// // MetavoxelSystem.cpp // interface/src // // Created by Andrzej Kapolka on 12/10/13. // Copyright 2013 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include // include this before QOpenGLFramebufferObject, which includes an earlier version of OpenGL #include "InterfaceConfig.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Application.h" #include "MetavoxelSystem.h" using namespace std; REGISTER_META_OBJECT(DefaultMetavoxelRendererImplementation) REGISTER_META_OBJECT(SphereRenderer) REGISTER_META_OBJECT(CuboidRenderer) REGISTER_META_OBJECT(StaticModelRenderer) REGISTER_META_OBJECT(HeightfieldRenderer) MetavoxelSystem::NetworkSimulation::NetworkSimulation(float dropRate, float repeatRate, int minimumDelay, int maximumDelay, int bandwidthLimit) : dropRate(dropRate), repeatRate(repeatRate), minimumDelay(minimumDelay), maximumDelay(maximumDelay), bandwidthLimit(bandwidthLimit) { } MetavoxelSystem::~MetavoxelSystem() { // kill the updater before we delete our network simulation objects _updater->thread()->quit(); _updater->thread()->wait(); _updater = NULL; } void MetavoxelSystem::init() { MetavoxelClientManager::init(); _voxelBufferAttribute = AttributeRegistry::getInstance()->registerAttribute( new BufferDataAttribute("voxelBuffer")); _voxelBufferAttribute->setLODThresholdMultiplier( AttributeRegistry::getInstance()->getVoxelColorAttribute()->getLODThresholdMultiplier()); _baseHeightfieldProgram.addShaderFromSourceFile(QGLShader::Vertex, PathUtils::resourcesPath() + "shaders/metavoxel_heightfield_base.vert"); _baseHeightfieldProgram.addShaderFromSourceFile(QGLShader::Fragment, PathUtils::resourcesPath() + "shaders/metavoxel_heightfield_base.frag"); _baseHeightfieldProgram.link(); _baseHeightfieldProgram.bind(); _baseHeightfieldProgram.setUniformValue("heightMap", 0); _baseHeightfieldProgram.setUniformValue("diffuseMap", 1); _baseHeightScaleLocation = _baseHeightfieldProgram.uniformLocation("heightScale"); _baseColorScaleLocation = _baseHeightfieldProgram.uniformLocation("colorScale"); _baseHeightfieldProgram.release(); loadSplatProgram("heightfield", _splatHeightfieldProgram, _splatHeightfieldLocations); _heightfieldCursorProgram.addShaderFromSourceFile(QGLShader::Vertex, PathUtils::resourcesPath() + "shaders/metavoxel_heightfield_cursor.vert"); _heightfieldCursorProgram.addShaderFromSourceFile(QGLShader::Fragment, PathUtils::resourcesPath() + "shaders/metavoxel_cursor.frag"); _heightfieldCursorProgram.link(); _heightfieldCursorProgram.bind(); _heightfieldCursorProgram.setUniformValue("heightMap", 0); _heightfieldCursorProgram.release(); _baseVoxelProgram.addShaderFromSourceFile(QGLShader::Vertex, PathUtils::resourcesPath() + "shaders/metavoxel_voxel_base.vert"); _baseVoxelProgram.addShaderFromSourceFile(QGLShader::Fragment, PathUtils::resourcesPath() + "shaders/metavoxel_voxel_base.frag"); _baseVoxelProgram.link(); loadSplatProgram("voxel", _splatVoxelProgram, _splatVoxelLocations); _voxelCursorProgram.addShaderFromSourceFile(QGLShader::Vertex, PathUtils::resourcesPath() + "shaders/metavoxel_voxel_cursor.vert"); _voxelCursorProgram.addShaderFromSourceFile(QGLShader::Fragment, PathUtils::resourcesPath() + "shaders/metavoxel_cursor.frag"); _voxelCursorProgram.link(); } MetavoxelLOD MetavoxelSystem::getLOD() { QReadLocker locker(&_lodLock); return _lod; } void MetavoxelSystem::setNetworkSimulation(const NetworkSimulation& simulation) { QWriteLocker locker(&_networkSimulationLock); _networkSimulation = simulation; } MetavoxelSystem::NetworkSimulation MetavoxelSystem::getNetworkSimulation() { QReadLocker locker(&_networkSimulationLock); return _networkSimulation; } class SimulateVisitor : public MetavoxelVisitor { public: SimulateVisitor(float deltaTime, const MetavoxelLOD& lod); virtual int visit(MetavoxelInfo& info); private: float _deltaTime; }; SimulateVisitor::SimulateVisitor(float deltaTime, const MetavoxelLOD& lod) : MetavoxelVisitor(QVector() << AttributeRegistry::getInstance()->getRendererAttribute(), QVector(), lod), _deltaTime(deltaTime) { } int SimulateVisitor::visit(MetavoxelInfo& info) { if (!info.isLeaf) { return DEFAULT_ORDER; } static_cast(info.inputValues.at(0).getInlineValue< SharedObjectPointer>().data())->getImplementation()->simulate(*_data, _deltaTime, info, _lod); return STOP_RECURSION; } void MetavoxelSystem::simulate(float deltaTime) { // update the lod { QWriteLocker locker(&_lodLock); const float DEFAULT_LOD_THRESHOLD = 0.01f; _lod = MetavoxelLOD(Application::getInstance()->getCamera()->getPosition(), DEFAULT_LOD_THRESHOLD); } SimulateVisitor simulateVisitor(deltaTime, getLOD()); guideToAugmented(simulateVisitor); } class RenderVisitor : public MetavoxelVisitor { public: RenderVisitor(const MetavoxelLOD& lod); virtual int visit(MetavoxelInfo& info); }; RenderVisitor::RenderVisitor(const MetavoxelLOD& lod) : MetavoxelVisitor(QVector() << AttributeRegistry::getInstance()->getRendererAttribute(), QVector(), lod) { } int RenderVisitor::visit(MetavoxelInfo& info) { if (!info.isLeaf) { return DEFAULT_ORDER; } static_cast(info.inputValues.at(0).getInlineValue< SharedObjectPointer>().data())->getImplementation()->render(*_data, info, _lod); return STOP_RECURSION; } class HeightfieldPoint { public: glm::vec3 vertex; glm::vec2 textureCoord; }; const int SPLAT_COUNT = 4; const GLint SPLAT_TEXTURE_UNITS[] = { 3, 4, 5, 6 }; static const int EIGHT_BIT_MAXIMUM = 255; static const float EIGHT_BIT_MAXIMUM_RECIPROCAL = 1.0f / EIGHT_BIT_MAXIMUM; void MetavoxelSystem::render() { // update the frustum ViewFrustum* viewFrustum = Application::getInstance()->getDisplayViewFrustum(); _frustum.set(viewFrustum->getFarTopLeft(), viewFrustum->getFarTopRight(), viewFrustum->getFarBottomLeft(), viewFrustum->getFarBottomRight(), viewFrustum->getNearTopLeft(), viewFrustum->getNearTopRight(), viewFrustum->getNearBottomLeft(), viewFrustum->getNearBottomRight()); RenderVisitor renderVisitor(getLOD()); guideToAugmented(renderVisitor, true); if (!_heightfieldBaseBatches.isEmpty()) { glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); DependencyManager::get()->setPrimaryDrawBuffers(true, true); glDisable(GL_BLEND); glEnable(GL_CULL_FACE); glEnable(GL_ALPHA_TEST); glAlphaFunc(GL_EQUAL, 0.0f); glColor4f(1.0f, 1.0f, 1.0f, 1.0f); _baseHeightfieldProgram.bind(); foreach (const HeightfieldBaseLayerBatch& batch, _heightfieldBaseBatches) { glPushMatrix(); glTranslatef(batch.translation.x, batch.translation.y, batch.translation.z); glm::vec3 axis = glm::axis(batch.rotation); glRotatef(glm::degrees(glm::angle(batch.rotation)), axis.x, axis.y, axis.z); glScalef(batch.scale.x, batch.scale.y, batch.scale.z); batch.vertexBuffer->bind(); batch.indexBuffer->bind(); HeightfieldPoint* point = 0; glVertexPointer(3, GL_FLOAT, sizeof(HeightfieldPoint), &point->vertex); glTexCoordPointer(2, GL_FLOAT, sizeof(HeightfieldPoint), &point->textureCoord); glBindTexture(GL_TEXTURE_2D, batch.heightTextureID); _baseHeightfieldProgram.setUniform(_baseHeightScaleLocation, batch.heightScale); _baseHeightfieldProgram.setUniform(_baseColorScaleLocation, batch.colorScale); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, batch.colorTextureID); glDrawRangeElements(GL_TRIANGLES, 0, batch.vertexCount - 1, batch.indexCount, GL_UNSIGNED_INT, 0); glBindTexture(GL_TEXTURE_2D, 0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, 0); batch.vertexBuffer->release(); batch.indexBuffer->release(); glPopMatrix(); } DependencyManager::get()->setPrimaryDrawBuffers(true, false); _baseHeightfieldProgram.release(); glDisable(GL_ALPHA_TEST); glEnable(GL_BLEND); if (!_heightfieldSplatBatches.isEmpty()) { glDepthFunc(GL_LEQUAL); glDepthMask(false); glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(-1.0f, -1.0f); _splatHeightfieldProgram.bind(); foreach (const HeightfieldSplatBatch& batch, _heightfieldSplatBatches) { glPushMatrix(); glTranslatef(batch.translation.x, batch.translation.y, batch.translation.z); glm::vec3 axis = glm::axis(batch.rotation); glRotatef(glm::degrees(glm::angle(batch.rotation)), axis.x, axis.y, axis.z); glScalef(batch.scale.x, batch.scale.y, batch.scale.z); batch.vertexBuffer->bind(); batch.indexBuffer->bind(); HeightfieldPoint* point = 0; glVertexPointer(3, GL_FLOAT, sizeof(HeightfieldPoint), &point->vertex); glTexCoordPointer(2, GL_FLOAT, sizeof(HeightfieldPoint), &point->textureCoord); glBindTexture(GL_TEXTURE_2D, batch.heightTextureID); _splatHeightfieldProgram.setUniformValue(_splatHeightfieldLocations.heightScale, batch.heightScale.x, batch.heightScale.y); _splatHeightfieldProgram.setUniform(_splatHeightfieldLocations.textureScale, batch.textureScale); _splatHeightfieldProgram.setUniform(_splatHeightfieldLocations.splatTextureOffset, batch.splatTextureOffset); const float QUARTER_STEP = 0.25f * EIGHT_BIT_MAXIMUM_RECIPROCAL; _splatHeightfieldProgram.setUniform(_splatHeightfieldLocations.splatTextureScalesS, batch.splatTextureScalesS); _splatHeightfieldProgram.setUniform(_splatHeightfieldLocations.splatTextureScalesT, batch.splatTextureScalesT); _splatHeightfieldProgram.setUniformValue( _splatHeightfieldLocations.textureValueMinima, (batch.materialIndex + 1) * EIGHT_BIT_MAXIMUM_RECIPROCAL - QUARTER_STEP, (batch.materialIndex + 2) * EIGHT_BIT_MAXIMUM_RECIPROCAL - QUARTER_STEP, (batch.materialIndex + 3) * EIGHT_BIT_MAXIMUM_RECIPROCAL - QUARTER_STEP, (batch.materialIndex + 4) * EIGHT_BIT_MAXIMUM_RECIPROCAL - QUARTER_STEP); _splatHeightfieldProgram.setUniformValue( _splatHeightfieldLocations.textureValueMaxima, (batch.materialIndex + 1) * EIGHT_BIT_MAXIMUM_RECIPROCAL + QUARTER_STEP, (batch.materialIndex + 2) * EIGHT_BIT_MAXIMUM_RECIPROCAL + QUARTER_STEP, (batch.materialIndex + 3) * EIGHT_BIT_MAXIMUM_RECIPROCAL + QUARTER_STEP, (batch.materialIndex + 4) * EIGHT_BIT_MAXIMUM_RECIPROCAL + QUARTER_STEP); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, batch.materialTextureID); for (int i = 0; i < SPLAT_COUNT; i++) { glActiveTexture(GL_TEXTURE0 + SPLAT_TEXTURE_UNITS[i]); glBindTexture(GL_TEXTURE_2D, batch.splatTextureIDs[i]); } glDrawRangeElements(GL_TRIANGLES, 0, batch.vertexCount - 1, batch.indexCount, GL_UNSIGNED_INT, 0); for (int i = 0; i < SPLAT_COUNT; i++) { glActiveTexture(GL_TEXTURE0 + SPLAT_TEXTURE_UNITS[i]); glBindTexture(GL_TEXTURE_2D, 0); } glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, 0); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, 0); batch.vertexBuffer->release(); batch.indexBuffer->release(); glPopMatrix(); } _splatHeightfieldProgram.release(); glDisable(GL_POLYGON_OFFSET_FILL); glDepthMask(true); glDepthFunc(GL_LESS); _heightfieldSplatBatches.clear(); } glDisable(GL_CULL_FACE); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); _heightfieldBaseBatches.clear(); } if (!_voxelBaseBatches.isEmpty()) { DependencyManager::get()->setPrimaryDrawBuffers(true, true); glEnableClientState(GL_VERTEX_ARRAY); glDisable(GL_BLEND); glEnable(GL_CULL_FACE); glEnable(GL_ALPHA_TEST); glAlphaFunc(GL_EQUAL, 0.0f); glColor4f(1.0f, 1.0f, 1.0f, 1.0f); glEnableClientState(GL_COLOR_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); _baseVoxelProgram.bind(); foreach (const MetavoxelBatch& batch, _voxelBaseBatches) { glPushMatrix(); glTranslatef(batch.translation.x, batch.translation.y, batch.translation.z); glm::vec3 axis = glm::axis(batch.rotation); glRotatef(glm::degrees(glm::angle(batch.rotation)), axis.x, axis.y, axis.z); glScalef(batch.scale.x, batch.scale.y, batch.scale.z); batch.vertexBuffer->bind(); batch.indexBuffer->bind(); VoxelPoint* point = 0; glVertexPointer(3, GL_FLOAT, sizeof(VoxelPoint), &point->vertex); glColorPointer(3, GL_UNSIGNED_BYTE, sizeof(VoxelPoint), &point->color); glNormalPointer(GL_BYTE, sizeof(VoxelPoint), &point->normal); glDrawRangeElements(GL_QUADS, 0, batch.vertexCount - 1, batch.indexCount, GL_UNSIGNED_INT, 0); batch.vertexBuffer->release(); batch.indexBuffer->release(); glPopMatrix(); } _baseVoxelProgram.release(); glDisable(GL_ALPHA_TEST); glEnable(GL_BLEND); DependencyManager::get()->setPrimaryDrawBuffers(true, false); if (!_voxelSplatBatches.isEmpty()) { glDepthFunc(GL_LEQUAL); glDepthMask(false); glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(-1.0f, -1.0f); _splatVoxelProgram.bind(); _splatVoxelProgram.enableAttributeArray(_splatVoxelLocations.materials); _splatVoxelProgram.enableAttributeArray(_splatVoxelLocations.materialWeights); foreach (const VoxelSplatBatch& batch, _voxelSplatBatches) { glPushMatrix(); glTranslatef(batch.translation.x, batch.translation.y, batch.translation.z); glm::vec3 axis = glm::axis(batch.rotation); glRotatef(glm::degrees(glm::angle(batch.rotation)), axis.x, axis.y, axis.z); glScalef(batch.scale.x, batch.scale.y, batch.scale.z); batch.vertexBuffer->bind(); batch.indexBuffer->bind(); VoxelPoint* point = 0; glVertexPointer(3, GL_FLOAT, sizeof(VoxelPoint), &point->vertex); glColorPointer(3, GL_UNSIGNED_BYTE, sizeof(VoxelPoint), &point->color); glNormalPointer(GL_BYTE, sizeof(VoxelPoint), &point->normal); _splatVoxelProgram.setAttributeBuffer(_splatVoxelLocations.materials, GL_UNSIGNED_BYTE, (qint64)&point->materials, SPLAT_COUNT, sizeof(VoxelPoint)); _splatVoxelProgram.setAttributeBuffer(_splatVoxelLocations.materialWeights, GL_UNSIGNED_BYTE, (qint64)&point->materialWeights, SPLAT_COUNT, sizeof(VoxelPoint)); const float QUARTER_STEP = 0.25f * EIGHT_BIT_MAXIMUM_RECIPROCAL; _splatVoxelProgram.setUniform(_splatVoxelLocations.splatTextureOffset, batch.splatTextureOffset); _splatVoxelProgram.setUniform(_splatVoxelLocations.splatTextureScalesS, batch.splatTextureScalesS); _splatVoxelProgram.setUniform(_splatVoxelLocations.splatTextureScalesT, batch.splatTextureScalesT); _splatVoxelProgram.setUniformValue( _splatVoxelLocations.textureValueMinima, (batch.materialIndex + 1) * EIGHT_BIT_MAXIMUM_RECIPROCAL - QUARTER_STEP, (batch.materialIndex + 2) * EIGHT_BIT_MAXIMUM_RECIPROCAL - QUARTER_STEP, (batch.materialIndex + 3) * EIGHT_BIT_MAXIMUM_RECIPROCAL - QUARTER_STEP, (batch.materialIndex + 4) * EIGHT_BIT_MAXIMUM_RECIPROCAL - QUARTER_STEP); _splatVoxelProgram.setUniformValue( _splatVoxelLocations.textureValueMaxima, (batch.materialIndex + 1) * EIGHT_BIT_MAXIMUM_RECIPROCAL + QUARTER_STEP, (batch.materialIndex + 2) * EIGHT_BIT_MAXIMUM_RECIPROCAL + QUARTER_STEP, (batch.materialIndex + 3) * EIGHT_BIT_MAXIMUM_RECIPROCAL + QUARTER_STEP, (batch.materialIndex + 4) * EIGHT_BIT_MAXIMUM_RECIPROCAL + QUARTER_STEP); for (int i = 0; i < SPLAT_COUNT; i++) { glActiveTexture(GL_TEXTURE0 + SPLAT_TEXTURE_UNITS[i]); glBindTexture(GL_TEXTURE_2D, batch.splatTextureIDs[i]); } glDrawRangeElements(GL_QUADS, 0, batch.vertexCount - 1, batch.indexCount, GL_UNSIGNED_INT, 0); for (int i = 0; i < SPLAT_COUNT; i++) { glActiveTexture(GL_TEXTURE0 + SPLAT_TEXTURE_UNITS[i]); glBindTexture(GL_TEXTURE_2D, 0); } glActiveTexture(GL_TEXTURE0); batch.vertexBuffer->release(); batch.indexBuffer->release(); glPopMatrix(); } glDisable(GL_POLYGON_OFFSET_FILL); glDepthMask(true); glDepthFunc(GL_LESS); _splatVoxelProgram.disableAttributeArray(_splatVoxelLocations.materials); _splatVoxelProgram.disableAttributeArray(_splatVoxelLocations.materialWeights); _voxelSplatBatches.clear(); } glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisable(GL_CULL_FACE); _voxelBaseBatches.clear(); } if (!_hermiteBatches.isEmpty() && Menu::getInstance()->isOptionChecked(MenuOption::DisplayHermiteData)) { DependencyManager::get()->setPrimaryDrawBuffers(true, true); glEnableClientState(GL_VERTEX_ARRAY); glColor4f(1.0f, 1.0f, 1.0f, 1.0f); glNormal3f(0.0f, 1.0f, 0.0f); DependencyManager::get()->bindSimpleProgram(); foreach (const HermiteBatch& batch, _hermiteBatches) { glPushMatrix(); glTranslatef(batch.translation.x, batch.translation.y, batch.translation.z); glm::vec3 axis = glm::axis(batch.rotation); glRotatef(glm::degrees(glm::angle(batch.rotation)), axis.x, axis.y, axis.z); glScalef(batch.scale.x, batch.scale.y, batch.scale.z); batch.vertexBuffer->bind(); glVertexPointer(3, GL_FLOAT, 0, 0); glDrawArrays(GL_LINES, 0, batch.vertexCount); batch.vertexBuffer->release(); glPopMatrix(); } DependencyManager::get()->releaseSimpleProgram(); glDisableClientState(GL_VERTEX_ARRAY); DependencyManager::get()->setPrimaryDrawBuffers(true, false); } _hermiteBatches.clear(); // give external parties a chance to join in emit rendering(); } void MetavoxelSystem::refreshVoxelData() { NodeList::getInstance()->eachNode([](const SharedNodePointer& node){ if (node->getType() == NodeType::MetavoxelServer) { QMutexLocker locker(&node->getMutex()); MetavoxelSystemClient* client = static_cast(node->getLinkedData()); if (client) { QMetaObject::invokeMethod(client, "refreshVoxelData"); } } }); } class RayVoxelIntersectionVisitor : public RayIntersectionVisitor { public: float intersectionDistance; RayVoxelIntersectionVisitor(const glm::vec3& origin, const glm::vec3& direction, const MetavoxelLOD& lod); virtual int visit(MetavoxelInfo& info, float distance); }; RayVoxelIntersectionVisitor::RayVoxelIntersectionVisitor(const glm::vec3& origin, const glm::vec3& direction, const MetavoxelLOD& lod) : RayIntersectionVisitor(origin, direction, QVector() << Application::getInstance()->getMetavoxels()->getVoxelBufferAttribute(), QVector(), lod), intersectionDistance(FLT_MAX) { } int RayVoxelIntersectionVisitor::visit(MetavoxelInfo& info, float distance) { if (!info.isLeaf) { return _order; } const VoxelBuffer* buffer = static_cast( info.inputValues.at(0).getInlineValue().data()); if (!buffer) { return STOP_RECURSION; } glm::vec3 entry = ((_origin + distance * _direction) - info.minimum) / info.size; if (buffer->findFirstRayIntersection(entry, _origin, _direction, intersectionDistance)) { return SHORT_CIRCUIT; } return STOP_RECURSION; } bool MetavoxelSystem::findFirstRayVoxelIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance) { RayVoxelIntersectionVisitor visitor(origin, direction, getLOD()); guideToAugmented(visitor); if (visitor.intersectionDistance == FLT_MAX) { return false; } distance = visitor.intersectionDistance; return true; } void MetavoxelSystem::paintHeightfieldColor(const glm::vec3& position, float radius, const QColor& color) { MetavoxelEditMessage edit = { QVariant::fromValue(PaintHeightfieldMaterialEdit(position, radius, SharedObjectPointer(), color)) }; applyEdit(edit, true); } void MetavoxelSystem::paintHeightfieldMaterial(const glm::vec3& position, float radius, const SharedObjectPointer& material) { MetavoxelEditMessage edit = { QVariant::fromValue(PaintHeightfieldMaterialEdit(position, radius, material)) }; applyMaterialEdit(edit, true); } void MetavoxelSystem::setHeightfieldColor(const SharedObjectPointer& spanner, const QColor& color) { MetavoxelEditMessage edit = { QVariant::fromValue(HeightfieldMaterialSpannerEdit(spanner, SharedObjectPointer(), color)) }; applyEdit(edit, true); } void MetavoxelSystem::setHeightfieldMaterial(const SharedObjectPointer& spanner, const SharedObjectPointer& material) { MetavoxelEditMessage edit = { QVariant::fromValue(HeightfieldMaterialSpannerEdit(spanner, material)) }; applyMaterialEdit(edit, true); } void MetavoxelSystem::deleteTextures(int heightTextureID, int colorTextureID, int materialTextureID) const { glDeleteTextures(1, (const GLuint*)&heightTextureID); glDeleteTextures(1, (const GLuint*)&colorTextureID); glDeleteTextures(1, (const GLuint*)&materialTextureID); } class SpannerRenderVisitor : public SpannerVisitor { public: SpannerRenderVisitor(const MetavoxelLOD& lod); virtual int visit(MetavoxelInfo& info); virtual bool visit(Spanner* spanner); protected: int _containmentDepth; }; SpannerRenderVisitor::SpannerRenderVisitor(const MetavoxelLOD& lod) : SpannerVisitor(QVector() << AttributeRegistry::getInstance()->getSpannersAttribute(), QVector(), QVector(), lod, encodeOrder(Application::getInstance()->getViewFrustum()->getDirection())), _containmentDepth(INT_MAX) { } int SpannerRenderVisitor::visit(MetavoxelInfo& info) { if (_containmentDepth >= _depth) { Frustum::IntersectionType intersection = Application::getInstance()->getMetavoxels()->getFrustum().getIntersectionType( info.getBounds()); if (intersection == Frustum::NO_INTERSECTION) { return STOP_RECURSION; } _containmentDepth = (intersection == Frustum::CONTAINS_INTERSECTION) ? _depth : INT_MAX; } return SpannerVisitor::visit(info); } bool SpannerRenderVisitor::visit(Spanner* spanner) { spanner->getRenderer()->render(_lod, _containmentDepth <= _depth); return true; } class SpannerCursorRenderVisitor : public SpannerRenderVisitor { public: SpannerCursorRenderVisitor(const MetavoxelLOD& lod, const Box& bounds); virtual bool visit(Spanner* spanner); virtual int visit(MetavoxelInfo& info); private: Box _bounds; }; SpannerCursorRenderVisitor::SpannerCursorRenderVisitor(const MetavoxelLOD& lod, const Box& bounds) : SpannerRenderVisitor(lod), _bounds(bounds) { } bool SpannerCursorRenderVisitor::visit(Spanner* spanner) { if (spanner->isHeightfield()) { spanner->getRenderer()->render(_lod, _containmentDepth <= _depth, true); } return true; } int SpannerCursorRenderVisitor::visit(MetavoxelInfo& info) { return info.getBounds().intersects(_bounds) ? SpannerRenderVisitor::visit(info) : STOP_RECURSION; } void MetavoxelSystem::renderHeightfieldCursor(const glm::vec3& position, float radius) { glDepthFunc(GL_LEQUAL); glEnable(GL_CULL_FACE); glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(-1.0f, -1.0f); glColor4f(1.0f, 1.0f, 1.0f, 1.0f); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_TEXTURE_COORD_ARRAY); _heightfieldCursorProgram.bind(); glActiveTexture(GL_TEXTURE4); float scale = 1.0f / radius; glm::vec4 sCoefficients(scale, 0.0f, 0.0f, -scale * position.x); glm::vec4 tCoefficients(0.0f, 0.0f, scale, -scale * position.z); glm::vec4 rCoefficients(0.0f, 0.0f, 0.0f, 0.0f); glTexGenfv(GL_S, GL_EYE_PLANE, (const GLfloat*)&sCoefficients); glTexGenfv(GL_T, GL_EYE_PLANE, (const GLfloat*)&tCoefficients); glTexGenfv(GL_R, GL_EYE_PLANE, (const GLfloat*)&rCoefficients); glActiveTexture(GL_TEXTURE0); glm::vec3 extents(radius, radius, radius); SpannerCursorRenderVisitor visitor(getLOD(), Box(position - extents, position + extents)); guide(visitor); _heightfieldCursorProgram.release(); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); glDisable(GL_POLYGON_OFFSET_FILL); glDisable(GL_CULL_FACE); glDepthFunc(GL_LESS); } class BufferCursorRenderVisitor : public MetavoxelVisitor { public: BufferCursorRenderVisitor(const AttributePointer& attribute, const Box& bounds); virtual int visit(MetavoxelInfo& info); private: Box _bounds; }; BufferCursorRenderVisitor::BufferCursorRenderVisitor(const AttributePointer& attribute, const Box& bounds) : MetavoxelVisitor(QVector() << attribute), _bounds(bounds) { } int BufferCursorRenderVisitor::visit(MetavoxelInfo& info) { if (!info.getBounds().intersects(_bounds)) { return STOP_RECURSION; } BufferData* buffer = info.inputValues.at(0).getInlineValue().data(); if (buffer) { buffer->render(glm::vec3(), glm::quat(), glm::vec3(1.0f, 1.0f, 1.0f), true); } return info.isLeaf ? STOP_RECURSION : DEFAULT_ORDER; } void MetavoxelSystem::renderVoxelCursor(const glm::vec3& position, float radius) { glDepthFunc(GL_LEQUAL); glEnable(GL_CULL_FACE); glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(-1.0f, -1.0f); glColor4f(1.0f, 1.0f, 1.0f, 1.0f); glEnableClientState(GL_VERTEX_ARRAY); _voxelCursorProgram.bind(); glActiveTexture(GL_TEXTURE4); float scale = 1.0f / radius; glm::vec4 sCoefficients(scale, 0.0f, 0.0f, -scale * position.x); glm::vec4 tCoefficients(0.0f, scale, 0.0f, -scale * position.y); glm::vec4 rCoefficients(0.0f, 0.0f, scale, -scale * position.z); glTexGenfv(GL_S, GL_EYE_PLANE, (const GLfloat*)&sCoefficients); glTexGenfv(GL_T, GL_EYE_PLANE, (const GLfloat*)&tCoefficients); glTexGenfv(GL_R, GL_EYE_PLANE, (const GLfloat*)&rCoefficients); glActiveTexture(GL_TEXTURE0); glm::vec3 extents(radius, radius, radius); Box bounds(position - extents, position + extents); BufferCursorRenderVisitor voxelVisitor(Application::getInstance()->getMetavoxels()->getVoxelBufferAttribute(), bounds); guideToAugmented(voxelVisitor); _voxelCursorProgram.release(); glEnableClientState(GL_TEXTURE_COORD_ARRAY); _heightfieldCursorProgram.bind(); SpannerCursorRenderVisitor spannerVisitor(getLOD(), bounds); guide(spannerVisitor); _heightfieldCursorProgram.release(); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisableClientState(GL_VERTEX_ARRAY); glDisable(GL_POLYGON_OFFSET_FILL); glDisable(GL_CULL_FACE); glDepthFunc(GL_LESS); } class MaterialEditApplier : public SignalHandler { public: MaterialEditApplier(const MetavoxelEditMessage& message, const QSharedPointer texture); virtual void handle(); protected: MetavoxelEditMessage _message; QSharedPointer _texture; }; MaterialEditApplier::MaterialEditApplier(const MetavoxelEditMessage& message, const QSharedPointer texture) : _message(message), _texture(texture) { } void MaterialEditApplier::handle() { static_cast(_message.edit.data())->averageColor = _texture->getAverageColor(); Application::getInstance()->getMetavoxels()->applyEdit(_message, true); deleteLater(); } void MetavoxelSystem::applyMaterialEdit(const MetavoxelEditMessage& message, bool reliable) { const MaterialEdit* edit = static_cast(message.edit.constData()); MaterialObject* material = static_cast(edit->material.data()); if (material && material->getDiffuse().isValid()) { if (QThread::currentThread() != thread()) { QMetaObject::invokeMethod(this, "applyMaterialEdit", Q_ARG(const MetavoxelEditMessage&, message), Q_ARG(bool, reliable)); return; } QSharedPointer texture = DependencyManager::get()->getTexture( material->getDiffuse(), SPLAT_TEXTURE); if (texture->isLoaded()) { MetavoxelEditMessage newMessage = message; static_cast(newMessage.edit.data())->averageColor = texture->getAverageColor(); applyEdit(newMessage, true); } else { MaterialEditApplier* applier = new MaterialEditApplier(message, texture); connect(texture.data(), &Resource::loaded, applier, &SignalHandler::handle); } } else { applyEdit(message, true); } } MetavoxelClient* MetavoxelSystem::createClient(const SharedNodePointer& node) { return new MetavoxelSystemClient(node, _updater); } void MetavoxelSystem::guideToAugmented(MetavoxelVisitor& visitor, bool render) { NodeList::getInstance()->eachNode([&visitor, &render](const SharedNodePointer& node){ if (node->getType() == NodeType::MetavoxelServer) { QMutexLocker locker(&node->getMutex()); MetavoxelSystemClient* client = static_cast(node->getLinkedData()); if (client) { MetavoxelData data = client->getAugmentedData(); data.guide(visitor); if (render) { // save the rendered augmented data so that its cached texture references, etc., don't // get collected when we replace it with more recent versions client->setRenderedAugmentedData(data); } } } }); } void MetavoxelSystem::loadSplatProgram(const char* type, ProgramObject& program, SplatLocations& locations) { program.addShaderFromSourceFile(QGLShader::Vertex, PathUtils::resourcesPath() + "shaders/metavoxel_" + type + "_splat.vert"); program.addShaderFromSourceFile(QGLShader::Fragment, PathUtils::resourcesPath() + "shaders/metavoxel_" + type + "_splat.frag"); program.link(); program.bind(); program.setUniformValue("heightMap", 0); program.setUniformValue("textureMap", 1); program.setUniformValueArray("diffuseMaps", SPLAT_TEXTURE_UNITS, SPLAT_COUNT); locations.heightScale = program.uniformLocation("heightScale"); locations.textureScale = program.uniformLocation("textureScale"); locations.splatTextureOffset = program.uniformLocation("splatTextureOffset"); locations.splatTextureScalesS = program.uniformLocation("splatTextureScalesS"); locations.splatTextureScalesT = program.uniformLocation("splatTextureScalesT"); locations.textureValueMinima = program.uniformLocation("textureValueMinima"); locations.textureValueMaxima = program.uniformLocation("textureValueMaxima"); locations.materials = program.attributeLocation("materials"); locations.materialWeights = program.attributeLocation("materialWeights"); program.release(); } Throttle::Throttle() : _limit(INT_MAX), _total(0) { } bool Throttle::shouldThrottle(int bytes) { // clear expired buckets qint64 now = QDateTime::currentMSecsSinceEpoch(); while (!_buckets.isEmpty() && now >= _buckets.first().first) { _total -= _buckets.takeFirst().second; } // if possible, add the new bucket if (_total + bytes > _limit) { return true; } const int BUCKET_DURATION = 1000; _buckets.append(Bucket(now + BUCKET_DURATION, bytes)); _total += bytes; return false; } MetavoxelSystemClient::MetavoxelSystemClient(const SharedNodePointer& node, MetavoxelUpdater* updater) : MetavoxelClient(node, updater) { } void MetavoxelSystemClient::setAugmentedData(const MetavoxelData& data) { QWriteLocker locker(&_augmentedDataLock); _augmentedData = data; } MetavoxelData MetavoxelSystemClient::getAugmentedData() { QReadLocker locker(&_augmentedDataLock); return _augmentedData; } class ReceiveDelayer : public QObject { public: ReceiveDelayer(const SharedNodePointer& node, const QByteArray& packet); protected: virtual void timerEvent(QTimerEvent* event); private: SharedNodePointer _node; QByteArray _packet; }; ReceiveDelayer::ReceiveDelayer(const SharedNodePointer& node, const QByteArray& packet) : _node(node), _packet(packet) { } void ReceiveDelayer::timerEvent(QTimerEvent* event) { QMutexLocker locker(&_node->getMutex()); MetavoxelClient* client = static_cast(_node->getLinkedData()); if (client) { QMetaObject::invokeMethod(&client->getSequencer(), "receivedDatagram", Q_ARG(const QByteArray&, _packet)); } deleteLater(); } int MetavoxelSystemClient::parseData(const QByteArray& packet) { // process through sequencer MetavoxelSystem::NetworkSimulation simulation = Application::getInstance()->getMetavoxels()->getNetworkSimulation(); if (randFloat() < simulation.dropRate) { return packet.size(); } int count = (randFloat() < simulation.repeatRate) ? 2 : 1; for (int i = 0; i < count; i++) { if (simulation.bandwidthLimit > 0) { _receiveThrottle.setLimit(simulation.bandwidthLimit); if (_receiveThrottle.shouldThrottle(packet.size())) { continue; } } int delay = randIntInRange(simulation.minimumDelay, simulation.maximumDelay); if (delay > 0) { ReceiveDelayer* delayer = new ReceiveDelayer(_node, packet); delayer->startTimer(delay); } else { QMetaObject::invokeMethod(&_sequencer, "receivedDatagram", Q_ARG(const QByteArray&, packet)); } Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::METAVOXELS).updateValue(packet.size()); } return packet.size(); } class AugmentVisitor : public MetavoxelVisitor { public: AugmentVisitor(const MetavoxelLOD& lod, const MetavoxelData& previousData); virtual int visit(MetavoxelInfo& info); private: const MetavoxelData& _previousData; }; AugmentVisitor::AugmentVisitor(const MetavoxelLOD& lod, const MetavoxelData& previousData) : MetavoxelVisitor(QVector() << AttributeRegistry::getInstance()->getRendererAttribute(), QVector(), lod), _previousData(previousData) { } int AugmentVisitor::visit(MetavoxelInfo& info) { if (!info.isLeaf) { return DEFAULT_ORDER; } static_cast(info.inputValues.at(0).getInlineValue< SharedObjectPointer>().data())->getImplementation()->augment(*_data, _previousData, info, _lod); return STOP_RECURSION; } class Augmenter : public QRunnable { public: Augmenter(const SharedNodePointer& node, const MetavoxelData& data, const MetavoxelData& previousData, const MetavoxelLOD& lod); virtual void run(); private: QWeakPointer _node; MetavoxelData _data; MetavoxelData _previousData; MetavoxelLOD _lod; }; Augmenter::Augmenter(const SharedNodePointer& node, const MetavoxelData& data, const MetavoxelData& previousData, const MetavoxelLOD& lod) : _node(node), _data(data), _previousData(previousData), _lod(lod) { } void Augmenter::run() { SharedNodePointer node = _node; if (!node) { return; } AugmentVisitor visitor(_lod, _previousData); _data.guide(visitor); QMutexLocker locker(&node->getMutex()); QMetaObject::invokeMethod(node->getLinkedData(), "setAugmentedData", Q_ARG(const MetavoxelData&, _data)); } void MetavoxelSystemClient::refreshVoxelData() { // make it look as if all the colors have changed MetavoxelData oldData = getAugmentedData(); oldData.touch(AttributeRegistry::getInstance()->getVoxelColorAttribute()); QThreadPool::globalInstance()->start(new Augmenter(_node, _data, oldData, _remoteDataLOD)); } void MetavoxelSystemClient::dataChanged(const MetavoxelData& oldData) { MetavoxelClient::dataChanged(oldData); QThreadPool::globalInstance()->start(new Augmenter(_node, _data, getAugmentedData(), _remoteDataLOD)); } class SendDelayer : public QObject { public: SendDelayer(const SharedNodePointer& node, const QByteArray& data); virtual void timerEvent(QTimerEvent* event); private: SharedNodePointer _node; QByteArray _data; }; SendDelayer::SendDelayer(const SharedNodePointer& node, const QByteArray& data) : _node(node), _data(data.constData(), data.size()) { } void SendDelayer::timerEvent(QTimerEvent* event) { NodeList::getInstance()->writeDatagram(_data, _node); deleteLater(); } void MetavoxelSystemClient::sendDatagram(const QByteArray& data) { MetavoxelSystem::NetworkSimulation simulation = Application::getInstance()->getMetavoxels()->getNetworkSimulation(); if (randFloat() < simulation.dropRate) { return; } int count = (randFloat() < simulation.repeatRate) ? 2 : 1; for (int i = 0; i < count; i++) { if (simulation.bandwidthLimit > 0) { _sendThrottle.setLimit(simulation.bandwidthLimit); if (_sendThrottle.shouldThrottle(data.size())) { continue; } } int delay = randIntInRange(simulation.minimumDelay, simulation.maximumDelay); if (delay > 0) { SendDelayer* delayer = new SendDelayer(_node, data); delayer->startTimer(delay); } else { NodeList::getInstance()->writeDatagram(data, _node); } Application::getInstance()->getBandwidthMeter()->outputStream(BandwidthMeter::METAVOXELS).updateValue(data.size()); } } BufferData::~BufferData() { } void VoxelPoint::setNormal(const glm::vec3& normal) { this->normal[0] = (char)(normal.x * 127.0f); this->normal[1] = (char)(normal.y * 127.0f); this->normal[2] = (char)(normal.z * 127.0f); } VoxelBuffer::VoxelBuffer(const QVector& vertices, const QVector& indices, const QVector& hermite, const QMultiHash& quadIndices, int size, const QVector& materials) : _vertices(vertices), _indices(indices), _hermite(hermite), _hermiteEnabled(Menu::getInstance()->isOptionChecked(MenuOption::DisplayHermiteData)), _quadIndices(quadIndices), _size(size), _vertexCount(vertices.size()), _indexCount(indices.size()), _hermiteCount(hermite.size()), _indexBuffer(QOpenGLBuffer::IndexBuffer), _materials(materials) { } bool VoxelBuffer::findFirstRayIntersection(const glm::vec3& entry, const glm::vec3& origin, const glm::vec3& direction, float& distance) const { float highest = _size - 1.0f; glm::vec3 position = entry * highest; glm::vec3 floors = glm::floor(position); int max = _size - 2; int x = qMin((int)floors.x, max), y = qMin((int)floors.y, max), z = qMin((int)floors.z, max); forever { for (QMultiHash::const_iterator it = _quadIndices.constFind(qRgb(x + 1, y + 1, z + 1)); it != _quadIndices.constEnd(); it++) { const int* indices = _indices.constData() + *it; if (findRayTriangleIntersection(origin, direction, _vertices.at(indices[0]).vertex, _vertices.at(indices[1]).vertex, _vertices.at(indices[2]).vertex, distance) || findRayTriangleIntersection(origin, direction, _vertices.at(indices[0]).vertex, _vertices.at(indices[2]).vertex, _vertices.at(indices[3]).vertex, distance)) { return true; } } float xDistance = FLT_MAX, yDistance = FLT_MAX, zDistance = FLT_MAX; if (direction.x > 0.0f) { xDistance = (x + 1.0f - position.x) / direction.x; } else if (direction.x < 0.0f) { xDistance = (x - position.x) / direction.x; } if (direction.y > 0.0f) { yDistance = (y + 1.0f - position.y) / direction.y; } else if (direction.y < 0.0f) { yDistance = (y - position.y) / direction.y; } if (direction.z > 0.0f) { zDistance = (z + 1.0f - position.z) / direction.z; } else if (direction.z < 0.0f) { zDistance = (z - position.z) / direction.z; } float minimumDistance = qMin(xDistance, qMin(yDistance, zDistance)); if (minimumDistance == xDistance) { if (direction.x > 0.0f) { if (x++ == max) { return false; } } else if (x-- == 0) { return false; } } if (minimumDistance == yDistance) { if (direction.y > 0.0f) { if (y++ == max) { return false; } } else if (y-- == 0) { return false; } } if (minimumDistance == zDistance) { if (direction.z > 0.0f) { if (z++ == max) { return false; } } else if (z-- == 0) { return false; } } position += direction * minimumDistance; } return false; } void VoxelBuffer::render(const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale, bool cursor) { if (!_vertexBuffer.isCreated()) { _vertexBuffer.create(); _vertexBuffer.bind(); _vertexBuffer.allocate(_vertices.constData(), _vertices.size() * sizeof(VoxelPoint)); _vertexBuffer.release(); _indexBuffer.create(); _indexBuffer.bind(); _indexBuffer.allocate(_indices.constData(), _indices.size() * sizeof(int)); _indexBuffer.release(); if (!_materials.isEmpty()) { _networkTextures.resize(_materials.size()); TextureCache::SharedPointer textureCache = DependencyManager::get(); for (int i = 0; i < _materials.size(); i++) { const SharedObjectPointer material = _materials.at(i); if (material) { _networkTextures[i] = textureCache->getTexture( static_cast(material.data())->getDiffuse(), SPLAT_TEXTURE); } } } } if (cursor) { _vertexBuffer.bind(); _indexBuffer.bind(); VoxelPoint* point = 0; glVertexPointer(3, GL_FLOAT, sizeof(VoxelPoint), &point->vertex); glColorPointer(3, GL_UNSIGNED_BYTE, sizeof(VoxelPoint), &point->color); glNormalPointer(GL_BYTE, sizeof(VoxelPoint), &point->normal); glDrawRangeElements(GL_QUADS, 0, _vertexCount - 1, _indexCount, GL_UNSIGNED_INT, 0); _vertexBuffer.release(); _indexBuffer.release(); return; } MetavoxelBatch baseBatch; baseBatch.translation = translation; baseBatch.rotation = rotation; baseBatch.scale = scale; baseBatch.vertexBuffer = &_vertexBuffer; baseBatch.indexBuffer = &_indexBuffer; baseBatch.vertexCount = _vertexCount; baseBatch.indexCount = _indexCount; Application::getInstance()->getMetavoxels()->addVoxelBaseBatch(baseBatch); if (!_materials.isEmpty()) { VoxelSplatBatch splatBatch; splatBatch.translation = translation; splatBatch.rotation = rotation; splatBatch.scale = scale; splatBatch.vertexBuffer = &_vertexBuffer; splatBatch.indexBuffer = &_indexBuffer; splatBatch.vertexCount = _vertexCount; splatBatch.indexCount = _indexCount; splatBatch.splatTextureOffset = glm::vec3( glm::dot(translation, rotation * glm::vec3(1.0f, 0.0f, 0.0f)) / scale.x, glm::dot(translation, rotation * glm::vec3(0.0f, 1.0f, 0.0f)) / scale.y, glm::dot(translation, rotation * glm::vec3(0.0f, 0.0f, 1.0f)) / scale.z); for (int i = 0; i < _materials.size(); i += SPLAT_COUNT) { for (int j = 0; j < SPLAT_COUNT; j++) { int index = i + j; if (index < _networkTextures.size()) { const NetworkTexturePointer& texture = _networkTextures.at(index); if (texture) { MaterialObject* material = static_cast(_materials.at(index).data()); splatBatch.splatTextureScalesS[j] = scale.x / material->getScaleS(); splatBatch.splatTextureScalesT[j] = scale.z / material->getScaleT(); splatBatch.splatTextureIDs[j] = texture->getID(); } else { splatBatch.splatTextureIDs[j] = 0; } } else { splatBatch.splatTextureIDs[j] = 0; } } splatBatch.materialIndex = i; Application::getInstance()->getMetavoxels()->addVoxelSplatBatch(splatBatch); } } if (_hermiteCount > 0) { if (!_hermiteBuffer.isCreated()) { _hermiteBuffer.create(); _hermiteBuffer.bind(); _hermiteBuffer.allocate(_hermite.constData(), _hermite.size() * sizeof(glm::vec3)); _hermiteBuffer.release(); _hermite.clear(); } HermiteBatch hermiteBatch; hermiteBatch.translation = translation; hermiteBatch.rotation = rotation; hermiteBatch.scale = scale; hermiteBatch.vertexBuffer = &_hermiteBuffer; hermiteBatch.vertexCount = _hermiteCount; Application::getInstance()->getMetavoxels()->addHermiteBatch(hermiteBatch); } } BufferDataAttribute::BufferDataAttribute(const QString& name) : InlineAttribute(name) { } bool BufferDataAttribute::merge(void*& parent, void* children[], bool postRead) const { *(BufferDataPointer*)&parent = _defaultValue; for (int i = 0; i < MERGE_COUNT; i++) { if (decodeInline(children[i])) { return false; } } return true; } AttributeValue BufferDataAttribute::inherit(const AttributeValue& parentValue) const { return AttributeValue(parentValue.getAttribute()); } DefaultMetavoxelRendererImplementation::DefaultMetavoxelRendererImplementation() { } class VoxelAugmentVisitor : public MetavoxelVisitor { public: VoxelAugmentVisitor(const MetavoxelLOD& lod); virtual int visit(MetavoxelInfo& info); }; VoxelAugmentVisitor::VoxelAugmentVisitor(const MetavoxelLOD& lod) : MetavoxelVisitor(QVector() << AttributeRegistry::getInstance()->getVoxelColorAttribute() << AttributeRegistry::getInstance()->getVoxelMaterialAttribute() << AttributeRegistry::getInstance()->getVoxelHermiteAttribute(), QVector() << Application::getInstance()->getMetavoxels()->getVoxelBufferAttribute(), lod) { } class EdgeCrossing { public: glm::vec3 point; glm::vec3 normal; QRgb color; char material; void setColorMaterial(const StackArray::Entry& entry) { color = entry.color; material = entry.material; } }; const int MAX_NORMALS_PER_VERTEX = 4; class NormalIndex { public: int indices[MAX_NORMALS_PER_VERTEX]; bool isValid() const; int getClosestIndex(const glm::vec3& normal, QVector& vertices) const; }; bool NormalIndex::isValid() const { for (int i = 0; i < MAX_NORMALS_PER_VERTEX; i++) { if (indices[i] != 0) { return true; } } return false; } int NormalIndex::getClosestIndex(const glm::vec3& normal, QVector& vertices) const { int firstIndex = indices[0]; int closestIndex = firstIndex; const VoxelPoint& firstVertex = vertices.at(firstIndex); float closest = normal.x * firstVertex.normal[0] + normal.y * firstVertex.normal[1] + normal.z * firstVertex.normal[2]; for (int i = 1; i < MAX_NORMALS_PER_VERTEX; i++) { int index = indices[i]; if (index == firstIndex) { break; } const VoxelPoint& vertex = vertices.at(index); float product = normal.x * vertex.normal[0] + normal.y * vertex.normal[1] + normal.z * vertex.normal[2]; if (product > closest) { closest = product; closestIndex = index; } } return closestIndex; } static glm::vec3 safeNormalize(const glm::vec3& vector) { float length = glm::length(vector); return (length > 0.0f) ? (vector / length) : vector; } int VoxelAugmentVisitor::visit(MetavoxelInfo& info) { if (!info.isLeaf) { return DEFAULT_ORDER; } BufferData* buffer = NULL; VoxelColorDataPointer color = info.inputValues.at(0).getInlineValue(); VoxelMaterialDataPointer material = info.inputValues.at(1).getInlineValue(); VoxelHermiteDataPointer hermite = info.inputValues.at(2).getInlineValue(); if (color && hermite) { QVector vertices; QVector indices; QVector hermiteSegments; QMultiHash quadIndices; // see http://www.frankpetterson.com/publications/dualcontour/dualcontour.pdf for a description of the // dual contour algorithm for generating meshes from voxel data using Hermite-tagged edges const QVector& colorContents = color->getContents(); const QVector& hermiteContents = hermite->getContents(); int size = color->getSize(); int area = size * size; // number variables such as offset3 and alpha0 in this function correspond to cube corners, where the x, y, and z // components are represented as bits in the 0, 1, and 2 position, respectively; hence, alpha0 is the value at // the minimum x, y, and z corner and alpha7 is the value at the maximum x, y, and z int offset3 = size + 1; int offset5 = area + 1; int offset6 = area + size; int offset7 = area + size + 1; const QRgb* colorZ = colorContents.constData(); const QRgb* hermiteData = hermiteContents.constData(); int hermiteStride = hermite->getSize() * VoxelHermiteData::EDGE_COUNT; int hermiteArea = hermiteStride * hermite->getSize(); const char* materialData = material ? material->getContents().constData() : NULL; // as we scan down the cube generating vertices between grid points, we remember the indices of the last // (element, line, section--x, y, z) so that we can connect generated vertices as quads int expanded = size + 1; QVector lineIndices(expanded); QVector lastLineIndices(expanded); QVector planeIndices(expanded * expanded); QVector lastPlaneIndices(expanded * expanded); const int EDGES_PER_CUBE = 12; EdgeCrossing crossings[EDGES_PER_CUBE]; float highest = size - 1.0f; float scale = info.size / highest; const int ALPHA_OFFSET = 24; bool displayHermite = Menu::getInstance()->isOptionChecked(MenuOption::DisplayHermiteData); for (int z = 0; z < expanded; z++) { const QRgb* colorY = colorZ; for (int y = 0; y < expanded; y++) { NormalIndex lastIndex; const QRgb* colorX = colorY; for (int x = 0; x < expanded; x++) { int alpha0 = colorX[0] >> ALPHA_OFFSET; int alpha1 = alpha0, alpha2 = alpha0, alpha4 = alpha0; int alphaTotal = alpha0; int possibleTotal = EIGHT_BIT_MAXIMUM; // cubes on the edge are two-dimensional: this ensures that their vertices will be shared between // neighboring blocks, which share only one layer of points bool middleX = (x != 0 && x != size); bool middleY = (y != 0 && y != size); bool middleZ = (z != 0 && z != size); if (middleZ) { alphaTotal += (alpha4 = colorX[area] >> ALPHA_OFFSET); possibleTotal += EIGHT_BIT_MAXIMUM; } int alpha5 = alpha4, alpha6 = alpha4; if (middleY) { alphaTotal += (alpha2 = colorX[size] >> ALPHA_OFFSET); possibleTotal += EIGHT_BIT_MAXIMUM; if (middleZ) { alphaTotal += (alpha6 = colorX[offset6] >> ALPHA_OFFSET); possibleTotal += EIGHT_BIT_MAXIMUM; } } int alpha3 = alpha2, alpha7 = alpha6; if (middleX) { alphaTotal += (alpha1 = colorX[1] >> ALPHA_OFFSET); possibleTotal += EIGHT_BIT_MAXIMUM; if (middleY) { alphaTotal += (alpha3 = colorX[offset3] >> ALPHA_OFFSET); possibleTotal += EIGHT_BIT_MAXIMUM; if (middleZ) { alphaTotal += (alpha7 = colorX[offset7] >> ALPHA_OFFSET); possibleTotal += EIGHT_BIT_MAXIMUM; } } if (middleZ) { alphaTotal += (alpha5 = colorX[offset5] >> ALPHA_OFFSET); possibleTotal += EIGHT_BIT_MAXIMUM; } } if (alphaTotal == 0 || alphaTotal == possibleTotal) { if (x != 0) { colorX++; } continue; // no corners set/all corners set } // the terrifying conditional code that follows checks each cube edge for a crossing, gathering // its properties (color, material, normal) if one is present; as before, boundary edges are excluded int clampedX = qMax(x - 1, 0), clampedY = qMax(y - 1, 0), clampedZ = qMax(z - 1, 0); const QRgb* hermiteBase = hermiteData + clampedZ * hermiteArea + clampedY * hermiteStride + clampedX * VoxelHermiteData::EDGE_COUNT; const char* materialBase = materialData ? (materialData + clampedZ * area + clampedY * size + clampedX) : NULL; int crossingCount = 0; if (middleX) { if (alpha0 != alpha1) { QRgb hermite = hermiteBase[0]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha0 == 0) { crossing.color = colorX[1]; crossing.material = materialBase ? materialBase[1] : 0; } else { crossing.color = colorX[0]; crossing.material = materialBase ? materialBase[0] : 0; } crossing.point = glm::vec3(qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL, 0.0f, 0.0f); } if (middleY) { if (alpha1 != alpha3) { QRgb hermite = hermiteBase[VoxelHermiteData::EDGE_COUNT + 1]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha1 == 0) { crossing.color = colorX[offset3]; crossing.material = materialBase ? materialBase[offset3] : 0; } else { crossing.color = colorX[1]; crossing.material = materialBase ? materialBase[1] : 0; } crossing.point = glm::vec3(1.0f, qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL, 0.0f); } if (alpha2 != alpha3) { QRgb hermite = hermiteBase[hermiteStride]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha2 == 0) { crossing.color = colorX[offset3]; crossing.material = materialBase ? materialBase[offset3] : 0; } else { crossing.color = colorX[size]; crossing.material = materialBase ? materialBase[size] : 0; } crossing.point = glm::vec3(qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL, 1.0f, 0.0f); } if (middleZ) { if (alpha3 != alpha7) { QRgb hermite = hermiteBase[hermiteStride + VoxelHermiteData::EDGE_COUNT + 2]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha3 == 0) { crossing.color = colorX[offset7]; crossing.material = materialBase ? materialBase[offset7] : 0; } else { crossing.color = colorX[offset3]; crossing.material = materialBase ? materialBase[offset3] : 0; } crossing.point = glm::vec3(1.0f, 1.0f, qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL); } if (alpha5 != alpha7) { QRgb hermite = hermiteBase[hermiteArea + VoxelHermiteData::EDGE_COUNT + 1]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha5 == 0) { crossing.color = colorX[offset7]; crossing.material = materialBase ? materialBase[offset7] : 0; } else { crossing.color = colorX[offset5]; crossing.material = materialBase ? materialBase[offset5] : 0; } crossing.point = glm::vec3(1.0f, qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL, 1.0f); } if (alpha6 != alpha7) { QRgb hermite = hermiteBase[hermiteArea + hermiteStride]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha6 == 0) { crossing.color = colorX[offset7]; crossing.material = materialBase ? materialBase[offset7] : 0; } else { crossing.color = colorX[offset6]; crossing.material = materialBase ? materialBase[offset6] : 0; } crossing.point = glm::vec3(qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL, 1.0f, 1.0f); } } } if (middleZ) { if (alpha1 != alpha5) { QRgb hermite = hermiteBase[VoxelHermiteData::EDGE_COUNT + 2]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha1 == 0) { crossing.color = colorX[offset5]; crossing.material = materialBase ? materialBase[offset5] : 0; } else { crossing.color = colorX[1]; crossing.material = materialBase ? materialBase[1] : 0; } crossing.point = glm::vec3(1.0f, 0.0f, qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL); } if (alpha4 != alpha5) { QRgb hermite = hermiteBase[hermiteArea]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha4 == 0) { crossing.color = colorX[offset5]; crossing.material = materialBase ? materialBase[offset5] : 0; } else { crossing.color = colorX[area]; crossing.material = materialBase ? materialBase[area] : 0; } crossing.point = glm::vec3(qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL, 0.0f, 1.0f); } } } if (middleY) { if (alpha0 != alpha2) { QRgb hermite = hermiteBase[1]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha0 == 0) { crossing.color = colorX[size]; crossing.material = materialBase ? materialBase[size] : 0; } else { crossing.color = colorX[0]; crossing.material = materialBase ? materialBase[0] : 0; } crossing.point = glm::vec3(0.0f, qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL, 0.0f); } if (middleZ) { if (alpha2 != alpha6) { QRgb hermite = hermiteBase[hermiteStride + 2]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha2 == 0) { crossing.color = colorX[offset6]; crossing.material = materialBase ? materialBase[offset6] : 0; } else { crossing.color = colorX[size]; crossing.material = materialBase ? materialBase[size] : 0; } crossing.point = glm::vec3(0.0f, 1.0f, qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL); } if (alpha4 != alpha6) { QRgb hermite = hermiteBase[hermiteArea + 1]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha4 == 0) { crossing.color = colorX[offset6]; crossing.material = materialBase ? materialBase[offset6] : 0; } else { crossing.color = colorX[area]; crossing.material = materialBase ? materialBase[area] : 0; } crossing.point = glm::vec3(0.0f, qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL, 1.0f); } } } if (middleZ && alpha0 != alpha4) { QRgb hermite = hermiteBase[2]; EdgeCrossing& crossing = crossings[crossingCount++]; crossing.normal = unpackNormal(hermite); if (alpha0 == 0) { crossing.color = colorX[area]; crossing.material = materialBase ? materialBase[area] : 0; } else { crossing.color = colorX[0]; crossing.material = materialBase ? materialBase[0] : 0; } crossing.point = glm::vec3(0.0f, 0.0f, qAlpha(hermite) * EIGHT_BIT_MAXIMUM_RECIPROCAL); } // at present, we simply average the properties of each crossing as opposed to finding the vertex that // minimizes the quadratic error function as described in the reference paper glm::vec3 center; glm::vec3 normals[MAX_NORMALS_PER_VERTEX]; int normalCount = 0; const float CREASE_COS_NORMAL = glm::cos(glm::radians(45.0f)); const int MAX_MATERIALS_PER_VERTEX = 4; quint8 materials[] = { 0, 0, 0, 0 }; glm::vec4 materialWeights; float totalWeight = 0.0f; int red = 0, green = 0, blue = 0; for (int i = 0; i < crossingCount; i++) { const EdgeCrossing& crossing = crossings[i]; center += crossing.point; int j = 0; for (; j < normalCount; j++) { if (glm::dot(normals[j], crossing.normal) > CREASE_COS_NORMAL) { normals[j] = safeNormalize(normals[j] + crossing.normal); break; } } if (j == normalCount) { normals[normalCount++] = crossing.normal; } red += qRed(crossing.color); green += qGreen(crossing.color); blue += qBlue(crossing.color); if (displayHermite) { glm::vec3 start = info.minimum + (glm::vec3(clampedX, clampedY, clampedZ) + crossing.point) * scale; hermiteSegments.append(start); hermiteSegments.append(start + crossing.normal * scale); } // when assigning a material, search for its presence and, if not found, // place it in the first empty slot if (crossing.material != 0) { for (j = 0; j < MAX_MATERIALS_PER_VERTEX; j++) { if (materials[j] == crossing.material) { materialWeights[j] += 1.0f; totalWeight += 1.0f; break; } else if (materials[j] == 0) { materials[j] = crossing.material; materialWeights[j] = 1.0f; totalWeight += 1.0f; break; } } } } center /= crossingCount; // use a sequence of Givens rotations to perform a QR decomposition // see http://www.cs.rice.edu/~jwarren/papers/techreport02408.pdf glm::mat4 r(0.0f); glm::vec4 bottom; for (int i = 0; i < crossingCount; i++) { const EdgeCrossing& crossing = crossings[i]; bottom = glm::vec4(crossing.normal, glm::dot(crossing.normal, crossing.point - center)); for (int j = 0; j < 4; j++) { float angle = glm::atan(-bottom[j], r[j][j]); float sina = glm::sin(angle); float cosa = glm::cos(angle); for (int k = 0; k < 4; k++) { float tmp = bottom[k]; bottom[k] = sina * r[k][j] + cosa * tmp; r[k][j] = cosa * r[k][j] - sina * tmp; } } } // extract the submatrices, form ata glm::mat3 a(r); glm::vec3 b(r[3]); glm::mat3 atrans = glm::transpose(a); glm::mat3 ata = atrans * a; // find the eigenvalues and eigenvectors of ata // (see http://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm) glm::mat3 d = ata; glm::quat combinedRotation; const int MAX_ITERATIONS = 20; for (int i = 0; i < MAX_ITERATIONS; i++) { glm::vec3 offDiagonals = glm::abs(glm::vec3(d[1][0], d[2][0], d[2][1])); int largestIndex = (offDiagonals[0] > offDiagonals[1]) ? (offDiagonals[0] > offDiagonals[2] ? 0 : 2) : (offDiagonals[1] > offDiagonals[2] ? 1 : 2); const float DESIRED_PRECISION = 0.00001f; if (offDiagonals[largestIndex] < DESIRED_PRECISION) { break; } int largestJ = (largestIndex == 2) ? 1 : 0; int largestI = (largestIndex == 0) ? 1 : 2; float sjj = d[largestJ][largestJ]; float sii = d[largestI][largestI]; float angle = glm::atan(2.0f * d[largestJ][largestI], sjj - sii) / 2.0f; glm::quat rotation = glm::angleAxis(angle, largestIndex == 0 ? glm::vec3(0.0f, 0.0f, -1.0f) : (largestIndex == 1 ? glm::vec3(0.0f, 1.0f, 0.0f) : glm::vec3(-1.0f, 0.0f, 0.0f))); combinedRotation = glm::normalize(rotation * combinedRotation); glm::mat3 matrix = glm::mat3_cast(combinedRotation); d = matrix * ata * glm::transpose(matrix); } // form the singular matrix from the eigenvalues const float MIN_SINGULAR_THRESHOLD = 0.1f; d[0][0] = (d[0][0] < MIN_SINGULAR_THRESHOLD) ? 0.0f : 1.0f / d[0][0]; d[1][1] = (d[1][1] < MIN_SINGULAR_THRESHOLD) ? 0.0f : 1.0f / d[1][1]; d[2][2] = (d[2][2] < MIN_SINGULAR_THRESHOLD) ? 0.0f : 1.0f / d[2][2]; // compute the pseudo-inverse, ataplus, and use to find the minimizing solution glm::mat3 u = glm::mat3_cast(combinedRotation); glm::mat3 ataplus = glm::transpose(u) * d * u; glm::vec3 solution = (ataplus * atrans * b) + center; // make sure it doesn't fall beyond the cell boundaries center = glm::clamp(solution, 0.0f, 1.0f); if (totalWeight > 0.0f) { materialWeights *= (EIGHT_BIT_MAXIMUM / totalWeight); } VoxelPoint point = { info.minimum + (glm::vec3(clampedX, clampedY, clampedZ) + center) * scale, { (quint8)(red / crossingCount), (quint8)(green / crossingCount), (quint8)(blue / crossingCount) }, { (char)(normals[0].x * 127.0f), (char)(normals[0].y * 127.0f), (char)(normals[0].z * 127.0f) }, { materials[0], materials[1], materials[2], materials[3] }, { (quint8)materialWeights[0], (quint8)materialWeights[1], (quint8)materialWeights[2], (quint8)materialWeights[3] } }; NormalIndex index = { { vertices.size(), vertices.size(), vertices.size(), vertices.size() } }; vertices.append(point); for (int i = 1; i < normalCount; i++) { index.indices[i] = vertices.size(); point.setNormal(normals[i]); vertices.append(point); } // the first x, y, and z are repeated for the boundary edge; past that, we consider generating // quads for each edge that includes a transition, using indices of previously generated vertices if (x != 0 && y != 0 && z != 0) { if (alpha0 != alpha1) { quadIndices.insert(qRgb(x, y, z), indices.size()); quadIndices.insert(qRgb(x, y - 1, z), indices.size()); quadIndices.insert(qRgb(x, y - 1, z - 1), indices.size()); quadIndices.insert(qRgb(x, y, z - 1), indices.size()); const NormalIndex& index1 = lastLineIndices.at(x); const NormalIndex& index2 = lastPlaneIndices.at((y - 1) * expanded + x); const NormalIndex& index3 = lastPlaneIndices.at(y * expanded + x); const glm::vec3& first = vertices.at(index.indices[0]).vertex; glm::vec3 normal = glm::cross(vertices.at(index1.indices[0]).vertex - first, vertices.at(index3.indices[0]).vertex - first); if (alpha0 == 0) { // quad faces negative x indices.append(index3.getClosestIndex(normal = -normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index1.getClosestIndex(normal, vertices)); } else { // quad faces positive x indices.append(index1.getClosestIndex(normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index3.getClosestIndex(normal, vertices)); } indices.append(index.getClosestIndex(normal, vertices)); } if (alpha0 != alpha2) { quadIndices.insert(qRgb(x, y, z), indices.size()); quadIndices.insert(qRgb(x - 1, y, z), indices.size()); quadIndices.insert(qRgb(x - 1, y, z - 1), indices.size()); quadIndices.insert(qRgb(x, y, z - 1), indices.size()); const NormalIndex& index1 = lastIndex; const NormalIndex& index2 = lastPlaneIndices.at(y * expanded + x - 1); const NormalIndex& index3 = lastPlaneIndices.at(y * expanded + x); const glm::vec3& first = vertices.at(index.indices[0]).vertex; glm::vec3 normal = glm::cross(vertices.at(index3.indices[0]).vertex - first, vertices.at(index1.indices[0]).vertex - first); if (alpha0 == 0) { // quad faces negative y indices.append(index1.getClosestIndex(normal = -normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index3.getClosestIndex(normal, vertices)); } else { // quad faces positive y indices.append(index3.getClosestIndex(normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index1.getClosestIndex(normal, vertices)); } indices.append(index.getClosestIndex(normal, vertices)); } if (alpha0 != alpha4) { quadIndices.insert(qRgb(x, y, z), indices.size()); quadIndices.insert(qRgb(x - 1, y, z), indices.size()); quadIndices.insert(qRgb(x - 1, y - 1, z), indices.size()); quadIndices.insert(qRgb(x, y - 1, z), indices.size()); const NormalIndex& index1 = lastIndex; const NormalIndex& index2 = lastLineIndices.at(x - 1); const NormalIndex& index3 = lastLineIndices.at(x); const glm::vec3& first = vertices.at(index.indices[0]).vertex; glm::vec3 normal = glm::cross(vertices.at(index1.indices[0]).vertex - first, vertices.at(index3.indices[0]).vertex - first); if (alpha0 == 0) { // quad faces negative z indices.append(index3.getClosestIndex(normal = -normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index1.getClosestIndex(normal, vertices)); } else { // quad faces positive z indices.append(index1.getClosestIndex(normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index3.getClosestIndex(normal, vertices)); } indices.append(index.getClosestIndex(normal, vertices)); } } lastIndex = index; lineIndices[x] = index; planeIndices[y * expanded + x] = index; if (x != 0) { colorX++; } } lineIndices.swap(lastLineIndices); if (y != 0) { colorY += size; } } planeIndices.swap(lastPlaneIndices); if (z != 0) { colorZ += area; } } buffer = new VoxelBuffer(vertices, indices, hermiteSegments, quadIndices, size, material ? material->getMaterials() : QVector()); } BufferDataPointer pointer(buffer); info.outputValues[0] = AttributeValue(_outputs.at(0), encodeInline(pointer)); return STOP_RECURSION; } void DefaultMetavoxelRendererImplementation::augment(MetavoxelData& data, const MetavoxelData& previous, MetavoxelInfo& info, const MetavoxelLOD& lod) { // copy the previous buffers MetavoxelData expandedPrevious = previous; while (expandedPrevious.getSize() < data.getSize()) { expandedPrevious.expand(); } const AttributePointer& voxelBufferAttribute = Application::getInstance()->getMetavoxels()->getVoxelBufferAttribute(); MetavoxelNode* root = expandedPrevious.getRoot(voxelBufferAttribute); if (root) { data.setRoot(voxelBufferAttribute, root); root->incrementReferenceCount(); } VoxelAugmentVisitor voxelAugmentVisitor(lod); data.guideToDifferent(expandedPrevious, voxelAugmentVisitor); } class SpannerSimulateVisitor : public SpannerVisitor { public: SpannerSimulateVisitor(float deltaTime, const MetavoxelLOD& lod); virtual bool visit(Spanner* spanner); private: float _deltaTime; }; SpannerSimulateVisitor::SpannerSimulateVisitor(float deltaTime, const MetavoxelLOD& lod) : SpannerVisitor(QVector() << AttributeRegistry::getInstance()->getSpannersAttribute(), QVector(), QVector(), lod), _deltaTime(deltaTime) { } bool SpannerSimulateVisitor::visit(Spanner* spanner) { spanner->getRenderer()->simulate(_deltaTime); return true; } void DefaultMetavoxelRendererImplementation::simulate(MetavoxelData& data, float deltaTime, MetavoxelInfo& info, const MetavoxelLOD& lod) { SpannerSimulateVisitor spannerSimulateVisitor(deltaTime, lod); data.guide(spannerSimulateVisitor); } class BufferRenderVisitor : public MetavoxelVisitor { public: BufferRenderVisitor(const AttributePointer& attribute); virtual int visit(MetavoxelInfo& info); private: int _order; int _containmentDepth; }; BufferRenderVisitor::BufferRenderVisitor(const AttributePointer& attribute) : MetavoxelVisitor(QVector() << attribute), _order(encodeOrder(Application::getInstance()->getDisplayViewFrustum()->getDirection())), _containmentDepth(INT_MAX) { } int BufferRenderVisitor::visit(MetavoxelInfo& info) { if (_containmentDepth >= _depth) { Frustum::IntersectionType intersection = Application::getInstance()->getMetavoxels()->getFrustum().getIntersectionType( info.getBounds()); if (intersection == Frustum::NO_INTERSECTION) { return STOP_RECURSION; } _containmentDepth = (intersection == Frustum::CONTAINS_INTERSECTION) ? _depth : INT_MAX; } if (!info.isLeaf) { return _order; } BufferDataPointer buffer = info.inputValues.at(0).getInlineValue(); if (buffer) { buffer->render(glm::vec3(), glm::quat(), glm::vec3(1.0f, 1.0f, 1.0f)); } return STOP_RECURSION; } void DefaultMetavoxelRendererImplementation::render(MetavoxelData& data, MetavoxelInfo& info, const MetavoxelLOD& lod) { if (Menu::getInstance()->isOptionChecked(MenuOption::RenderSpanners)) { SpannerRenderVisitor spannerRenderVisitor(lod); data.guide(spannerRenderVisitor); } if (Menu::getInstance()->isOptionChecked(MenuOption::RenderDualContourSurfaces)) { BufferRenderVisitor voxelRenderVisitor(Application::getInstance()->getMetavoxels()->getVoxelBufferAttribute()); data.guide(voxelRenderVisitor); } } SphereRenderer::SphereRenderer() { } void SphereRenderer::render(const MetavoxelLOD& lod, bool contained, bool cursor) { Sphere* sphere = static_cast(_spanner); const QColor& color = sphere->getColor(); glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF()); glPushMatrix(); const glm::vec3& translation = sphere->getTranslation(); glTranslatef(translation.x, translation.y, translation.z); glm::quat rotation = sphere->getRotation(); glm::vec3 axis = glm::axis(rotation); glRotatef(glm::degrees(glm::angle(rotation)), axis.x, axis.y, axis.z); DependencyManager::get()->renderSolidSphere(sphere->getScale(), 32, 32); glPopMatrix(); } CuboidRenderer::CuboidRenderer() { } void CuboidRenderer::render(const MetavoxelLOD& lod, bool contained, bool cursor) { Cuboid* cuboid = static_cast(_spanner); const QColor& color = cuboid->getColor(); glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF()); glPushMatrix(); const glm::vec3& translation = cuboid->getTranslation(); glTranslatef(translation.x, translation.y, translation.z); glm::quat rotation = cuboid->getRotation(); glm::vec3 axis = glm::axis(rotation); glRotatef(glm::degrees(glm::angle(rotation)), axis.x, axis.y, axis.z); glScalef(1.0f, cuboid->getAspectY(), cuboid->getAspectZ()); DependencyManager::get()->renderSolidCube(cuboid->getScale() * 2.0f); glPopMatrix(); } StaticModelRenderer::StaticModelRenderer() : _model(new Model(this)) { } void StaticModelRenderer::init(Spanner* spanner) { SpannerRenderer::init(spanner); _model->init(); StaticModel* staticModel = static_cast(spanner); applyTranslation(staticModel->getTranslation()); applyRotation(staticModel->getRotation()); applyScale(staticModel->getScale()); applyURL(staticModel->getURL()); connect(spanner, SIGNAL(translationChanged(const glm::vec3&)), SLOT(applyTranslation(const glm::vec3&))); connect(spanner, SIGNAL(rotationChanged(const glm::quat&)), SLOT(applyRotation(const glm::quat&))); connect(spanner, SIGNAL(scaleChanged(float)), SLOT(applyScale(float))); connect(spanner, SIGNAL(urlChanged(const QUrl&)), SLOT(applyURL(const QUrl&))); } void StaticModelRenderer::simulate(float deltaTime) { // update the bounds Box bounds; if (_model->isActive()) { const Extents& extents = _model->getGeometry()->getFBXGeometry().meshExtents; bounds = Box(extents.minimum, extents.maximum); } static_cast(_spanner)->setBounds(glm::translate(_model->getTranslation()) * glm::mat4_cast(_model->getRotation()) * glm::scale(_model->getScale()) * bounds); _model->simulate(deltaTime); } void StaticModelRenderer::render(const MetavoxelLOD& lod, bool contained, bool cursor) { _model->render(); } bool StaticModelRenderer::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction, float& distance) const { RayIntersectionInfo info; info._rayStart = origin; info._rayDirection = direction; if (!_model->findRayIntersection(info)) { return false; } distance = info._hitDistance; return true; } void StaticModelRenderer::applyTranslation(const glm::vec3& translation) { _model->setTranslation(translation); } void StaticModelRenderer::applyRotation(const glm::quat& rotation) { _model->setRotation(rotation); } void StaticModelRenderer::applyScale(float scale) { _model->setScale(glm::vec3(scale, scale, scale)); } void StaticModelRenderer::applyURL(const QUrl& url) { _model->setURL(url); } HeightfieldRenderer::HeightfieldRenderer() { } const int X_MAXIMUM_FLAG = 1; const int Y_MAXIMUM_FLAG = 2; static void renderNode(const HeightfieldNodePointer& node, Heightfield* heightfield, const MetavoxelLOD& lod, const glm::vec2& minimum, float size, bool contained, bool cursor) { const glm::quat& rotation = heightfield->getRotation(); glm::vec3 scale(heightfield->getScale() * size, heightfield->getScale() * heightfield->getAspectY(), heightfield->getScale() * heightfield->getAspectZ() * size); glm::vec3 translation = heightfield->getTranslation() + rotation * glm::vec3(minimum.x * heightfield->getScale(), 0.0f, minimum.y * heightfield->getScale() * heightfield->getAspectZ()); if (!contained) { Frustum::IntersectionType type = Application::getInstance()->getMetavoxels()->getFrustum().getIntersectionType( glm::translate(translation) * glm::mat4_cast(rotation) * Box(glm::vec3(), scale)); if (type == Frustum::NO_INTERSECTION) { return; } if (type == Frustum::CONTAINS_INTERSECTION) { contained = true; } } if (!node->isLeaf() && lod.shouldSubdivide(minimum, size)) { float nextSize = size * 0.5f; for (int i = 0; i < HeightfieldNode::CHILD_COUNT; i++) { renderNode(node->getChild(i), heightfield, lod, minimum + glm::vec2(i & X_MAXIMUM_FLAG ? nextSize : 0.0f, i & Y_MAXIMUM_FLAG ? nextSize : 0.0f), nextSize, contained, cursor); } return; } HeightfieldNodeRenderer* renderer = static_cast(node->getRenderer()); if (!renderer) { node->setRenderer(renderer = new HeightfieldNodeRenderer()); } renderer->render(node, translation, rotation, scale, cursor); } void HeightfieldRenderer::render(const MetavoxelLOD& lod, bool contained, bool cursor) { Heightfield* heightfield = static_cast(_spanner); renderNode(heightfield->getRoot(), heightfield, heightfield->transformLOD(lod), glm::vec2(), 1.0f, contained, cursor); } HeightfieldNodeRenderer::HeightfieldNodeRenderer() : _heightTextureID(0), _colorTextureID(0), _materialTextureID(0) { } HeightfieldNodeRenderer::~HeightfieldNodeRenderer() { QMetaObject::invokeMethod(Application::getInstance()->getMetavoxels(), "deleteTextures", Q_ARG(int, _heightTextureID), Q_ARG(int, _colorTextureID), Q_ARG(int, _materialTextureID)); } class IndexVector : public QVector { public: int position; void swap(IndexVector& other) { QVector::swap(other); qSwap(position, other.position); } const NormalIndex& get(int y) const; }; const NormalIndex& IndexVector::get(int y) const { static NormalIndex nullIndex = { { 0, 0, 0, 0 } }; int relative = y - position; return (relative >= 0 && relative < size()) ? at(relative) : nullIndex; } void HeightfieldNodeRenderer::render(const HeightfieldNodePointer& node, const glm::vec3& translation, const glm::quat& rotation, const glm::vec3& scale, bool cursor) { if (!node->getHeight()) { return; } int width = node->getHeight()->getWidth(); int height = node->getHeight()->getContents().size() / width; int innerWidth = width - 2 * HeightfieldHeight::HEIGHT_BORDER; int innerHeight = height - 2 * HeightfieldHeight::HEIGHT_BORDER; int vertexCount = width * height; int rows = height - 1; int columns = width - 1; int indexCount = rows * columns * 3 * 2; BufferPair& bufferPair = _bufferPairs[IntPair(width, height)]; if (!bufferPair.first.isCreated()) { QVector vertices(vertexCount); HeightfieldPoint* point = vertices.data(); float xStep = 1.0f / (innerWidth - 1); float zStep = 1.0f / (innerHeight - 1); float z = -zStep; float sStep = 1.0f / width; float tStep = 1.0f / height; float t = tStep / 2.0f; for (int i = 0; i < height; i++, z += zStep, t += tStep) { float x = -xStep; float s = sStep / 2.0f; const float SKIRT_LENGTH = 0.25f; float baseY = (i == 0 || i == height - 1) ? -SKIRT_LENGTH : 0.0f; for (int j = 0; j < width; j++, point++, x += xStep, s += sStep) { point->vertex = glm::vec3(x, (j == 0 || j == width - 1) ? -SKIRT_LENGTH : baseY, z); point->textureCoord = glm::vec2(s, t); } } bufferPair.first.setUsagePattern(QOpenGLBuffer::StaticDraw); bufferPair.first.create(); bufferPair.first.bind(); bufferPair.first.allocate(vertices.constData(), vertexCount * sizeof(HeightfieldPoint)); bufferPair.first.release(); QVector indices(indexCount); int* index = indices.data(); for (int i = 0; i < rows; i++) { int lineIndex = i * width; int nextLineIndex = (i + 1) * width; for (int j = 0; j < columns; j++) { *index++ = lineIndex + j; *index++ = nextLineIndex + j; *index++ = nextLineIndex + j + 1; *index++ = nextLineIndex + j + 1; *index++ = lineIndex + j + 1; *index++ = lineIndex + j; } } bufferPair.second = QOpenGLBuffer(QOpenGLBuffer::IndexBuffer); bufferPair.second.create(); bufferPair.second.bind(); bufferPair.second.allocate(indices.constData(), indexCount * sizeof(int)); bufferPair.second.release(); } if (_heightTextureID == 0) { // we use non-aligned data for the various layers glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glGenTextures(1, &_heightTextureID); glBindTexture(GL_TEXTURE_2D, _heightTextureID); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_R16, width, height, 0, GL_RED, GL_UNSIGNED_SHORT, node->getHeight()->getContents().constData()); glGenTextures(1, &_colorTextureID); glBindTexture(GL_TEXTURE_2D, _colorTextureID); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); if (node->getColor()) { const QByteArray& contents = node->getColor()->getContents(); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, node->getColor()->getWidth(), contents.size() / (node->getColor()->getWidth() * DataBlock::COLOR_BYTES), 0, GL_RGB, GL_UNSIGNED_BYTE, contents.constData()); } else { const quint8 WHITE_COLOR[] = { 255, 255, 255 }; glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, 1, 1, 0, GL_RGB, GL_UNSIGNED_BYTE, WHITE_COLOR); } glGenTextures(1, &_materialTextureID); glBindTexture(GL_TEXTURE_2D, _materialTextureID); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); if (node->getMaterial()) { const QByteArray& contents = node->getMaterial()->getContents(); glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, node->getMaterial()->getWidth(), contents.size() / node->getMaterial()->getWidth(), 0, GL_RED, GL_UNSIGNED_BYTE, contents.constData()); const QVector& materials = node->getMaterial()->getMaterials(); _networkTextures.resize(materials.size()); TextureCache::SharedPointer textureCache = DependencyManager::get(); for (int i = 0; i < materials.size(); i++) { const SharedObjectPointer& material = materials.at(i); if (material) { _networkTextures[i] = textureCache->getTexture( static_cast(material.data())->getDiffuse(), SPLAT_TEXTURE); } } } else { const quint8 ZERO_VALUE = 0; glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, 1, 1, 0, GL_RED, GL_UNSIGNED_BYTE, &ZERO_VALUE); } glBindTexture(GL_TEXTURE_2D, 0); // restore the default alignment; it's what Qt uses for image storage glPixelStorei(GL_UNPACK_ALIGNMENT, 4); } bool displayHermite = Menu::getInstance()->isOptionChecked(MenuOption::DisplayHermiteData); if ((!_voxels || (displayHermite && !static_cast(_voxels.data())->isHermiteEnabled())) && node->getStack()) { QVector vertices; QVector indices; QVector hermiteSegments; QMultiHash quadIndices; int stackWidth = node->getStack()->getWidth(); int stackHeight = node->getStack()->getContents().size() / stackWidth; int innerStackWidth = stackWidth - HeightfieldData::SHARED_EDGE; const StackArray* src = node->getStack()->getContents().constData(); const int EDGES_PER_CUBE = 12; EdgeCrossing crossings[EDGES_PER_CUBE]; IndexVector indicesX; IndexVector lastIndicesX; QVector indicesZ(stackWidth + 1); QVector lastIndicesZ(stackWidth + 1); float scale = 1.0f / innerStackWidth; for (int z = 0; z <= stackHeight; z++) { bool middleZ = (z != 0 && z != stackHeight); const StackArray* lineSrc = src; for (int x = 0; x <= stackWidth; x++) { bool middleX = (x != 0 && x != stackWidth); // find the y extents of this and the neighboring columns int minimumY = INT_MAX, maximumY = -1; lineSrc->getExtents(minimumY, maximumY); if (middleX) { lineSrc[1].getExtents(minimumY, maximumY); if (middleZ) { lineSrc[stackWidth + 1].getExtents(minimumY, maximumY); } } if (middleZ) { lineSrc[stackWidth].getExtents(minimumY, maximumY); } if (maximumY >= minimumY) { int position = minimumY; int count = maximumY - minimumY + 1; NormalIndex lastIndexY; indicesX.position = position; indicesX.resize(count); indicesZ[x].position = position; indicesZ[x].resize(count); for (int y = position, end = position + count; y < end; y++) { const StackArray::Entry& entry = lineSrc->getEntry(y); int clampedX = qMax(x - 1, 0), clampedZ = qMax(z - 1, 0); if (displayHermite && x != 0 && z != 0) { glm::vec3 normal; float distance = entry.getHermiteX(normal); if (normal != glm::vec3()) { glm::vec3 start = glm::vec3(clampedX + distance, y, clampedZ) * scale; hermiteSegments.append(start); hermiteSegments.append(start + normal * scale); } distance = entry.getHermiteY(normal); if (normal != glm::vec3()) { glm::vec3 start = glm::vec3(clampedX, y + distance, clampedZ) * scale; hermiteSegments.append(start); hermiteSegments.append(start + normal * scale); } distance = entry.getHermiteZ(normal); if (normal != glm::vec3()) { glm::vec3 start = glm::vec3(clampedX, y, clampedZ + distance) * scale; hermiteSegments.append(start); hermiteSegments.append(start + normal * scale); } } int alpha0 = qAlpha(entry.color); int alpha2 = lineSrc->getEntryAlpha(y + 1); int alpha1 = alpha0, alpha3 = alpha2, alpha4 = alpha0, alpha6 = alpha2; int alphaTotal = alpha0 + alpha2; int possibleTotal = 2 * numeric_limits::max(); // cubes on the edge are two-dimensional: this ensures that their vertices will be shared between // neighboring blocks, which share only one layer of points if (middleZ) { alphaTotal += (alpha4 = lineSrc[stackWidth].getEntryAlpha(y)); possibleTotal += numeric_limits::max(); alphaTotal += (alpha6 = lineSrc[stackWidth].getEntryAlpha(y + 1)); possibleTotal += numeric_limits::max(); } int alpha5 = alpha4, alpha7 = alpha6; if (middleX) { alphaTotal += (alpha1 = lineSrc[1].getEntryAlpha(y)); possibleTotal += numeric_limits::max(); alphaTotal += (alpha3 = lineSrc[1].getEntryAlpha(y + 1)); possibleTotal += numeric_limits::max(); if (middleZ) { alphaTotal += (alpha5 = lineSrc[stackWidth + 1].getEntryAlpha(y)); possibleTotal += numeric_limits::max(); alphaTotal += (alpha7 = lineSrc[stackWidth + 1].getEntryAlpha(y + 1)); possibleTotal += numeric_limits::max(); } } if (alphaTotal == 0 || alphaTotal == possibleTotal) { continue; // no corners set/all corners set } // the terrifying conditional code that follows checks each cube edge for a crossing, gathering // its properties (color, material, normal) if one is present; as before, boundary edges are excluded int crossingCount = 0; const StackArray::Entry& nextEntryY = lineSrc->getEntry(y + 1); if (middleX) { const StackArray::Entry& nextEntryX = lineSrc[1].getEntry(y); const StackArray::Entry& nextEntryXY = lineSrc[1].getEntry(y + 1); if (alpha0 != alpha1) { EdgeCrossing& crossing = crossings[crossingCount++]; crossing.point = glm::vec3(entry.getHermiteX(crossing.normal), 0.0f, 0.0f); crossing.setColorMaterial(alpha0 == 0 ? nextEntryX : entry); } if (alpha1 != alpha3) { EdgeCrossing& crossing = crossings[crossingCount++]; crossing.point = glm::vec3(1.0f, nextEntryX.getHermiteY(crossing.normal), 0.0f); crossing.setColorMaterial(alpha1 == 0 ? nextEntryXY : nextEntryX); } if (alpha2 != alpha3) { EdgeCrossing& crossing = crossings[crossingCount++]; crossing.point = glm::vec3(nextEntryY.getHermiteX(crossing.normal), 1.0f, 0.0f); crossing.setColorMaterial(alpha2 == 0 ? nextEntryXY : nextEntryY); } if (middleZ) { const StackArray::Entry& nextEntryZ = lineSrc[stackWidth].getEntry(y); const StackArray::Entry& nextEntryXZ = lineSrc[stackWidth + 1].getEntry(y); const StackArray::Entry& nextEntryXYZ = lineSrc[stackWidth + 1].getEntry(y + 1); if (alpha1 != alpha5) { EdgeCrossing& crossing = crossings[crossingCount++]; crossing.point = glm::vec3(1.0f, 0.0f, nextEntryX.getHermiteZ(crossing.normal)); crossing.setColorMaterial(alpha1 == 0 ? nextEntryXZ : nextEntryX); } if (alpha3 != alpha7) { EdgeCrossing& crossing = crossings[crossingCount++]; const StackArray::Entry& nextEntryXY = lineSrc[1].getEntry(y + 1); crossing.point = glm::vec3(1.0f, 1.0f, nextEntryXY.getHermiteZ(crossing.normal)); crossing.setColorMaterial(alpha3 == 0 ? nextEntryXYZ : nextEntryXY); } if (alpha4 != alpha5) { EdgeCrossing& crossing = crossings[crossingCount++]; crossing.point = glm::vec3(nextEntryZ.getHermiteX(crossing.normal), 0.0f, 1.0f); crossing.setColorMaterial(alpha4 == 0 ? nextEntryXZ : nextEntryZ); } if (alpha5 != alpha7) { EdgeCrossing& crossing = crossings[crossingCount++]; const StackArray::Entry& nextEntryXZ = lineSrc[stackWidth + 1].getEntry(y); crossing.point = glm::vec3(1.0f, nextEntryXZ.getHermiteY(crossing.normal), 1.0f); crossing.setColorMaterial(alpha5 == 0 ? nextEntryXYZ : nextEntryXZ); } if (alpha6 != alpha7) { EdgeCrossing& crossing = crossings[crossingCount++]; const StackArray::Entry& nextEntryYZ = lineSrc[stackWidth].getEntry(y + 1); crossing.point = glm::vec3(nextEntryYZ.getHermiteX(crossing.normal), 1.0f, 1.0f); crossing.setColorMaterial(alpha6 == 0 ? nextEntryXYZ : nextEntryYZ); } } } if (alpha0 != alpha2) { EdgeCrossing& crossing = crossings[crossingCount++]; crossing.point = glm::vec3(0.0f, entry.getHermiteY(crossing.normal), 0.0f); crossing.setColorMaterial(alpha0 == 0 ? nextEntryY : entry); } if (middleZ) { const StackArray::Entry& nextEntryZ = lineSrc[stackWidth].getEntry(y); const StackArray::Entry& nextEntryYZ = lineSrc[stackWidth].getEntry(y + 1); if (alpha0 != alpha4) { EdgeCrossing& crossing = crossings[crossingCount++]; crossing.point = glm::vec3(0.0f, 0.0f, entry.getHermiteZ(crossing.normal)); crossing.setColorMaterial(alpha0 == 0 ? nextEntryZ : entry); } if (alpha2 != alpha6) { EdgeCrossing& crossing = crossings[crossingCount++]; crossing.point = glm::vec3(0.0f, 1.0f, nextEntryY.getHermiteZ(crossing.normal)); crossing.setColorMaterial(alpha2 == 0 ? nextEntryYZ : nextEntryY); } if (alpha4 != alpha6) { EdgeCrossing& crossing = crossings[crossingCount++]; crossing.point = glm::vec3(0.0f, nextEntryZ.getHermiteY(crossing.normal), 1.0f); crossing.setColorMaterial(alpha4 == 0 ? nextEntryYZ : nextEntryZ); } } glm::vec3 center; glm::vec3 normals[MAX_NORMALS_PER_VERTEX]; int normalCount = 0; const float CREASE_COS_NORMAL = glm::cos(glm::radians(45.0f)); const int MAX_MATERIALS_PER_VERTEX = 4; quint8 materials[] = { 0, 0, 0, 0 }; glm::vec4 materialWeights; float totalWeight = 0.0f; int red = 0, green = 0, blue = 0; for (int i = 0; i < crossingCount; i++) { const EdgeCrossing& crossing = crossings[i]; center += crossing.point; int j = 0; for (; j < normalCount; j++) { if (glm::dot(normals[j], crossing.normal) > CREASE_COS_NORMAL) { normals[j] = safeNormalize(normals[j] + crossing.normal); break; } } if (j == normalCount) { normals[normalCount++] = crossing.normal; } red += qRed(crossing.color); green += qGreen(crossing.color); blue += qBlue(crossing.color); // when assigning a material, search for its presence and, if not found, // place it in the first empty slot if (crossing.material != 0) { for (j = 0; j < MAX_MATERIALS_PER_VERTEX; j++) { if (materials[j] == crossing.material) { materialWeights[j] += 1.0f; totalWeight += 1.0f; break; } else if (materials[j] == 0) { materials[j] = crossing.material; materialWeights[j] = 1.0f; totalWeight += 1.0f; break; } } } } center /= crossingCount; // use a sequence of Givens rotations to perform a QR decomposition // see http://www.cs.rice.edu/~jwarren/papers/techreport02408.pdf glm::mat4 r(0.0f); glm::vec4 bottom; for (int i = 0; i < crossingCount; i++) { const EdgeCrossing& crossing = crossings[i]; bottom = glm::vec4(crossing.normal, glm::dot(crossing.normal, crossing.point - center)); for (int j = 0; j < 4; j++) { float angle = glm::atan(-bottom[j], r[j][j]); float sina = glm::sin(angle); float cosa = glm::cos(angle); for (int k = 0; k < 4; k++) { float tmp = bottom[k]; bottom[k] = sina * r[k][j] + cosa * tmp; r[k][j] = cosa * r[k][j] - sina * tmp; } } } // extract the submatrices, form ata glm::mat3 a(r); glm::vec3 b(r[3]); glm::mat3 atrans = glm::transpose(a); glm::mat3 ata = atrans * a; // find the eigenvalues and eigenvectors of ata // (see http://en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm) glm::mat3 d = ata; glm::quat combinedRotation; const int MAX_ITERATIONS = 20; for (int i = 0; i < MAX_ITERATIONS; i++) { glm::vec3 offDiagonals = glm::abs(glm::vec3(d[1][0], d[2][0], d[2][1])); int largestIndex = (offDiagonals[0] > offDiagonals[1]) ? (offDiagonals[0] > offDiagonals[2] ? 0 : 2) : (offDiagonals[1] > offDiagonals[2] ? 1 : 2); const float DESIRED_PRECISION = 0.00001f; if (offDiagonals[largestIndex] < DESIRED_PRECISION) { break; } int largestJ = (largestIndex == 2) ? 1 : 0; int largestI = (largestIndex == 0) ? 1 : 2; float sjj = d[largestJ][largestJ]; float sii = d[largestI][largestI]; float angle = glm::atan(2.0f * d[largestJ][largestI], sjj - sii) / 2.0f; glm::quat rotation = glm::angleAxis(angle, largestIndex == 0 ? glm::vec3(0.0f, 0.0f, -1.0f) : (largestIndex == 1 ? glm::vec3(0.0f, 1.0f, 0.0f) : glm::vec3(-1.0f, 0.0f, 0.0f))); combinedRotation = glm::normalize(rotation * combinedRotation); glm::mat3 matrix = glm::mat3_cast(combinedRotation); d = matrix * ata * glm::transpose(matrix); } // form the singular matrix from the eigenvalues const float MIN_SINGULAR_THRESHOLD = 0.1f; d[0][0] = (d[0][0] < MIN_SINGULAR_THRESHOLD) ? 0.0f : 1.0f / d[0][0]; d[1][1] = (d[1][1] < MIN_SINGULAR_THRESHOLD) ? 0.0f : 1.0f / d[1][1]; d[2][2] = (d[2][2] < MIN_SINGULAR_THRESHOLD) ? 0.0f : 1.0f / d[2][2]; // compute the pseudo-inverse, ataplus, and use to find the minimizing solution glm::mat3 u = glm::mat3_cast(combinedRotation); glm::mat3 ataplus = glm::transpose(u) * d * u; glm::vec3 solution = (ataplus * atrans * b) + center; // make sure it doesn't fall beyond the cell boundaries center = glm::clamp(solution, 0.0f, 1.0f); if (totalWeight > 0.0f) { materialWeights *= (numeric_limits::max() / totalWeight); } VoxelPoint point = { (glm::vec3(clampedX, y, clampedZ) + center) * scale, { (quint8)(red / crossingCount), (quint8)(green / crossingCount), (quint8)(blue / crossingCount) }, { (char)(normals[0].x * 127.0f), (char)(normals[0].y * 127.0f), (char)(normals[0].z * 127.0f) }, { materials[0], materials[1], materials[2], materials[3] }, { (quint8)materialWeights[0], (quint8)materialWeights[1], (quint8)materialWeights[2], (quint8)materialWeights[3] } }; NormalIndex index = { { vertices.size(), vertices.size(), vertices.size(), vertices.size() } }; vertices.append(point); for (int i = 1; i < normalCount; i++) { index.indices[i] = vertices.size(); point.setNormal(normals[i]); vertices.append(point); } // the first x, y, and z are repeated for the boundary edge; past that, we consider generating // quads for each edge that includes a transition, using indices of previously generated vertices if (x != 0 && z != 0) { int reclampedX = qMin(clampedX, stackWidth - 1); int reclampedZ = qMin(clampedZ, stackHeight - 1); if (alpha0 != alpha1) { quadIndices.insert(qRgb(reclampedX, y, reclampedZ), indices.size()); if (y > 0) { quadIndices.insert(qRgb(reclampedX, y - 1, reclampedZ), indices.size()); } if (reclampedZ > 0) { if (y > 0) { quadIndices.insert(qRgb(reclampedX, y - 1, reclampedZ - 1), indices.size()); } quadIndices.insert(qRgb(reclampedX, y, reclampedZ - 1), indices.size()); } const NormalIndex& index1 = lastIndexY; const NormalIndex& index2 = lastIndicesZ[x].get(y - 1); const NormalIndex& index3 = lastIndicesZ[x].get(y); const glm::vec3& first = vertices.at(index.indices[0]).vertex; glm::vec3 normal = glm::cross(vertices.at(index1.indices[0]).vertex - first, vertices.at(index3.indices[0]).vertex - first); if (alpha0 == 0) { // quad faces negative x indices.append(index3.getClosestIndex(normal = -normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index1.getClosestIndex(normal, vertices)); } else { // quad faces positive x indices.append(index1.getClosestIndex(normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index3.getClosestIndex(normal, vertices)); } indices.append(index.getClosestIndex(normal, vertices)); } if (alpha0 != alpha2) { quadIndices.insert(qRgb(reclampedX, y, reclampedZ), indices.size()); if (reclampedX > 0) { quadIndices.insert(qRgb(reclampedX - 1, y, reclampedZ), indices.size()); if (reclampedZ > 0) { quadIndices.insert(qRgb(reclampedX - 1, y, reclampedZ - 1), indices.size()); } } if (reclampedZ > 0) { quadIndices.insert(qRgb(reclampedX, y, reclampedZ - 1), indices.size()); } const NormalIndex& index1 = lastIndicesZ[x].get(y); const NormalIndex& index2 = lastIndicesZ[x - 1].get(y); const NormalIndex& index3 = lastIndicesX.get(y); const glm::vec3& first = vertices.at(index.indices[0]).vertex; glm::vec3 normal = glm::cross(vertices.at(index3.indices[0]).vertex - first, vertices.at(index1.indices[0]).vertex - first); if (alpha0 == 0) { // quad faces negative y indices.append(index3.getClosestIndex(normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index1.getClosestIndex(normal, vertices)); } else { // quad faces positive y indices.append(index1.getClosestIndex(normal = -normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index3.getClosestIndex(normal, vertices)); } indices.append(index.getClosestIndex(normal, vertices)); } if (alpha0 != alpha4) { quadIndices.insert(qRgb(reclampedX, y, reclampedZ), indices.size()); if (reclampedX > 0) { quadIndices.insert(qRgb(reclampedX - 1, y, reclampedZ), indices.size()); if (y > 0) { quadIndices.insert(qRgb(reclampedX - 1, y - 1, reclampedZ), indices.size()); } } if (y > 0) { quadIndices.insert(qRgb(reclampedX, y - 1, reclampedZ), indices.size()); } const NormalIndex& index1 = lastIndexY; const NormalIndex& index2 = lastIndicesX.get(y - 1); const NormalIndex& index3 = lastIndicesX.get(y); const glm::vec3& first = vertices.at(index.indices[0]).vertex; glm::vec3 normal = glm::cross(vertices.at(index1.indices[0]).vertex - first, vertices.at(index3.indices[0]).vertex - first); if (alpha0 == 0) { // quad faces negative z indices.append(index1.getClosestIndex(normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index3.getClosestIndex(normal, vertices)); } else { // quad faces positive z indices.append(index3.getClosestIndex(normal = -normal, vertices)); indices.append(index2.getClosestIndex(normal, vertices)); indices.append(index1.getClosestIndex(normal, vertices)); } indices.append(index.getClosestIndex(normal, vertices)); } } lastIndexY = index; indicesX[y - position] = index; indicesZ[x][y - position] = index; } } if (x != 0) { lineSrc++; } indicesX.swap(lastIndicesX); } if (z != 0) { src += stackWidth; } indicesZ.swap(lastIndicesZ); } _voxels = new VoxelBuffer(vertices, indices, hermiteSegments, quadIndices, width, node->getStack()->getMaterials()); } if (_voxels) { _voxels->render(translation, rotation, glm::vec3(scale.x, scale.x, scale.x), cursor); } if (cursor) { bufferPair.first.bind(); bufferPair.second.bind(); glPushMatrix(); glTranslatef(translation.x, translation.y, translation.z); glm::vec3 axis = glm::axis(rotation); glRotatef(glm::degrees(glm::angle(rotation)), axis.x, axis.y, axis.z); glScalef(scale.x, scale.y, scale.z); HeightfieldPoint* point = 0; glVertexPointer(3, GL_FLOAT, sizeof(HeightfieldPoint), &point->vertex); glTexCoordPointer(2, GL_FLOAT, sizeof(HeightfieldPoint), &point->textureCoord); glBindTexture(GL_TEXTURE_2D, _heightTextureID); glDrawRangeElements(GL_TRIANGLES, 0, vertexCount - 1, indexCount, GL_UNSIGNED_INT, 0); glBindTexture(GL_TEXTURE_2D, 0); glPopMatrix(); bufferPair.first.release(); bufferPair.second.release(); return; } HeightfieldBaseLayerBatch baseBatch; baseBatch.vertexBuffer = &bufferPair.first; baseBatch.indexBuffer = &bufferPair.second; baseBatch.translation = translation; baseBatch.rotation = rotation; baseBatch.scale = scale; baseBatch.vertexCount = vertexCount; baseBatch.indexCount = indexCount; baseBatch.heightTextureID = _heightTextureID; baseBatch.heightScale = glm::vec4(1.0f / width, 1.0f / height, (innerWidth - 1) / -2.0f, (innerHeight - 1) / -2.0f); baseBatch.colorTextureID = _colorTextureID; baseBatch.colorScale = glm::vec2((float)width / innerWidth, (float)height / innerHeight); Application::getInstance()->getMetavoxels()->addHeightfieldBaseBatch(baseBatch); if (!_networkTextures.isEmpty()) { HeightfieldSplatBatch splatBatch; splatBatch.vertexBuffer = &bufferPair.first; splatBatch.indexBuffer = &bufferPair.second; splatBatch.translation = translation; splatBatch.rotation = rotation; splatBatch.scale = scale; splatBatch.vertexCount = vertexCount; splatBatch.indexCount = indexCount; splatBatch.heightTextureID = _heightTextureID; splatBatch.heightScale = glm::vec4(1.0f / width, 1.0f / height, 0.0f, 0.0f); splatBatch.materialTextureID = _materialTextureID; splatBatch.textureScale = glm::vec2((float)width / innerWidth, (float)height / innerHeight); splatBatch.splatTextureOffset = glm::vec2( glm::dot(translation, rotation * glm::vec3(1.0f, 0.0f, 0.0f)) / scale.x, glm::dot(translation, rotation * glm::vec3(0.0f, 0.0f, 1.0f)) / scale.z); const QVector& materials = node->getMaterial()->getMaterials(); for (int i = 0; i < materials.size(); i += SPLAT_COUNT) { for (int j = 0; j < SPLAT_COUNT; j++) { int index = i + j; if (index < _networkTextures.size()) { const NetworkTexturePointer& texture = _networkTextures.at(index); if (texture) { MaterialObject* material = static_cast(materials.at(index).data()); splatBatch.splatTextureScalesS[j] = scale.x / material->getScaleS(); splatBatch.splatTextureScalesT[j] = scale.z / material->getScaleT(); splatBatch.splatTextureIDs[j] = texture->getID(); } else { splatBatch.splatTextureIDs[j] = 0; } } else { splatBatch.splatTextureIDs[j] = 0; } } splatBatch.materialIndex = i; Application::getInstance()->getMetavoxels()->addHeightfieldSplatBatch(splatBatch); } } } QHash HeightfieldNodeRenderer::_bufferPairs;