// // Created by Bradley Austin Davis on 2015/09/05 // Copyright 2013-2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // // Shader includes portions of webgl-noise: // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // const QString SHADER_COMMON = R"SHADER(#version 410 core layout(location = 0) out vec4 _fragColor0; layout(location = 1) out vec4 _fragColor1; layout(location = 2) out vec4 _fragColor2; // the alpha threshold uniform float alphaThreshold; uniform sampler2D normalFittingMap; vec3 bestFitNormal(vec3 normal) { vec3 absNorm = abs(normal); float maxNAbs = max(absNorm.z, max(absNorm.x, absNorm.y)); vec2 texcoord = (absNorm.z < maxNAbs ? (absNorm.y < maxNAbs ? absNorm.yz : absNorm.xz) : absNorm.xy); texcoord = (texcoord.x < texcoord.y ? texcoord.yx : texcoord.xy); texcoord.y /= texcoord.x; vec3 cN = normal / maxNAbs; float fittingScale = texture(normalFittingMap, texcoord).a; cN *= fittingScale; return (cN * 0.5 + 0.5); } float mod289(float x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } float permute(float x) { return mod289(((x*34.0)+1.0)*x); } vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } float taylorInvSqrt(float r) { return 1.79284291400159 - 0.85373472095314 * r; } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } vec4 grad4(float j, vec4 ip) { const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0); vec4 p, s; p.xyz = floor(fract(vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0; p.w = 1.5 - dot(abs(p.xyz), ones.xyz); s = vec4(lessThan(p, vec4(0.0))); p.xyz = p.xyz + (s.xyz * 2.0 - 1.0) * s.www; return p; } // (sqrt(5) - 1)/4 = F4, used once below #define F4 0.309016994374947451 float snoise(vec4 v) { const vec4 C = vec4(0.138196601125011, // (5 - sqrt(5))/20 G4 0.276393202250021, // 2 * G4 0.414589803375032, // 3 * G4 -0.447213595499958); // -1 + 4 * G4 // First corner vec4 i = floor(v + dot(v, vec4(F4))); vec4 x0 = v - i + dot(i, C.xxxx); // Other corners // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) vec4 i0; vec3 isX = step(x0.yzw, x0.xxx); vec3 isYZ = step(x0.zww, x0.yyz); i0.x = isX.x + isX.y + isX.z; i0.yzw = 1.0 - isX; i0.y += isYZ.x + isYZ.y; i0.zw += 1.0 - isYZ.xy; i0.z += isYZ.z; i0.w += 1.0 - isYZ.z; // i0 now contains the unique values 0,1,2,3 in each channel vec4 i3 = clamp(i0, 0.0, 1.0); vec4 i2 = clamp(i0 - 1.0, 0.0, 1.0); vec4 i1 = clamp(i0 - 2.0, 0.0, 1.0); vec4 x1 = x0 - i1 + C.xxxx; vec4 x2 = x0 - i2 + C.yyyy; vec4 x3 = x0 - i3 + C.zzzz; vec4 x4 = x0 + C.wwww; // Permutations i = mod289(i); float j0 = permute(permute(permute(permute(i.w) + i.z) + i.y) + i.x); vec4 j1 = permute( permute( permute( permute(i.w + vec4(i1.w, i2.w, i3.w, 1.0)) + i.z + vec4(i1.z, i2.z, i3.z, 1.0)) + i.y + vec4(i1.y, i2.y, i3.y, 1.0)) + i.x + vec4(i1.x, i2.x, i3.x, 1.0)); // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope // 7*7*6 = 294, which is close to the ring size 17*17 = 289. vec4 ip = vec4(1.0 / 294.0, 1.0 / 49.0, 1.0 / 7.0, 0.0); vec4 p0 = grad4(j0, ip); vec4 p1 = grad4(j1.x, ip); vec4 p2 = grad4(j1.y, ip); vec4 p3 = grad4(j1.z, ip); vec4 p4 = grad4(j1.w, ip); // Normalise gradients vec4 norm = taylorInvSqrt( vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; p4 *= taylorInvSqrt(dot(p4, p4)); // Mix contributions from the five corners vec3 m0 = max(0.6 - vec3(dot(x0, x0), dot(x1, x1), dot(x2, x2)), 0.0); vec2 m1 = max(0.6 - vec2(dot(x3, x3), dot(x4, x4)), 0.0); m0 = m0 * m0; m1 = m1 * m1; return 49.0 * (dot(m0 * m0, vec3(dot(p0, x0), dot(p1, x1), dot(p2, x2))) + dot(m1 * m1, vec2(dot(p3, x3), dot(p4, x4)))); } float snoise(vec3 v) { const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0); const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy)); vec3 x0 = v - i + dot(i, C.xxx); // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min(g.xyz, l.zxy); vec3 i2 = max(g.xyz, l.zxy); vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute(i.z + vec4(0.0, i1.z, i2.z, 1.0)) + i.y + vec4(0.0, i1.y, i2.y, 1.0)) + i.x + vec4(0.0, i1.x, i2.x, 1.0)); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_); // mod(j,N) vec4 x = x_ * ns.x + ns.yyyy; vec4 y = y_ * ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4(x.xy, y.xy); vec4 b1 = vec4(x.zw, y.zw); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0) * 2.0 + 1.0; vec4 s1 = floor(b1) * 2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy; vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww; vec3 p0 = vec3(a0.xy, h.x); vec3 p1 = vec3(a0.zw, h.y); vec3 p2 = vec3(a1.xy, h.z); vec3 p3 = vec3(a1.zw, h.w); //Normalise gradients vec4 norm = taylorInvSqrt( vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0); m = m * m; return 42.0 * dot(m * m, vec4(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); } float snoise(vec2 v) { const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0 0.366025403784439, // 0.5*(sqrt(3.0)-1.0) -0.577350269189626, // -1.0 + 2.0 * C.x 0.024390243902439); // 1.0 / 41.0 // First corner vec2 i = floor(v + dot(v, C.yy)); vec2 x0 = v - i + dot(i, C.xx); // Other corners vec2 i1; i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); vec4 x12 = x0.xyxy + C.xxzz; x12.xy -= i1; // Permutations i = mod289(i); // Avoid truncation effects in permutation vec3 p = permute( permute(i.y + vec3(0.0, i1.y, 1.0)) + i.x + vec3(0.0, i1.x, 1.0)); vec3 m = max(0.5 - vec3(dot(x0, x0), dot(x12.xy, x12.xy), dot(x12.zw, x12.zw)), 0.0); m = m * m; m = m * m; // Gradients: 41 points uniformly over a line, mapped onto a diamond. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) vec3 x = 2.0 * fract(p * C.www) - 1.0; vec3 h = abs(x) - 0.5; vec3 ox = floor(x + 0.5); vec3 a0 = x - ox; // Normalise gradients implicitly by scaling m // Approximation of: m *= inversesqrt( a0*a0 + h*h ); m *= 1.79284291400159 - 0.85373472095314 * (a0 * a0 + h * h); // Compute final noise value at P vec3 g; g.x = a0.x * x0.x + h.x * x0.y; g.yz = a0.yz * x12.xz + h.yz * x12.yw; return 130.0 * dot(m, g); } // the interpolated normal in vec3 _normal; in vec3 _color; in vec2 _texCoord0; in vec4 _position; // TODO add more uniforms uniform float iGlobalTime; // shader playback time (in seconds) uniform vec3 iWorldScale; // the dimensions of the object being rendered // TODO add support for textures // TODO document available inputs other than the uniforms // TODO provide world scale in addition to the untransformed position const vec3 DEFAULT_SPECULAR = vec3(0.1); const float DEFAULT_SHININESS = 10; )SHADER"; // V1 shaders, only support emissive // vec4 getProceduralColor() const QString SHADER_TEMPLATE_V1 = SHADER_COMMON + R"SCRIBE( #line 1001 %1 #line 317 void main(void) { vec4 emissive = getProceduralColor(); float alpha = emissive.a; if (alpha != 1.0) { discard; } vec4 diffuse = vec4(_color.rgb, alpha); vec4 normal = vec4(normalize(bestFitNormal(_normal)), 0.5); _fragColor0 = diffuse; _fragColor1 = normal; _fragColor2 = vec4(emissive.rgb, DEFAULT_SHININESS / 128.0); } )SCRIBE"; // void getProceduralDiffuseAndEmissive(out vec4 diffuse, out vec4 emissive) const QString SHADER_TEMPLATE_V2 = SHADER_COMMON + R"SCRIBE( // FIXME should we be doing the swizzle here? vec3 iResolution = iWorldScale.xzy; // FIXME Mouse X,Y coordinates, and Z,W are for the click position if clicked (not supported in High Fidelity at the moment) vec4 iMouse = vec4(0); // FIXME We set the seconds (iDate.w) of iDate to iGlobalTime, which contains the current date in seconds vec4 iDate = vec4(0, 0, 0, iGlobalTime); #line 1001 %1 #line 351 void main(void) { vec3 diffuse = _color.rgb; vec3 specular = DEFAULT_SPECULAR; float shininess = DEFAULT_SHININESS; float emissiveAmount = getProceduralColors(diffuse, specular, shininess); _fragColor0 = vec4(diffuse.rgb, 1.0); _fragColor1 = vec4(bestFitNormal(normalize(_normal.xyz)), 1.0 - (emissiveAmount / 2.0)); _fragColor2 = vec4(specular, shininess / 128.0); } )SCRIBE";