// // Sound.cpp // libraries/audio/src // // Created by Stephen Birarda on 1/2/2014. // Copyright 2014 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include #include #include #include #include #include #include #include #include #include #include "AudioRingBuffer.h" #include "AudioFormat.h" #include "AudioBuffer.h" #include "AudioEditBuffer.h" #include "Sound.h" static int soundMetaTypeId = qRegisterMetaType(); QScriptValue soundSharedPointerToScriptValue(QScriptEngine* engine, SharedSoundPointer const& in) { return engine->newQObject(in.data()); } void soundSharedPointerFromScriptValue(const QScriptValue& object, SharedSoundPointer &out) { out = SharedSoundPointer(qobject_cast(object.toQObject())); } QScriptValue soundPointerToScriptValue(QScriptEngine* engine, Sound* const& in) { return engine->newQObject(in); } void soundPointerFromScriptValue(const QScriptValue &object, Sound* &out) { out = qobject_cast(object.toQObject()); } Sound::Sound(const QUrl& url, bool isStereo) : Resource(url), _isStereo(isStereo), _isReady(false) { } void Sound::downloadFinished(QNetworkReply* reply) { // replace our byte array with the downloaded data QByteArray rawAudioByteArray = reply->readAll(); if (reply->hasRawHeader("Content-Type")) { QByteArray headerContentType = reply->rawHeader("Content-Type"); // WAV audio file encountered if (headerContentType == "audio/x-wav" || headerContentType == "audio/wav" || headerContentType == "audio/wave") { QByteArray outputAudioByteArray; interpretAsWav(rawAudioByteArray, outputAudioByteArray); downSample(outputAudioByteArray); } else { // check if this was a stereo raw file // since it's raw the only way for us to know that is if the file was called .stereo.raw if (reply->url().fileName().toLower().endsWith("stereo.raw")) { _isStereo = true; qDebug() << "Processing sound from" << reply->url() << "as stereo audio file."; } // Process as RAW file downSample(rawAudioByteArray); } trimFrames(); } else { qDebug() << "Network reply without 'Content-Type'."; } _isReady = true; reply->deleteLater(); } void Sound::downSample(const QByteArray& rawAudioByteArray) { // assume that this was a RAW file and is now an array of samples that are // signed, 16-bit, 48Khz, mono // we want to convert it to the format that the audio-mixer wants // which is signed, 16-bit, 24Khz, mono _byteArray.resize(rawAudioByteArray.size() / 2); int numSourceSamples = rawAudioByteArray.size() / sizeof(int16_t); int16_t* sourceSamples = (int16_t*) rawAudioByteArray.data(); int16_t* destinationSamples = (int16_t*) _byteArray.data(); if (_isStereo) { for (int i = 0; i < numSourceSamples; i += 4) { destinationSamples[i / 2] = (sourceSamples[i] / 2) + (sourceSamples[i + 2] / 2); destinationSamples[(i / 2) + 1] = (sourceSamples[i + 1] / 2) + (sourceSamples[i + 3] / 2); } } else { for (int i = 1; i < numSourceSamples; i += 2) { if (i + 1 >= numSourceSamples) { destinationSamples[(i - 1) / 2] = (sourceSamples[i - 1] / 2) + (sourceSamples[i] / 2); } else { destinationSamples[(i - 1) / 2] = (sourceSamples[i - 1] / 4) + (sourceSamples[i] / 2) + (sourceSamples[i + 1] / 4); } } } } void Sound::trimFrames() { const uint32_t inputFrameCount = _byteArray.size() / sizeof(int16_t); const uint32_t trimCount = 1024; // number of leading and trailing frames to trim if (inputFrameCount <= (2 * trimCount)) { return; } int16_t* inputFrameData = (int16_t*)_byteArray.data(); AudioEditBufferFloat32 editBuffer(1, inputFrameCount); editBuffer.copyFrames(1, inputFrameCount, inputFrameData, false /*copy in*/); editBuffer.linearFade(0, trimCount, true); editBuffer.linearFade(inputFrameCount - trimCount, inputFrameCount, false); editBuffer.copyFrames(1, inputFrameCount, inputFrameData, true /*copy out*/); } // // Format description from https://ccrma.stanford.edu/courses/422/projects/WaveFormat/ // // The header for a WAV file looks like this: // Positions Sample Value Description // 00-03 "RIFF" Marks the file as a riff file. Characters are each 1 byte long. // 04-07 File size (int) Size of the overall file - 8 bytes, in bytes (32-bit integer). // 08-11 "WAVE" File Type Header. For our purposes, it always equals "WAVE". // 12-15 "fmt " Format chunk marker. // 16-19 16 Length of format data as listed above // 20-21 1 Type of format: (1=PCM, 257=Mu-Law, 258=A-Law, 259=ADPCM) - 2 byte integer // 22-23 2 Number of Channels - 2 byte integer // 24-27 44100 Sample Rate - 32 byte integer. Sample Rate = Number of Samples per second, or Hertz. // 28-31 176400 (Sample Rate * BitsPerSample * Channels) / 8. // 32-33 4 (BitsPerSample * Channels) / 8 - 8 bit mono2 - 8 bit stereo/16 bit mono4 - 16 bit stereo // 34-35 16 Bits per sample // 36-39 "data" Chunk header. Marks the beginning of the data section. // 40-43 File size (int) Size of the data section. // 44-?? Actual sound data // Sample values are given above for a 16-bit stereo source. // struct chunk { char id[4]; quint32 size; }; struct RIFFHeader { chunk descriptor; // "RIFF" char type[4]; // "WAVE" }; struct WAVEHeader { chunk descriptor; quint16 audioFormat; // Format type: 1=PCM, 257=Mu-Law, 258=A-Law, 259=ADPCM quint16 numChannels; // Number of channels: 1=mono, 2=stereo quint32 sampleRate; quint32 byteRate; // Sample rate * Number of Channels * Bits per sample / 8 quint16 blockAlign; // (Number of Channels * Bits per sample) / 8.1 quint16 bitsPerSample; }; struct DATAHeader { chunk descriptor; }; struct CombinedHeader { RIFFHeader riff; WAVEHeader wave; }; void Sound::interpretAsWav(const QByteArray& inputAudioByteArray, QByteArray& outputAudioByteArray) { CombinedHeader fileHeader; // Create a data stream to analyze the data QDataStream waveStream(const_cast(&inputAudioByteArray), QIODevice::ReadOnly); if (waveStream.readRawData(reinterpret_cast(&fileHeader), sizeof(CombinedHeader)) == sizeof(CombinedHeader)) { if (strncmp(fileHeader.riff.descriptor.id, "RIFF", 4) == 0) { waveStream.setByteOrder(QDataStream::LittleEndian); } else { // descriptor.id == "RIFX" also signifies BigEndian file // waveStream.setByteOrder(QDataStream::BigEndian); qDebug() << "Currently not supporting big-endian audio files."; return; } if (strncmp(fileHeader.riff.type, "WAVE", 4) != 0 || strncmp(fileHeader.wave.descriptor.id, "fmt", 3) != 0) { qDebug() << "Not a WAVE Audio file."; return; } // added the endianess check as an extra level of security if (qFromLittleEndian(fileHeader.wave.audioFormat) != 1) { qDebug() << "Currently not supporting non PCM audio files."; return; } if (qFromLittleEndian(fileHeader.wave.numChannels) == 2) { _isStereo = true; } else if (qFromLittleEndian(fileHeader.wave.numChannels) > 2) { qDebug() << "Currently not support audio files with more than 2 channels."; } if (qFromLittleEndian(fileHeader.wave.bitsPerSample) != 16) { qDebug() << "Currently not supporting non 16bit audio files."; return; } if (qFromLittleEndian(fileHeader.wave.sampleRate) != 48000) { qDebug() << "Currently not supporting non 48KHz audio files."; return; } // Skip any extra data in the WAVE chunk waveStream.skipRawData(fileHeader.wave.descriptor.size - (sizeof(WAVEHeader) - sizeof(chunk))); // Read off remaining header information DATAHeader dataHeader; while (true) { // Read chunks until the "data" chunk is found if (waveStream.readRawData(reinterpret_cast(&dataHeader), sizeof(DATAHeader)) == sizeof(DATAHeader)) { if (strncmp(dataHeader.descriptor.id, "data", 4) == 0) { break; } waveStream.skipRawData(dataHeader.descriptor.size); } else { qDebug() << "Could not read wav audio data header."; return; } } // Now pull out the data quint32 outputAudioByteArraySize = qFromLittleEndian(dataHeader.descriptor.size); outputAudioByteArray.resize(outputAudioByteArraySize); if (waveStream.readRawData(outputAudioByteArray.data(), outputAudioByteArraySize) != (int)outputAudioByteArraySize) { qDebug() << "Error reading WAV file"; } } else { qDebug() << "Could not read wav audio file header."; return; } }