mirror of
https://github.com/HifiExperiments/overte.git
synced 2025-06-18 11:48:46 +02:00
153 lines
5.4 KiB
C++
153 lines
5.4 KiB
C++
#ifndef STK_TWOPOLE_H
|
|
#define STK_TWOPOLE_H
|
|
|
|
#include "Filter.h"
|
|
|
|
namespace stk {
|
|
|
|
/***************************************************/
|
|
/*! \class TwoPole
|
|
\brief STK two-pole filter class.
|
|
|
|
This class implements a two-pole digital filter. A method is
|
|
provided for creating a resonance in the frequency response while
|
|
maintaining a nearly constant filter gain.
|
|
|
|
by Perry R. Cook and Gary P. Scavone, 1995-2012.
|
|
*/
|
|
/***************************************************/
|
|
|
|
class TwoPole : public Filter
|
|
{
|
|
public:
|
|
|
|
//! Default constructor creates a second-order pass-through filter.
|
|
TwoPole( void );
|
|
|
|
//! Class destructor.
|
|
~TwoPole();
|
|
|
|
//! A function to enable/disable the automatic updating of class data when the STK sample rate changes.
|
|
void ignoreSampleRateChange( bool ignore = true ) { ignoreSampleRateChange_ = ignore; };
|
|
|
|
//! Set the b[0] coefficient value.
|
|
void setB0( StkFloat b0 ) { b_[0] = b0; };
|
|
|
|
//! Set the a[1] coefficient value.
|
|
void setA1( StkFloat a1 ) { a_[1] = a1; };
|
|
|
|
//! Set the a[2] coefficient value.
|
|
void setA2( StkFloat a2 ) { a_[2] = a2; };
|
|
|
|
//! Set all filter coefficients.
|
|
void setCoefficients( StkFloat b0, StkFloat a1, StkFloat a2, bool clearState = false );
|
|
|
|
//! Sets the filter coefficients for a resonance at \e frequency (in Hz).
|
|
/*!
|
|
This method determines the filter coefficients corresponding to
|
|
two complex-conjugate poles with the given \e frequency (in Hz)
|
|
and \e radius from the z-plane origin. If \e normalize is true,
|
|
the coefficients are then normalized to produce unity gain at \e
|
|
frequency (the actual maximum filter gain tends to be slightly
|
|
greater than unity when \e radius is not close to one). The
|
|
resulting filter frequency response has a resonance at the given
|
|
\e frequency. The closer the poles are to the unit-circle (\e
|
|
radius close to one), the narrower the resulting resonance width.
|
|
An unstable filter will result for \e radius >= 1.0. The
|
|
\e frequency value should be between zero and half the sample rate.
|
|
For a better resonance filter, use a BiQuad filter. \sa BiQuad
|
|
filter class
|
|
*/
|
|
void setResonance(StkFloat frequency, StkFloat radius, bool normalize = false);
|
|
|
|
//! Return the last computed output value.
|
|
StkFloat lastOut( void ) const { return lastFrame_[0]; };
|
|
|
|
//! Input one sample to the filter and return one output.
|
|
StkFloat tick( StkFloat input );
|
|
|
|
//! Take a channel of the StkFrames object as inputs to the filter and replace with corresponding outputs.
|
|
/*!
|
|
The StkFrames argument reference is returned. The \c channel
|
|
argument must be less than the number of channels in the
|
|
StkFrames argument (the first channel is specified by 0).
|
|
However, range checking is only performed if _STK_DEBUG_ is
|
|
defined during compilation, in which case an out-of-range value
|
|
will trigger an StkError exception.
|
|
*/
|
|
StkFrames& tick( StkFrames& frames, unsigned int channel = 0 );
|
|
|
|
//! Take a channel of the \c iFrames object as inputs to the filter and write outputs to the \c oFrames object.
|
|
/*!
|
|
The \c iFrames object reference is returned. Each channel
|
|
argument must be less than the number of channels in the
|
|
corresponding StkFrames argument (the first channel is specified
|
|
by 0). However, range checking is only performed if _STK_DEBUG_
|
|
is defined during compilation, in which case an out-of-range value
|
|
will trigger an StkError exception.
|
|
*/
|
|
StkFrames& tick( StkFrames& iFrames, StkFrames &oFrames, unsigned int iChannel = 0, unsigned int oChannel = 0 );
|
|
|
|
protected:
|
|
|
|
virtual void sampleRateChanged( StkFloat newRate, StkFloat oldRate );
|
|
};
|
|
|
|
inline StkFloat TwoPole :: tick( StkFloat input )
|
|
{
|
|
inputs_[0] = gain_ * input;
|
|
lastFrame_[0] = b_[0] * inputs_[0] - a_[1] * outputs_[1] - a_[2] * outputs_[2];
|
|
outputs_[2] = outputs_[1];
|
|
outputs_[1] = lastFrame_[0];
|
|
|
|
return lastFrame_[0];
|
|
}
|
|
|
|
inline StkFrames& TwoPole :: tick( StkFrames& frames, unsigned int channel )
|
|
{
|
|
#if defined(_STK_DEBUG_)
|
|
if ( channel >= frames.channels() ) {
|
|
oStream_ << "TwoPole::tick(): channel and StkFrames arguments are incompatible!";
|
|
handleError( StkError::FUNCTION_ARGUMENT );
|
|
}
|
|
#endif
|
|
|
|
StkFloat *samples = &frames[channel];
|
|
unsigned int hop = frames.channels();
|
|
for ( unsigned int i=0; i<frames.frames(); i++, samples += hop ) {
|
|
inputs_[0] = gain_ * *samples;
|
|
*samples = b_[0] * inputs_[0] - a_[1] * outputs_[1] - a_[2] * outputs_[2];
|
|
outputs_[2] = outputs_[1];
|
|
outputs_[1] = *samples;
|
|
}
|
|
|
|
lastFrame_[0] = outputs_[1];
|
|
return frames;
|
|
}
|
|
|
|
inline StkFrames& TwoPole :: tick( StkFrames& iFrames, StkFrames& oFrames, unsigned int iChannel, unsigned int oChannel )
|
|
{
|
|
#if defined(_STK_DEBUG_)
|
|
if ( iChannel >= iFrames.channels() || oChannel >= oFrames.channels() ) {
|
|
oStream_ << "TwoPole::tick(): channel and StkFrames arguments are incompatible!";
|
|
handleError( StkError::FUNCTION_ARGUMENT );
|
|
}
|
|
#endif
|
|
|
|
StkFloat *iSamples = &iFrames[iChannel];
|
|
StkFloat *oSamples = &oFrames[oChannel];
|
|
unsigned int iHop = iFrames.channels(), oHop = oFrames.channels();
|
|
for ( unsigned int i=0; i<iFrames.frames(); i++, iSamples += iHop, oSamples += oHop ) {
|
|
inputs_[0] = gain_ * *iSamples;
|
|
*oSamples = b_[0] * inputs_[0] - a_[1] * outputs_[1] - a_[2] * outputs_[2];
|
|
outputs_[2] = outputs_[1];
|
|
outputs_[1] = *oSamples;
|
|
}
|
|
|
|
lastFrame_[0] = outputs_[1];
|
|
return iFrames;
|
|
}
|
|
|
|
} // stk namespace
|
|
|
|
#endif
|