// // AudioNoiseGate.cpp // interface/src/audio // // Created by Stephen Birarda on 2014-12-16. // Copyright 2014 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include #include #include #include "AudioNoiseGate.h" const float AudioNoiseGate::CLIPPING_THRESHOLD = 0.90f; AudioNoiseGate::AudioNoiseGate() : _inputFrameCounter(0), _lastLoudness(0.0f), _quietestFrame(std::numeric_limits::max()), _loudestFrame(0.0f), _didClipInLastFrame(false), _dcOffset(0.0f), _measuredFloor(0.0f), _sampleCounter(0), _isOpen(false), _framesToClose(0) { } void AudioNoiseGate::removeDCOffset(int16_t* samples, int numSamples) { // // DC Offset correction // // Measure the DC offset over a trailing number of frames, and remove it from the input signal. // This causes the noise background measurements and server muting to be more accurate. Many off-board // ADC's have a noticeable DC offset. // const float DC_OFFSET_AVERAGING = 0.99f; float measuredDcOffset = 0.0f; // Remove trailing DC offset from samples for (int i = 0; i < numSamples; i++) { measuredDcOffset += samples[i]; samples[i] -= (int16_t) _dcOffset; } // Update measured DC offset measuredDcOffset /= numSamples; if (_dcOffset == 0.0f) { // On first frame, copy over measured offset _dcOffset = measuredDcOffset; } else { _dcOffset = DC_OFFSET_AVERAGING * _dcOffset + (1.0f - DC_OFFSET_AVERAGING) * measuredDcOffset; } } void AudioNoiseGate::gateSamples(int16_t* samples, int numSamples) { // // Impose Noise Gate // // The Noise Gate is used to reject constant background noise by measuring the noise // floor observed at the microphone and then opening the 'gate' to allow microphone // signals to be transmitted when the microphone samples average level exceeds a multiple // of the noise floor. // // NOISE_GATE_HEIGHT: How loud you have to speak relative to noise background to open the gate. // Make this value lower for more sensitivity and less rejection of noise. // NOISE_GATE_WIDTH: The number of samples in an audio frame for which the height must be exceeded // to open the gate. // NOISE_GATE_CLOSE_FRAME_DELAY: Once the noise is below the gate height for the frame, how many frames // will we wait before closing the gate. // NOISE_GATE_FRAMES_TO_AVERAGE: How many audio frames should we average together to compute noise floor. // More means better rejection but also can reject continuous things like singing. // NUMBER_OF_NOISE_SAMPLE_FRAMES: How often should we re-evaluate the noise floor? float loudness = 0; int thisSample = 0; int samplesOverNoiseGate = 0; const float NOISE_GATE_HEIGHT = 7.0f; const int NOISE_GATE_WIDTH = 5; const int NOISE_GATE_CLOSE_FRAME_DELAY = 5; const int NOISE_GATE_FRAMES_TO_AVERAGE = 5; // Check clipping, and check if should open noise gate _didClipInLastFrame = false; for (int i = 0; i < numSamples; i++) { thisSample = std::abs(samples[i]); if (thisSample >= ((float) AudioConstants::MAX_SAMPLE_VALUE * CLIPPING_THRESHOLD)) { _didClipInLastFrame = true; } loudness += thisSample; // Noise Reduction: Count peaks above the average loudness if (thisSample > (_measuredFloor * NOISE_GATE_HEIGHT)) { samplesOverNoiseGate++; } } _lastLoudness = fabs(loudness / numSamples); if (_quietestFrame > _lastLoudness) { _quietestFrame = _lastLoudness; } if (_loudestFrame < _lastLoudness) { _loudestFrame = _lastLoudness; } const int FRAMES_FOR_NOISE_DETECTION = 400; if (_inputFrameCounter++ > FRAMES_FOR_NOISE_DETECTION) { _quietestFrame = std::numeric_limits::max(); _loudestFrame = 0.0f; _inputFrameCounter = 0; } // If Noise Gate is enabled, check and turn the gate on and off float averageOfAllSampleFrames = 0.0f; _sampleFrames[_sampleCounter++] = _lastLoudness; if (_sampleCounter == NUMBER_OF_NOISE_SAMPLE_FRAMES) { float smallestSample = std::numeric_limits::max(); for (int i = 0; i <= NUMBER_OF_NOISE_SAMPLE_FRAMES - NOISE_GATE_FRAMES_TO_AVERAGE; i += NOISE_GATE_FRAMES_TO_AVERAGE) { float thisAverage = 0.0f; for (int j = i; j < i + NOISE_GATE_FRAMES_TO_AVERAGE; j++) { thisAverage += _sampleFrames[j]; averageOfAllSampleFrames += _sampleFrames[j]; } thisAverage /= NOISE_GATE_FRAMES_TO_AVERAGE; if (thisAverage < smallestSample) { smallestSample = thisAverage; } } averageOfAllSampleFrames /= NUMBER_OF_NOISE_SAMPLE_FRAMES; _measuredFloor = smallestSample; _sampleCounter = 0; } if (samplesOverNoiseGate > NOISE_GATE_WIDTH) { _isOpen = true; _framesToClose = NOISE_GATE_CLOSE_FRAME_DELAY; } else { if (--_framesToClose == 0) { _isOpen = false; } } if (!_isOpen) { memset(samples, 0, numSamples * sizeof(int16_t)); _lastLoudness = 0; } }