// // Created by Andrew Meadows 2017.01.17 // Copyright 2017 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include "CauterizedModel.h" #include #include #include "AbstractViewStateInterface.h" #include "MeshPartPayload.h" #include "CauterizedMeshPartPayload.h" #include "RenderUtilsLogging.h" CauterizedModel::CauterizedModel(QObject* parent) : Model(parent) { } CauterizedModel::~CauterizedModel() { } void CauterizedModel::deleteGeometry() { Model::deleteGeometry(); _cauterizeMeshStates.clear(); } bool CauterizedModel::updateGeometry() { bool needsFullUpdate = Model::updateGeometry(); if (_isCauterized && needsFullUpdate) { assert(_cauterizeMeshStates.empty()); const HFMModel& hfmModel = getHFMModel(); foreach (const HFMMesh& mesh, hfmModel.meshes) { Model::MeshState state; if (_useDualQuaternionSkinning) { state.clusterDualQuaternions.resize(mesh.clusters.size()); _cauterizeMeshStates.append(state); } else { state.clusterMatrices.resize(mesh.clusters.size()); _cauterizeMeshStates.append(state); } } } return needsFullUpdate; } void CauterizedModel::createRenderItemSet() { if (_isCauterized) { assert(isLoaded()); const auto& meshes = _renderGeometry->getMeshes(); // all of our mesh vectors must match in size if (meshes.size() != _meshStates.size()) { qCDebug(renderutils) << "WARNING!!!! Mesh Sizes don't match! We will not segregate mesh groups yet."; return; } // We should not have any existing renderItems if we enter this section of code Q_ASSERT(_modelMeshRenderItems.isEmpty()); _modelMeshRenderItems.clear(); _modelMeshMaterialNames.clear(); _modelMeshRenderItemShapes.clear(); Transform transform; transform.setTranslation(_translation); transform.setRotation(_rotation); Transform offset; offset.setScale(_scale); offset.postTranslate(_offset); // Run through all of the meshes, and place them into their segregated, but unsorted buckets int shapeID = 0; uint32_t numMeshes = (uint32_t)meshes.size(); const HFMModel& hfmModel = getHFMModel(); for (uint32_t i = 0; i < numMeshes; i++) { const auto& mesh = meshes.at(i); if (!mesh) { continue; } // Create the render payloads int numParts = (int)mesh->getNumParts(); for (int partIndex = 0; partIndex < numParts; partIndex++) { initializeBlendshapes(hfmModel.meshes[i], i); auto ptr = std::make_shared(shared_from_this(), i, partIndex, shapeID, transform, offset); _modelMeshRenderItems << std::static_pointer_cast(ptr); auto material = getGeometry()->getShapeMaterial(shapeID); _modelMeshMaterialNames.push_back(material ? material->getName() : ""); _modelMeshRenderItemShapes.emplace_back(ShapeInfo{ (int)i }); shapeID++; } } _blendshapeOffsetsInitialized = true; } else { Model::createRenderItemSet(); } } void CauterizedModel::updateClusterMatrices() { PerformanceTimer perfTimer("CauterizedModel::updateClusterMatrices"); if (!_needsUpdateClusterMatrices || !isLoaded()) { return; } _needsUpdateClusterMatrices = false; const HFMModel& hfmModel = getHFMModel(); for (int i = 0; i < (int)_meshStates.size(); i++) { Model::MeshState& state = _meshStates[i]; const HFMMesh& mesh = hfmModel.meshes.at(i); int meshIndex = i; for (int j = 0; j < mesh.clusters.size(); j++) { const HFMCluster& cluster = mesh.clusters.at(j); int clusterIndex = j; if (_useDualQuaternionSkinning) { auto jointPose = _rig.getJointPose(cluster.jointIndex); Transform jointTransform(jointPose.rot(), jointPose.scale(), jointPose.trans()); Transform clusterTransform; Transform::mult(clusterTransform, jointTransform, _rig.getAnimSkeleton()->getClusterBindMatricesOriginalValues(meshIndex, clusterIndex).inverseBindTransform); state.clusterDualQuaternions[j] = Model::TransformDualQuaternion(clusterTransform); state.clusterDualQuaternions[j].setCauterizationParameters(0.0f, jointPose.trans()); } else { auto jointMatrix = _rig.getJointTransform(cluster.jointIndex); glm_mat4u_mul(jointMatrix, _rig.getAnimSkeleton()->getClusterBindMatricesOriginalValues(meshIndex, clusterIndex).inverseBindMatrix, state.clusterMatrices[j]); } } } // as an optimization, don't build cautrizedClusterMatrices if the boneSet is empty. if (!_cauterizeBoneSet.empty()) { AnimPose cauterizePose = _rig.getJointPose(_rig.indexOfJoint("Neck")); cauterizePose.scale() = glm::vec3(0.0001f, 0.0001f, 0.0001f); static const glm::mat4 zeroScale( glm::vec4(0.0001f, 0.0f, 0.0f, 0.0f), glm::vec4(0.0f, 0.0001f, 0.0f, 0.0f), glm::vec4(0.0f, 0.0f, 0.0001f, 0.0f), glm::vec4(0.0f, 0.0f, 0.0f, 1.0f)); auto cauterizeMatrix = _rig.getJointTransform(_rig.indexOfJoint("Neck")) * zeroScale; for (int i = 0; i < _cauterizeMeshStates.size(); i++) { Model::MeshState& state = _cauterizeMeshStates[i]; const HFMMesh& mesh = hfmModel.meshes.at(i); int meshIndex = i; for (int j = 0; j < mesh.clusters.size(); j++) { const HFMCluster& cluster = mesh.clusters.at(j); int clusterIndex = j; if (_useDualQuaternionSkinning) { if (_cauterizeBoneSet.find(cluster.jointIndex) == _cauterizeBoneSet.end()) { // not cauterized so just copy the value from the non-cauterized version. state.clusterDualQuaternions[j] = _meshStates[i].clusterDualQuaternions[j]; } else { Transform jointTransform(cauterizePose.rot(), cauterizePose.scale(), cauterizePose.trans()); Transform clusterTransform; Transform::mult(clusterTransform, jointTransform, _rig.getAnimSkeleton()->getClusterBindMatricesOriginalValues(meshIndex, clusterIndex).inverseBindTransform); state.clusterDualQuaternions[j] = Model::TransformDualQuaternion(clusterTransform); state.clusterDualQuaternions[j].setCauterizationParameters(1.0f, cauterizePose.trans()); } } else { if (_cauterizeBoneSet.find(cluster.jointIndex) == _cauterizeBoneSet.end()) { // not cauterized so just copy the value from the non-cauterized version. state.clusterMatrices[j] = _meshStates[i].clusterMatrices[j]; } else { glm_mat4u_mul(cauterizeMatrix, _rig.getAnimSkeleton()->getClusterBindMatricesOriginalValues(meshIndex, clusterIndex).inverseBindMatrix, state.clusterMatrices[j]); } } } } } // post the blender if we're not currently waiting for one to finish auto modelBlender = DependencyManager::get(); if (_blendshapeOffsetsInitialized && modelBlender->shouldComputeBlendshapes() && hfmModel.hasBlendedMeshes() && _blendshapeCoefficients != _blendedBlendshapeCoefficients) { _blendedBlendshapeCoefficients = _blendshapeCoefficients; modelBlender->noteRequiresBlend(getThisPointer()); } } void CauterizedModel::updateRenderItems() { if (_isCauterized) { if (!_addedToScene) { return; } _needsUpdateClusterMatrices = true; _renderItemsNeedUpdate = false; // queue up this work for later processing, at the end of update and just before rendering. // the application will ensure only the last lambda is actually invoked. void* key = (void*)this; std::weak_ptr weakSelf = std::dynamic_pointer_cast(shared_from_this()); AbstractViewStateInterface::instance()->pushPostUpdateLambda(key, [weakSelf]() { // do nothing, if the model has already been destroyed. auto self = weakSelf.lock(); if (!self || !self->isLoaded()) { return; } // lazy update of cluster matrices used for rendering. We need to update them here, so we can correctly update the bounding box. self->updateClusterMatrices(); render::ScenePointer scene = AbstractViewStateInterface::instance()->getMain3DScene(); Transform modelTransform; modelTransform.setTranslation(self->getTranslation()); modelTransform.setRotation(self->getRotation()); bool isWireframe = self->isWireframe(); auto renderItemKeyGlobalFlags = self->getRenderItemKeyGlobalFlags(); bool enableCauterization = self->getEnableCauterization(); render::Transaction transaction; for (int i = 0; i < (int)self->_modelMeshRenderItemIDs.size(); i++) { auto itemID = self->_modelMeshRenderItemIDs[i]; auto meshIndex = self->_modelMeshRenderItemShapes[i].meshIndex; const auto& meshState = self->getMeshState(meshIndex); const auto& cauterizedMeshState = self->getCauterizeMeshState(meshIndex); bool invalidatePayloadShapeKey = self->shouldInvalidatePayloadShapeKey(meshIndex); bool useDualQuaternionSkinning = self->getUseDualQuaternionSkinning(); transaction.updateItem(itemID, [modelTransform, meshState, useDualQuaternionSkinning, cauterizedMeshState, invalidatePayloadShapeKey, isWireframe, renderItemKeyGlobalFlags, enableCauterization](ModelMeshPartPayload& mmppData) { CauterizedMeshPartPayload& data = static_cast(mmppData); if (useDualQuaternionSkinning) { data.updateClusterBuffer(meshState.clusterDualQuaternions, cauterizedMeshState.clusterDualQuaternions); } else { data.updateClusterBuffer(meshState.clusterMatrices, cauterizedMeshState.clusterMatrices); } Transform renderTransform = modelTransform; if (useDualQuaternionSkinning) { if (meshState.clusterDualQuaternions.size() == 1) { const auto& dq = meshState.clusterDualQuaternions[0]; Transform transform(dq.getRotation(), dq.getScale(), dq.getTranslation()); renderTransform = modelTransform.worldTransform(transform); } } else { if (meshState.clusterMatrices.size() == 1) { renderTransform = modelTransform.worldTransform(Transform(meshState.clusterMatrices[0])); } } data.updateTransformForSkinnedMesh(renderTransform, modelTransform); renderTransform = modelTransform; if (useDualQuaternionSkinning) { if (cauterizedMeshState.clusterDualQuaternions.size() == 1) { const auto& dq = cauterizedMeshState.clusterDualQuaternions[0]; Transform transform(dq.getRotation(), dq.getScale(), dq.getTranslation()); renderTransform = modelTransform.worldTransform(Transform(transform)); } } else { if (cauterizedMeshState.clusterMatrices.size() == 1) { renderTransform = modelTransform.worldTransform(Transform(cauterizedMeshState.clusterMatrices[0])); } } data.updateTransformForCauterizedMesh(renderTransform); data.setEnableCauterization(enableCauterization); data.updateKey(renderItemKeyGlobalFlags); data.setShapeKey(invalidatePayloadShapeKey, isWireframe, useDualQuaternionSkinning); }); } scene->enqueueTransaction(transaction); }); } else { Model::updateRenderItems(); } } const Model::MeshState& CauterizedModel::getCauterizeMeshState(int index) const { assert((size_t)index < _meshStates.size()); return _cauterizeMeshStates.at(index); }