance) {
distance = localDistance;
face = localFace;
surfaceNormal = localSurfaceNormal;
extraInfo = localExtraInfo;
entityID = entity->getEntityItemID();
}
}
} else {
// if the entity type doesn't support a detailed intersection, then just return the non-AABox results
// Never intersect with particle entities
if (localDistance < distance && entity->getType() != EntityTypes::ParticleEffect) {
distance = localDistance;
face = localFace;
surfaceNormal = glm::vec3(rotation * glm::vec4(localSurfaceNormal, 0.0f));
extraInfo = QVariantMap();
entityID = entity->getEntityItemID();
}
}
}
}
entityNumber++;
});
return entityID;
}
// TODO: change this to use better bounding shape for entity than sphere
bool EntityTreeElement::findSpherePenetration(const glm::vec3& center, float radius,
glm::vec3& penetration, void** penetratedObject) const {
bool result = false;
withReadLock([&] {
foreach(EntityItemPointer entity, _entityItems) {
glm::vec3 entityCenter = entity->getWorldPosition();
float entityRadius = entity->getRadius();
// don't penetrate yourself
if (entityCenter == center && entityRadius == radius) {
return;
}
if (findSphereSpherePenetration(center, radius, entityCenter, entityRadius, penetration)) {
// return true on first valid entity penetration
*penetratedObject = (void*)(entity.get());
result = true;
return;
}
}
});
return result;
}
EntityItemID EntityTreeElement::findParabolaIntersection(const glm::vec3& origin, const glm::vec3& velocity,
const glm::vec3& acceleration, OctreeElementPointer& element, float& parabolicDistance,
BoxFace& face, glm::vec3& surfaceNormal, const QVector<EntityItemID>& entityIdsToInclude,
const QVector<EntityItemID>& entityIdsToDiscard, bool visibleOnly, bool collidableOnly,
QVariantMap& extraInfo, bool precisionPicking) {
EntityItemID result;
BoxFace localFace;
glm::vec3 localSurfaceNormal;
if (!canPickIntersect()) {
return result;
}
QVariantMap localExtraInfo;
float distanceToElementDetails = parabolicDistance;
// We can precompute the world-space parabola normal and reuse it for the parabola plane intersects AABox sphere check
glm::vec3 vectorOnPlane = velocity;
if (glm::dot(glm::normalize(velocity), glm::normalize(acceleration)) > 1.0f - EPSILON) {
// Handle the degenerate case where velocity is parallel to acceleration
// We pick t = 1 and calculate a second point on the plane
vectorOnPlane = velocity + 0.5f * acceleration;
}
// Get the normal of the plane, the cross product of two vectors on the plane
glm::vec3 normal = glm::normalize(glm::cross(vectorOnPlane, acceleration));
EntityItemID entityID = findDetailedParabolaIntersection(origin, velocity, acceleration, normal, element, distanceToElementDetails,
localFace, localSurfaceNormal, entityIdsToInclude, entityIdsToDiscard, visibleOnly, collidableOnly,
localExtraInfo, precisionPicking);
if (!entityID.isNull() && distanceToElementDetails < parabolicDistance) {
parabolicDistance = distanceToElementDetails;
face = localFace;
surfaceNormal = localSurfaceNormal;
extraInfo = localExtraInfo;
result = entityID;
}
return result;
}
EntityItemID EntityTreeElement::findDetailedParabolaIntersection(const glm::vec3& origin, const glm::vec3& velocity, const glm::vec3& acceleration,
const glm::vec3& normal, OctreeElementPointer& element, float& parabolicDistance, BoxFace& face, glm::vec3& surfaceNormal,
const QVector<EntityItemID>& entityIdsToInclude, const QVector<EntityItemID>& entityIDsToDiscard,
bool visibleOnly, bool collidableOnly, QVariantMap& extraInfo, bool precisionPicking) {
// only called if we do intersect our bounding cube, but find if we actually intersect with entities...
int entityNumber = 0;
EntityItemID entityID;
forEachEntity([&](EntityItemPointer entity) {
// use simple line-sphere for broadphase check
// (this is faster and more likely to cull results than the filter check below so we do it first)
bool success;
AABox entityBox = entity->getAABox(success);
if (!success) {
return;
}
// Instead of checking parabolaInstersectsBoundingSphere here, we are just going to check if the plane
// defined by the parabola slices the sphere. The solution to parabolaIntersectsBoundingSphere is cubic,
// the solution to which is more computationally expensive than the quadratic AABox::findParabolaIntersection
// below
if (!entityBox.parabolaPlaneIntersectsBoundingSphere(origin, velocity, acceleration, normal)) {
return;
}
// check RayPick filter settings
if ((visibleOnly && !entity->isVisible())
|| (collidableOnly && (entity->getCollisionless() || entity->getShapeType() == SHAPE_TYPE_NONE))
|| (entityIdsToInclude.size() > 0 && !entityIdsToInclude.contains(entity->getID()))
|| (entityIDsToDiscard.size() > 0 && entityIDsToDiscard.contains(entity->getID())) ) {
return;
}
// extents is the entity relative, scaled, centered extents of the entity
glm::mat4 rotation = glm::mat4_cast(entity->getWorldOrientation());
glm::mat4 translation = glm::translate(entity->getWorldPosition());
glm::mat4 entityToWorldMatrix = translation * rotation;
glm::mat4 worldToEntityMatrix = glm::inverse(entityToWorldMatrix);
glm::vec3 dimensions = entity->getRaycastDimensions();
glm::vec3 registrationPoint = entity->getRegistrationPoint();
glm::vec3 corner = -(dimensions * registrationPoint);
AABox entityFrameBox(corner, dimensions);
glm::vec3 entityFrameOrigin = glm::vec3(worldToEntityMatrix * glm::vec4(origin, 1.0f));
glm::vec3 entityFrameVelocity = glm::vec3(worldToEntityMatrix * glm::vec4(velocity, 0.0f));
glm::vec3 entityFrameAcceleration = glm::vec3(worldToEntityMatrix * glm::vec4(acceleration, 0.0f));
// we can use the AABox's ray intersection by mapping our origin and direction into the entity frame
// and testing intersection there.
float localDistance;
BoxFace localFace;
glm::vec3 localSurfaceNormal;
if (entityFrameBox.findParabolaIntersection(entityFrameOrigin, entityFrameVelocity, entityFrameAcceleration, localDistance,
localFace, localSurfaceNormal)) {
if (entityFrameBox.contains(entityFrameOrigin) || localDistance < parabolicDistance) {
// now ask the entity if we actually intersect
if (entity->supportsDetailedIntersection()) {
QVariantMap localExtraInfo;
if (entity->findDetailedParabolaIntersection(origin, velocity, acceleration, element, localDistance,
localFace, localSurfaceNormal, localExtraInfo, precisionPicking)) {
if (localDistance < parabolicDistance) {
parabolicDistance = localDistance;
face = localFace;
surfaceNormal = localSurfaceNormal;
extraInfo = localExtraInfo;
entityID = entity->getEntityItemID();
}
}
} else {
// if the entity type doesn't support a detailed intersection, then just return the non-AABox results
// Never intersect with particle entities
if (localDistance < parabolicDistance && entity->getType() != EntityTypes::ParticleEffect) {
parabolicDistance = localDistance;
face = localFace;
surfaceNormal = glm::vec3(rotation * glm::vec4(localSurfaceNormal, 0.0f));
extraInfo = QVariantMap();
entityID = entity->getEntityItemID();
}
}
}
}
entityNumber++;
});
return entityID;
}
EntityItemPointer EntityTreeElement::getClosestEntity(glm::vec3 position) const {
EntityItemPointer closestEntity = NULL;
float closestEntityDistance = FLT_MAX;
withReadLock([&] {
foreach(EntityItemPointer entity, _entityItems) {
float distanceToEntity = glm::distance2(position, entity->getWorldPosition());
if (distanceToEntity < closestEntityDistance) {
closestEntity = entity;
}
}
});
return closestEntity;
}
// TODO: change this to use better bounding shape for entity than sphere
void EntityTreeElement::getEntities(const glm::vec3& searchPosition, float searchRadius, QVector<EntityItemPointer>& foundEntities) const {
forEachEntity([&](EntityItemPointer entity) {
bool success;
AABox entityBox = entity->getAABox(success);
// if the sphere doesn't intersect with our world frame AABox, we don't need to consider the more complex case
glm::vec3 penetration;
if (!success || entityBox.findSpherePenetration(searchPosition, searchRadius, penetration)) {
glm::vec3 dimensions = entity->getRaycastDimensions();
// FIXME - consider allowing the entity to determine penetration so that
// entities could presumably dull actuall hull testing if they wanted to
// FIXME - handle entity->getShapeType() == SHAPE_TYPE_SPHERE case better in particular
// can we handle the ellipsoid case better? We only currently handle perfect spheres
// with centered registration points
if (entity->getShapeType() == SHAPE_TYPE_SPHERE &&
(dimensions.x == dimensions.y && dimensions.y == dimensions.z)) {
// NOTE: entity->getRadius() doesn't return the true radius, it returns the radius of the
// maximum bounding sphere, which is actually larger than our actual radius
float entityTrueRadius = dimensions.x / 2.0f;
bool success;
if (findSphereSpherePenetration(searchPosition, searchRadius,
entity->getCenterPosition(success), entityTrueRadius, penetration)) {
if (success) {
foundEntities.push_back(entity);
}
}
} else {
// determine the worldToEntityMatrix that doesn't include scale because
// we're going to use the registration aware aa box in the entity frame
glm::mat4 rotation = glm::mat4_cast(entity->getWorldOrientation());
glm::mat4 translation = glm::translate(entity->getWorldPosition());
glm::mat4 entityToWorldMatrix = translation * rotation;
glm::mat4 worldToEntityMatrix = glm::inverse(entityToWorldMatrix);
glm::vec3 registrationPoint = entity->getRegistrationPoint();
glm::vec3 corner = -(dimensions * registrationPoint);
AABox entityFrameBox(corner, dimensions);
glm::vec3 entityFrameSearchPosition = glm::vec3(worldToEntityMatrix * glm::vec4(searchPosition, 1.0f));
if (entityFrameBox.findSpherePenetration(entityFrameSearchPosition, searchRadius, penetration)) {
foundEntities.push_back(entity);
}
}
}
});
}
void EntityTreeElement::getEntities(const AACube& cube, QVector<EntityItemPointer>& foundEntities) {
forEachEntity([&](EntityItemPointer entity) {
bool success;
AABox entityBox = entity->getAABox(success);
// FIXME - handle entity->getShapeType() == SHAPE_TYPE_SPHERE case better
// FIXME - consider allowing the entity to determine penetration so that
// entities could presumably dull actuall hull testing if they wanted to
// FIXME - is there an easy way to translate the search cube into something in the
// entity frame that can be easily tested against?
// simple algorithm is probably:
// if target box is fully inside search box == yes
// if search box is fully inside target box == yes
// for each face of search box:
// translate the triangles of the face into the box frame
// test the triangles of the face against the box?
// if translated search face triangle intersect target box
// add to result
//
// If the entities AABox touches the search cube then consider it to be found
if (!success || entityBox.touches(cube)) {
foundEntities.push_back(entity);
}
});
}
void EntityTreeElement::getEntities(const AABox& box, QVector<EntityItemPointer>& foundEntities) {
forEachEntity([&](EntityItemPointer entity) {
bool success;
AABox entityBox = entity->getAABox(success);
// FIXME - handle entity->getShapeType() == SHAPE_TYPE_SPHERE case better
// FIXME - consider allowing the entity to determine penetration so that
// entities could presumably dull actuall hull testing if they wanted to
// FIXME - is there an easy way to translate the search cube into something in the
// entity frame that can be easily tested against?
// simple algorithm is probably:
// if target box is fully inside search box == yes
// if search box is fully inside target box == yes
// for each face of search box:
// translate the triangles of the face into the box frame
// test the triangles of the face against the box?
// if translated search face triangle intersect target box
// add to result
//
// If the entities AABox touches the search cube then consider it to be found
if (!success || entityBox.touches(box)) {
foundEntities.push_back(entity);
}
});
}
void EntityTreeElement::getEntities(const ViewFrustum& frustum, QVector<EntityItemPointer>& foundEntities) {
forEachEntity([&](EntityItemPointer entity) {
bool success;
AABox entityBox = entity->getAABox(success);
// FIXME - See FIXMEs for similar methods above.
if (!success || frustum.boxIntersectsFrustum(entityBox) || frustum.boxIntersectsKeyhole(entityBox)) {
foundEntities.push_back(entity);
}
});
}
void EntityTreeElement::getEntities(EntityItemFilter& filter, QVector<EntityItemPointer>& foundEntities) {
forEachEntity([&](EntityItemPointer entity) {
if (filter(entity)) {
foundEntities.push_back(entity);
}
});
}
EntityItemPointer EntityTreeElement::getEntityWithEntityItemID(const EntityItemID& id) const {
EntityItemPointer foundEntity = NULL;
withReadLock([&] {
foreach(EntityItemPointer entity, _entityItems) {
if (entity->getEntityItemID() == id) {
foundEntity = entity;
break;
}
}
});
return foundEntity;
}
void EntityTreeElement::cleanupEntities() {
withWriteLock([&] {
foreach(EntityItemPointer entity, _entityItems) {
entity->preDelete();
// NOTE: only EntityTreeElement should ever be changing the value of entity->_element
// NOTE: We explicitly don't delete the EntityItem here because since we only
// access it by smart pointers, when we remove it from the _entityItems
// we know that it will be deleted.
entity->_element = NULL;
}
_entityItems.clear();
});
bumpChangedContent();
}
bool EntityTreeElement::removeEntityItem(EntityItemPointer entity, bool deletion) {
if (deletion) {
entity->preDelete();
}
int numEntries = 0;
withWriteLock([&] {
numEntries = _entityItems.removeAll(entity);
});
if (numEntries > 0) {
// NOTE: only EntityTreeElement should ever be changing the value of entity->_element
assert(entity->_element.get() == this);
entity->_element = NULL;
bumpChangedContent();
return true;
}
return false;
}
int EntityTreeElement::readElementDataFromBuffer(const unsigned char* data, int bytesLeftToRead,
ReadBitstreamToTreeParams& args) {
return _myTree->readEntityDataFromBuffer(data, bytesLeftToRead, args);
}
void EntityTreeElement::addEntityItem(EntityItemPointer entity) {
assert(entity);
assert(entity->_element == nullptr);
withWriteLock([&] {
_entityItems.push_back(entity);
});
bumpChangedContent();
entity->_element = getThisPointer();
}
// will average a "common reduced LOD view" from the the child elements...
void EntityTreeElement::calculateAverageFromChildren() {
// nothing to do here yet...
}
// will detect if children are leaves AND collapsable into the parent node
// and in that case will collapse children and make this node
// a leaf, returns TRUE if all the leaves are collapsed into a
// single node
bool EntityTreeElement::collapseChildren() {
// nothing to do here yet...
return false;
}
bool EntityTreeElement::pruneChildren() {
bool somethingPruned = false;
for (int childIndex = 0; childIndex < NUMBER_OF_CHILDREN; childIndex++) {
EntityTreeElementPointer child = getChildAtIndex(childIndex);
// if my child is a leaf, but has no entities, then it's safe to delete my child
if (child && child->isLeaf() && !child->hasEntities()) {
deleteChildAtIndex(childIndex);
somethingPruned = true;
}
}
return somethingPruned;
}
void EntityTreeElement::expandExtentsToContents(Extents& extents) {
withReadLock([&] {
foreach(EntityItemPointer entity, _entityItems) {
bool success;
AABox aaBox = entity->getAABox(success);
if (success) {
extents.add(aaBox);
}
}
});
}
uint16_t EntityTreeElement::size() const {
uint16_t result = 0;
withReadLock([&] {
result = _entityItems.size();
});
return result;
}
void EntityTreeElement::debugDump() {
qCDebug(entities) << "EntityTreeElement...";
qCDebug(entities) << " cube:" << _cube;
qCDebug(entities) << " has child elements:" << getChildCount();
withReadLock([&] {
if (_entityItems.size()) {
qCDebug(entities) << " has entities:" << _entityItems.size();
qCDebug(entities) << "--------------------------------------------------";
for (uint16_t i = 0; i < _entityItems.size(); i++) {
EntityItemPointer entity = _entityItems[i];
entity->debugDump();
}
qCDebug(entities) << "--------------------------------------------------";
} else {
qCDebug(entities) << " NO entities!";
}
});
}