// // ShapeFactory.cpp // libraries/physcis/src // // Created by Andrew Meadows 2014.12.01 // Copyright 2014 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include #include #include // for MILLIMETERS_PER_METER #include "ShapeFactory.h" #include "BulletUtil.h" // These are the same normalized directions used by the btShapeHull class. // 12 points for the face centers of a duodecohedron plus another 30 points // for the midpoints the edges, for a total of 42. const uint32_t NUM_UNIT_SPHERE_DIRECTIONS = 42; static const btVector3 _unitSphereDirections[NUM_UNIT_SPHERE_DIRECTIONS] = { btVector3(btScalar(0.000000) , btScalar(-0.000000),btScalar(-1.000000)), btVector3(btScalar(0.723608) , btScalar(-0.525725),btScalar(-0.447219)), btVector3(btScalar(-0.276388) , btScalar(-0.850649),btScalar(-0.447219)), btVector3(btScalar(-0.894426) , btScalar(-0.000000),btScalar(-0.447216)), btVector3(btScalar(-0.276388) , btScalar(0.850649),btScalar(-0.447220)), btVector3(btScalar(0.723608) , btScalar(0.525725),btScalar(-0.447219)), btVector3(btScalar(0.276388) , btScalar(-0.850649),btScalar(0.447220)), btVector3(btScalar(-0.723608) , btScalar(-0.525725),btScalar(0.447219)), btVector3(btScalar(-0.723608) , btScalar(0.525725),btScalar(0.447219)), btVector3(btScalar(0.276388) , btScalar(0.850649),btScalar(0.447219)), btVector3(btScalar(0.894426) , btScalar(0.000000),btScalar(0.447216)), btVector3(btScalar(-0.000000) , btScalar(0.000000),btScalar(1.000000)), btVector3(btScalar(0.425323) , btScalar(-0.309011),btScalar(-0.850654)), btVector3(btScalar(-0.162456) , btScalar(-0.499995),btScalar(-0.850654)), btVector3(btScalar(0.262869) , btScalar(-0.809012),btScalar(-0.525738)), btVector3(btScalar(0.425323) , btScalar(0.309011),btScalar(-0.850654)), btVector3(btScalar(0.850648) , btScalar(-0.000000),btScalar(-0.525736)), btVector3(btScalar(-0.525730) , btScalar(-0.000000),btScalar(-0.850652)), btVector3(btScalar(-0.688190) , btScalar(-0.499997),btScalar(-0.525736)), btVector3(btScalar(-0.162456) , btScalar(0.499995),btScalar(-0.850654)), btVector3(btScalar(-0.688190) , btScalar(0.499997),btScalar(-0.525736)), btVector3(btScalar(0.262869) , btScalar(0.809012),btScalar(-0.525738)), btVector3(btScalar(0.951058) , btScalar(0.309013),btScalar(0.000000)), btVector3(btScalar(0.951058) , btScalar(-0.309013),btScalar(0.000000)), btVector3(btScalar(0.587786) , btScalar(-0.809017),btScalar(0.000000)), btVector3(btScalar(0.000000) , btScalar(-1.000000),btScalar(0.000000)), btVector3(btScalar(-0.587786) , btScalar(-0.809017),btScalar(0.000000)), btVector3(btScalar(-0.951058) , btScalar(-0.309013),btScalar(-0.000000)), btVector3(btScalar(-0.951058) , btScalar(0.309013),btScalar(-0.000000)), btVector3(btScalar(-0.587786) , btScalar(0.809017),btScalar(-0.000000)), btVector3(btScalar(-0.000000) , btScalar(1.000000),btScalar(-0.000000)), btVector3(btScalar(0.587786) , btScalar(0.809017),btScalar(-0.000000)), btVector3(btScalar(0.688190) , btScalar(-0.499997),btScalar(0.525736)), btVector3(btScalar(-0.262869) , btScalar(-0.809012),btScalar(0.525738)), btVector3(btScalar(-0.850648) , btScalar(0.000000),btScalar(0.525736)), btVector3(btScalar(-0.262869) , btScalar(0.809012),btScalar(0.525738)), btVector3(btScalar(0.688190) , btScalar(0.499997),btScalar(0.525736)), btVector3(btScalar(0.525730) , btScalar(0.000000),btScalar(0.850652)), btVector3(btScalar(0.162456) , btScalar(-0.499995),btScalar(0.850654)), btVector3(btScalar(-0.425323) , btScalar(-0.309011),btScalar(0.850654)), btVector3(btScalar(-0.425323) , btScalar(0.309011),btScalar(0.850654)), btVector3(btScalar(0.162456) , btScalar(0.499995),btScalar(0.850654)) }; btConvexHullShape* ShapeFactory::createConvexHull(const QVector& points) { assert(points.size() > 0); btConvexHullShape* hull = new btConvexHullShape(); glm::vec3 center = points[0]; glm::vec3 maxCorner = center; glm::vec3 minCorner = center; for (int i = 1; i < points.size(); i++) { center += points[i]; maxCorner = glm::max(maxCorner, points[i]); minCorner = glm::min(minCorner, points[i]); } center /= (float)(points.size()); float margin = hull->getMargin(); // Bullet puts "margins" around all the collision shapes. This can cause objects that use ConvexHull shapes // to have visible gaps between them and the surface they touch. One option is to reduce the size of the margin // but this can reduce the performance and stability of the simulation (e.g. the GJK algorithm will fail to provide // nearest contact points and narrow-phase collisions will fall into more expensive code paths). Alternatively // one can shift the geometry of the shape to make the margin surface approximately close to the visible surface. // This is the strategy we try, but if the object is too small then we start to reduce the margin down to some minimum. const float MIN_MARGIN = 0.01f; glm::vec3 diagonal = maxCorner - minCorner; float smallestDimension = glm::min(diagonal[0], diagonal[1]); smallestDimension = glm::min(smallestDimension, diagonal[2]); const float MIN_DIMENSION = 2.0f * MIN_MARGIN + 0.001f; if (smallestDimension < MIN_DIMENSION) { for (int i = 0; i < 3; ++i) { if (diagonal[i] < MIN_DIMENSION) { diagonal[i] = MIN_DIMENSION; } } smallestDimension = MIN_DIMENSION; } margin = glm::min(glm::max(0.5f * smallestDimension, MIN_MARGIN), margin); hull->setMargin(margin); // add the points, correcting for margin glm::vec3 relativeScale = (diagonal - glm::vec3(2.0f * margin)) / diagonal; glm::vec3 correctedPoint; for (int i = 0; i < points.size(); ++i) { correctedPoint = (points[i] - center) * relativeScale + center; hull->addPoint(btVector3(correctedPoint[0], correctedPoint[1], correctedPoint[2]), false); } uint32_t numPoints = (uint32_t)hull->getNumPoints(); if (numPoints > MAX_HULL_POINTS) { // we have too many points, so we compute point projections along canonical unit vectors // and keep the those that project the farthest btVector3 btCenter = glmToBullet(center); btVector3* shapePoints = hull->getUnscaledPoints(); std::vector finalIndices; finalIndices.reserve(NUM_UNIT_SPHERE_DIRECTIONS); for (uint32_t i = 0; i < NUM_UNIT_SPHERE_DIRECTIONS; ++i) { uint32_t bestIndex = 0; btScalar maxDistance = _unitSphereDirections[i].dot(shapePoints[0] - btCenter); for (uint32_t j = 1; j < numPoints; ++j) { btScalar distance = _unitSphereDirections[i].dot(shapePoints[j] - btCenter); if (distance > maxDistance) { maxDistance = distance; bestIndex = j; } } bool keep = true; for (uint32_t j = 0; j < finalIndices.size(); ++j) { if (finalIndices[j] == bestIndex) { keep = false; break; } } if (keep) { finalIndices.push_back(bestIndex); } } // we cannot copy Bullet shapes so we must create a new one... btConvexHullShape* newHull = new btConvexHullShape(); for (uint32_t i = 0; i < finalIndices.size(); ++i) { newHull->addPoint(shapePoints[finalIndices[i]], false); } // ...and delete the old one delete hull; hull = newHull; } hull->recalcLocalAabb(); return hull; } btCollisionShape* ShapeFactory::createShapeFromInfo(const ShapeInfo& info) { btCollisionShape* shape = NULL; int type = info.getType(); switch(type) { case SHAPE_TYPE_BOX: { shape = new btBoxShape(glmToBullet(info.getHalfExtents())); } break; case SHAPE_TYPE_SPHERE: { float radius = info.getHalfExtents().x; shape = new btSphereShape(radius); } break; case SHAPE_TYPE_CAPSULE_Y: { glm::vec3 halfExtents = info.getHalfExtents(); float radius = halfExtents.x; float height = 2.0f * halfExtents.y; shape = new btCapsuleShape(radius, height); } break; case SHAPE_TYPE_COMPOUND: { const ShapeInfo::PointCollection& pointCollection = info.getPointCollection(); uint32_t numSubShapes = info.getNumSubShapes(); if (numSubShapes == 1) { shape = createConvexHull(pointCollection[0]); } else { auto compound = new btCompoundShape(); btTransform trans; trans.setIdentity(); foreach (const ShapeInfo::PointList& hullPoints, pointCollection) { btConvexHullShape* hull = createConvexHull(hullPoints); compound->addChildShape (trans, hull); } shape = compound; } } break; } if (shape) { if (glm::length2(info.getOffset()) > MIN_SHAPE_OFFSET * MIN_SHAPE_OFFSET) { // this shape has an offset, which we support by wrapping the true shape // in a btCompoundShape with a local transform auto compound = new btCompoundShape(); btTransform trans; trans.setIdentity(); trans.setOrigin(glmToBullet(info.getOffset())); compound->addChildShape(trans, shape); shape = compound; } } return shape; } void ShapeFactory::deleteShape(btCollisionShape* shape) { assert(shape); if (shape->getShapeType() == (int)COMPOUND_SHAPE_PROXYTYPE) { btCompoundShape* compoundShape = static_cast(shape); const int numChildShapes = compoundShape->getNumChildShapes(); for (int i = 0; i < numChildShapes; i ++) { btCollisionShape* childShape = compoundShape->getChildShape(i); if (childShape->getShapeType() == (int)COMPOUND_SHAPE_PROXYTYPE) { // recurse ShapeFactory::deleteShape(childShape); } else { delete childShape; } } } delete shape; }