// // Avatar.cpp // interface // // Created by Philip Rosedale on 9/11/12. // adapted by Jeffrey Ventrella // Copyright (c) 2013 Physical, Inc.. All rights reserved. // #include #include #include #include #include "Avatar.h" #include "Log.h" #include "ui/TextRenderer.h" #include #include #include using namespace std; const bool BALLS_ON = false; const bool AVATAR_GRAVITY = true; const float DECAY = 0.1; const float THRUST_MAG = 1200.0; const float YAW_MAG = 500.0; const float BODY_SPIN_FRICTION = 5.0; const float BODY_UPRIGHT_FORCE = 10.0; const float BODY_PITCH_WHILE_WALKING = 30.0; const float BODY_ROLL_WHILE_TURNING = 0.1; const float LIN_VEL_DECAY = 5.0; const float MY_HAND_HOLDING_PULL = 0.2; const float YOUR_HAND_HOLDING_PULL = 1.0; const float BODY_SPRING_FORCE = 6.0f; const float BODY_SPRING_DECAY = 16.0f; const float BODY_SPRING_DEFAULT_TIGHTNESS = 10.0f; const float COLLISION_RADIUS_SCALAR = 1.8; const float COLLISION_BALL_FORCE = 1.0; const float COLLISION_BODY_FORCE = 6.0; const float COLLISION_BALL_FRICTION = 60.0; const float COLLISION_BODY_FRICTION = 0.5; float skinColor[] = {1.0, 0.84, 0.66}; float lightBlue[] = { 0.7, 0.8, 1.0 }; float browColor[] = {210.0/255.0, 105.0/255.0, 30.0/255.0}; float mouthColor[] = {1, 0, 0}; float BrowRollAngle[5] = {0, 15, 30, -30, -15}; float BrowPitchAngle[3] = {-70, -60, -50}; float eyeColor[3] = {1,1,1}; float MouthWidthChoices[3] = {0.5, 0.77, 0.3}; float browWidth = 0.8; float browThickness = 0.16; bool usingBigSphereCollisionTest = true; char iris_texture_file[] = "resources/images/green_eye.png"; float chatMessageScale = 0.001; float chatMessageHeight = 0.4; vector iris_texture; unsigned int iris_texture_width = 512; unsigned int iris_texture_height = 256; Avatar::Avatar(bool isMine) { _orientation.setToIdentity(); _velocity = glm::vec3( 0.0, 0.0, 0.0 ); _thrust = glm::vec3( 0.0, 0.0, 0.0 ); _rotation = glm::quat( 0.0f, 0.0f, 0.0f, 0.0f ); _bodyYaw = -90.0; _bodyPitch = 0.0; _bodyRoll = 0.0; _bodyPitchDelta = 0.0; _bodyYawDelta = 0.0; _bodyRollDelta = 0.0; _mousePressed = false; _mode = AVATAR_MODE_STANDING; _isMine = isMine; _maxArmLength = 0.0; _transmitterHz = 0.0; _transmitterPackets = 0; _transmitterIsFirstData = true; _transmitterInitialReading = glm::vec3( 0.f, 0.f, 0.f ); _speed = 0.0; _pelvisStandingHeight = 0.0f; _displayingHead = true; _TEST_bigSphereRadius = 0.4f; _TEST_bigSpherePosition = glm::vec3( 0.0f, _TEST_bigSphereRadius, 2.0f ); for (int i = 0; i < MAX_DRIVE_KEYS; i++) _driveKeys[i] = false; _head.pupilSize = 0.10; _head.interPupilDistance = 0.6; _head.interBrowDistance = 0.75; _head.nominalPupilSize = 0.10; _head.pitchRate = 0.0; _head.yawRate = 0.0; _head.rollRate = 0.0; _head.eyebrowPitch[0] = -30; _head.eyebrowPitch[1] = -30; _head.eyebrowRoll [0] = 20; _head.eyebrowRoll [1] = -20; _head.mouthPitch = 0; _head.mouthYaw = 0; _head.mouthWidth = 1.0; _head.mouthHeight = 0.2; _head.eyeballPitch[0] = 0; _head.eyeballPitch[1] = 0; _head.eyeballScaleX = 1.2; _head.eyeballScaleY = 1.5; _head.eyeballScaleZ = 1.0; _head.eyeballYaw[0] = 0; _head.eyeballYaw[1] = 0; _head.pitchTarget = 0; _head.yawTarget = 0; _head.noiseEnvelope = 1.0; _head.pupilConverge = 10.0; _head.leanForward = 0.0; _head.leanSideways = 0.0; _head.eyeContact = 1; _head.eyeContactTarget = LEFT_EYE; _head.scale = 1.0; _head.audioAttack = 0.0; _head.averageLoudness = 0.0; _head.lastLoudness = 0.0; _head.browAudioLift = 0.0; _head.noise = 0; _head.returnSpringScale = 1.0; _movedHandOffset = glm::vec3( 0.0, 0.0, 0.0 ); _usingBodySprings = true; _renderYaw = 0.0; _renderPitch = 0.0; _sphere = NULL; _interactingOther = NULL; _handHoldingPosition = glm::vec3( 0.0, 0.0, 0.0 ); _distanceToNearestAvatar = std::numeric_limits::max(); initializeSkeleton(); if (iris_texture.size() == 0) { switchToResourcesParentIfRequired(); unsigned error = lodepng::decode(iris_texture, iris_texture_width, iris_texture_height, iris_texture_file); if (error != 0) { printLog("error %u: %s\n", error, lodepng_error_text(error)); } } if (BALLS_ON) { _balls = new Balls(100); } else { _balls = NULL; } } Avatar::Avatar(const Avatar &otherAvatar) { _velocity = otherAvatar._velocity; _thrust = otherAvatar._thrust; _rotation = otherAvatar._rotation; _bodyYaw = otherAvatar._bodyYaw; _bodyPitch = otherAvatar._bodyPitch; _bodyRoll = otherAvatar._bodyRoll; _bodyPitchDelta = otherAvatar._bodyPitchDelta; _bodyYawDelta = otherAvatar._bodyYawDelta; _bodyRollDelta = otherAvatar._bodyRollDelta; _mousePressed = otherAvatar._mousePressed; _mode = otherAvatar._mode; _isMine = otherAvatar._isMine; _renderYaw = otherAvatar._renderYaw; _renderPitch = otherAvatar._renderPitch; _maxArmLength = otherAvatar._maxArmLength; _transmitterTimer = otherAvatar._transmitterTimer; _transmitterIsFirstData = otherAvatar._transmitterIsFirstData; _transmitterTimeLastReceived = otherAvatar._transmitterTimeLastReceived; _transmitterHz = otherAvatar._transmitterHz; _transmitterInitialReading = otherAvatar._transmitterInitialReading; _transmitterPackets = otherAvatar._transmitterPackets; _TEST_bigSphereRadius = otherAvatar._TEST_bigSphereRadius; _TEST_bigSpherePosition = otherAvatar._TEST_bigSpherePosition; _movedHandOffset = otherAvatar._movedHandOffset; _usingBodySprings = otherAvatar._usingBodySprings; _orientation.set( otherAvatar._orientation ); _sphere = NULL; initializeSkeleton(); for (int i = 0; i < MAX_DRIVE_KEYS; i++) _driveKeys[i] = otherAvatar._driveKeys[i]; _head.pupilSize = otherAvatar._head.pupilSize; _head.interPupilDistance = otherAvatar._head.interPupilDistance; _head.interBrowDistance = otherAvatar._head.interBrowDistance; _head.nominalPupilSize = otherAvatar._head.nominalPupilSize; _head.yawRate = otherAvatar._head.yawRate; _head.pitchRate = otherAvatar._head.pitchRate; _head.rollRate = otherAvatar._head.rollRate; _head.eyebrowPitch[0] = otherAvatar._head.eyebrowPitch[0]; _head.eyebrowPitch[1] = otherAvatar._head.eyebrowPitch[1]; _head.eyebrowRoll [0] = otherAvatar._head.eyebrowRoll [0]; _head.eyebrowRoll [1] = otherAvatar._head.eyebrowRoll [1]; _head.mouthPitch = otherAvatar._head.mouthPitch; _head.mouthYaw = otherAvatar._head.mouthYaw; _head.mouthWidth = otherAvatar._head.mouthWidth; _head.mouthHeight = otherAvatar._head.mouthHeight; _head.eyeballPitch[0] = otherAvatar._head.eyeballPitch[0]; _head.eyeballPitch[1] = otherAvatar._head.eyeballPitch[1]; _head.eyeballScaleX = otherAvatar._head.eyeballScaleX; _head.eyeballScaleY = otherAvatar._head.eyeballScaleY; _head.eyeballScaleZ = otherAvatar._head.eyeballScaleZ; _head.eyeballYaw[0] = otherAvatar._head.eyeballYaw[0]; _head.eyeballYaw[1] = otherAvatar._head.eyeballYaw[1]; _head.pitchTarget = otherAvatar._head.pitchTarget; _head.yawTarget = otherAvatar._head.yawTarget; _head.noiseEnvelope = otherAvatar._head.noiseEnvelope; _head.pupilConverge = otherAvatar._head.pupilConverge; _head.leanForward = otherAvatar._head.leanForward; _head.leanSideways = otherAvatar._head.leanSideways; _head.eyeContact = otherAvatar._head.eyeContact; _head.eyeContactTarget = otherAvatar._head.eyeContactTarget; _head.scale = otherAvatar._head.scale; _head.audioAttack = otherAvatar._head.audioAttack; _head.averageLoudness = otherAvatar._head.averageLoudness; _head.lastLoudness = otherAvatar._head.lastLoudness; _head.browAudioLift = otherAvatar._head.browAudioLift; _head.noise = otherAvatar._head.noise; _distanceToNearestAvatar = otherAvatar._distanceToNearestAvatar; initializeSkeleton(); if (iris_texture.size() == 0) { switchToResourcesParentIfRequired(); unsigned error = lodepng::decode(iris_texture, iris_texture_width, iris_texture_height, iris_texture_file); if (error != 0) { printLog("error %u: %s\n", error, lodepng_error_text(error)); } } } Avatar::~Avatar() { if (_sphere != NULL) { gluDeleteQuadric(_sphere); } } Avatar* Avatar::clone() const { return new Avatar(*this); } void Avatar::reset() { _headPitch = _headYaw = _headRoll = 0; _head.leanForward = _head.leanSideways = 0; } //this pertains to moving the head with the glasses void Avatar::UpdateGyros(float frametime, SerialInterface * serialInterface, glm::vec3 * gravity) // Using serial data, update avatar/render position and angles { const float PITCH_ACCEL_COUPLING = 0.5; const float ROLL_ACCEL_COUPLING = -1.0; float measured_pitch_rate = serialInterface->getRelativeValue(HEAD_PITCH_RATE); _head.yawRate = serialInterface->getRelativeValue(HEAD_YAW_RATE); float measured_lateral_accel = serialInterface->getRelativeValue(ACCEL_X) - ROLL_ACCEL_COUPLING * serialInterface->getRelativeValue(HEAD_ROLL_RATE); float measured_fwd_accel = serialInterface->getRelativeValue(ACCEL_Z) - PITCH_ACCEL_COUPLING * serialInterface->getRelativeValue(HEAD_PITCH_RATE); float measured_roll_rate = serialInterface->getRelativeValue(HEAD_ROLL_RATE); //printLog("Pitch Rate: %d ACCEL_Z: %d\n", serialInterface->getRelativeValue(PITCH_RATE), // serialInterface->getRelativeValue(ACCEL_Z)); //printLog("Pitch Rate: %d ACCEL_X: %d\n", serialInterface->getRelativeValue(PITCH_RATE), // serialInterface->getRelativeValue(ACCEL_Z)); //printLog("Pitch: %f\n", Pitch); // Update avatar head position based on measured gyro rates const float HEAD_ROTATION_SCALE = 0.70; const float HEAD_ROLL_SCALE = 0.40; const float HEAD_LEAN_SCALE = 0.01; const float MAX_PITCH = 45; const float MIN_PITCH = -45; const float MAX_YAW = 85; const float MIN_YAW = -85; if ((_headPitch < MAX_PITCH) && (_headPitch > MIN_PITCH)) addHeadPitch(measured_pitch_rate * -HEAD_ROTATION_SCALE * frametime); addHeadRoll(measured_roll_rate * HEAD_ROLL_SCALE * frametime); if ((_headYaw < MAX_YAW) && (_headYaw > MIN_YAW)) addHeadYaw(_head.yawRate * HEAD_ROTATION_SCALE * frametime); addLean(-measured_lateral_accel * frametime * HEAD_LEAN_SCALE, -measured_fwd_accel*frametime * HEAD_LEAN_SCALE); } float Avatar::getAbsoluteHeadYaw() const { return _bodyYaw + _headYaw; } void Avatar::addLean(float x, float z) { // Add Body lean as impulse _head.leanSideways += x; _head.leanForward += z; } void Avatar::setLeanForward(float dist){ _head.leanForward = dist; } void Avatar::setLeanSideways(float dist){ _head.leanSideways = dist; } void Avatar::setMousePressed( bool d ) { _mousePressed = d; } bool Avatar::getIsNearInteractingOther() { return _avatarTouch.getAbleToReachOtherAvatar(); } void Avatar::simulate(float deltaTime) { // update balls if (_balls) { _balls->simulate(deltaTime); } // update avatar skeleton updateSkeleton(); //update the movement of the hand and process handshaking with other avatars... updateHandMovementAndTouching(deltaTime); // test for avatar collision response with the big sphere if (usingBigSphereCollisionTest) { updateCollisionWithSphere( _TEST_bigSpherePosition, _TEST_bigSphereRadius, deltaTime ); } // apply gravity and collision wiht the ground/floor if ( AVATAR_GRAVITY ) { if ( _position.y > _pelvisStandingHeight + 0.01 ) { _velocity += glm::dvec3(getGravity(getPosition())) * ( 6.0 * deltaTime ); } else if ( _position.y < _pelvisStandingHeight ) { _position.y = _pelvisStandingHeight; _velocity.y = 0.0; } } // update body springs updateBodySprings( deltaTime ); // driving the avatar around should only apply if this is my avatar (as opposed to an avatar being driven remotely) if ( _isMine ) { _thrust = glm::vec3( 0.0, 0.0, 0.0 ); if (_driveKeys[FWD ]) {_thrust += THRUST_MAG * deltaTime * _orientation.getFront();} if (_driveKeys[BACK ]) {_thrust -= THRUST_MAG * deltaTime * _orientation.getFront();} if (_driveKeys[RIGHT ]) {_thrust += THRUST_MAG * deltaTime * _orientation.getRight();} if (_driveKeys[LEFT ]) {_thrust -= THRUST_MAG * deltaTime * _orientation.getRight();} if (_driveKeys[UP ]) {_thrust += THRUST_MAG * deltaTime * _orientation.getUp();} if (_driveKeys[DOWN ]) {_thrust -= THRUST_MAG * deltaTime * _orientation.getUp();} if (_driveKeys[ROT_RIGHT]) {_bodyYawDelta -= YAW_MAG * deltaTime;} if (_driveKeys[ROT_LEFT ]) {_bodyYawDelta += YAW_MAG * deltaTime;} } // update body yaw by body yaw delta if (_isMine) { _bodyPitch += _bodyPitchDelta * deltaTime; _bodyYaw += _bodyYawDelta * deltaTime; _bodyRoll += _bodyRollDelta * deltaTime; } // decay body rotation momentum float bodySpinMomentum = 1.0 - BODY_SPIN_FRICTION * deltaTime; if ( bodySpinMomentum < 0.0f ) { bodySpinMomentum = 0.0f; } _bodyPitchDelta *= bodySpinMomentum; _bodyYawDelta *= bodySpinMomentum; _bodyRollDelta *= bodySpinMomentum; // add thrust to velocity _velocity += _thrust * deltaTime; // calculate speed _speed = glm::length( _velocity ); //pitch and roll the body as a function of forward speed and turning delta float forwardComponentOfVelocity = glm::dot( _orientation.getFront(), _velocity ); _bodyPitch += BODY_PITCH_WHILE_WALKING * deltaTime * forwardComponentOfVelocity; _bodyRoll += BODY_ROLL_WHILE_TURNING * deltaTime * _speed * _bodyYawDelta; // these forces keep the body upright... float tiltDecay = 1.0 - BODY_UPRIGHT_FORCE * deltaTime; if ( tiltDecay < 0.0f ) { tiltDecay = 0.0f; } _bodyPitch *= tiltDecay; _bodyRoll *= tiltDecay; // update position by velocity _position += _velocity * deltaTime; // decay velocity _velocity *= ( 1.0 - LIN_VEL_DECAY * deltaTime ); // If someone is near, damp velocity as a function of closeness const float AVATAR_BRAKING_RANGE = 1.2f; const float AVATAR_BRAKING_STRENGTH = 25.f; if (_isMine && (_distanceToNearestAvatar < AVATAR_BRAKING_RANGE)) { _velocity *= (1.f - deltaTime * AVATAR_BRAKING_STRENGTH * (AVATAR_BRAKING_RANGE - _distanceToNearestAvatar)); } // update head information updateHead(deltaTime); // use speed and angular velocity to determine walking vs. standing if ( _speed + fabs( _bodyYawDelta ) > 0.2 ) { _mode = AVATAR_MODE_WALKING; } else { _mode = AVATAR_MODE_INTERACTING; } } //update the movement of the hand and process handshaking with other avatars... void Avatar::updateHandMovementAndTouching(float deltaTime) { // reset hand and arm positions according to hand movement glm::vec3 transformedHandMovement = _orientation.getRight() * _movedHandOffset.x * 2.0f + _orientation.getUp() * -_movedHandOffset.y * 1.0f + _orientation.getFront() * -_movedHandOffset.y * 1.0f; _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position += transformedHandMovement; if (_isMine) { _handState = _mousePressed; } //reset these for the next go-round _avatarTouch.setAbleToReachOtherAvatar (false); _avatarTouch.setHandsCloseEnoughToGrasp(false); // if the avatar being simulated is mine, then loop through // all the other avatars for potential interactions... if ( _isMine ) { // Reset detector for nearest avatar _distanceToNearestAvatar = std::numeric_limits::max(); AgentList* agentList = AgentList::getInstance(); for (AgentList::iterator agent = agentList->begin(); agent != agentList->end(); agent++) { if (agent->getLinkedData() != NULL && agent->getType() == AGENT_TYPE_AVATAR) { Avatar *otherAvatar = (Avatar *)agent->getLinkedData(); // check for collisions with other avatars and respond updateCollisionWithOtherAvatar(otherAvatar, deltaTime ); // test other avatar hand position for proximity glm::vec3 v( _joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position ); v -= otherAvatar->getJointPosition( AVATAR_JOINT_RIGHT_SHOULDER ); float distance = glm::length( v ); if (distance < _distanceToNearestAvatar) { _distanceToNearestAvatar = distance; } if (distance < _maxArmLength + _maxArmLength) { _interactingOther = otherAvatar; if ( ! _avatarTouch.getAbleToReachOtherAvatar() ) { //initialize _handHolding _handHoldingPosition = _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position; _avatarTouch.setAbleToReachOtherAvatar(true); } glm::vec3 vectorBetweenHands( _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position ); vectorBetweenHands -= otherAvatar->getJointPosition( AVATAR_JOINT_RIGHT_FINGERTIPS ); float distanceBetweenHands = glm::length(vectorBetweenHands); if (distanceBetweenHands < HANDS_CLOSE_ENOUGH_TO_GRASP) { _avatarTouch.setHandsCloseEnoughToGrasp(true); } // if I am holding hands with another avatar, a force is applied if (( _handState == 1 ) || ( _interactingOther->_handState == 1 )) { // if the hands are close enough to grasp... if (distanceBetweenHands < HANDS_CLOSE_ENOUGH_TO_GRASP) { // apply the forces... glm::vec3 vectorToOtherHand = _interactingOther->_handPosition - _handHoldingPosition; glm::vec3 vectorToMyHand = _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position - _handHoldingPosition; _handHoldingPosition += vectorToOtherHand * YOUR_HAND_HOLDING_PULL; _handHoldingPosition += vectorToMyHand * MY_HAND_HOLDING_PULL; _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = _handHoldingPosition; // apply a force to the avatar body if ( glm::length(vectorToOtherHand) > _maxArmLength * 0.9 ) { _velocity += vectorToOtherHand; } } } } } } // Set the vector we send for hand position to other people to be our right hand setHandPosition(_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position); }//if ( _isMine ) //constrain right arm length and re-adjust elbow position as it bends updateArmIKAndConstraints( deltaTime ); // set hand positions for _avatarTouch.setMyHandPosition AFTER calling updateArmIKAndConstraints if ( _interactingOther ) { if (_isMine) { _avatarTouch.setMyHandPosition ( _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position ); _avatarTouch.setYourHandPosition( _interactingOther->_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position ); _avatarTouch.setMyHandState ( _handState ); _avatarTouch.setYourHandState ( _interactingOther->_handState ); _avatarTouch.simulate(deltaTime); } } if (!_avatarTouch.getAbleToReachOtherAvatar() ) { _interactingOther = NULL; } } void Avatar::updateHead(float deltaTime) { //apply the head lean values to the springy position... if ( fabs( _head.leanSideways + _head.leanForward ) > 0.0f ) { glm::vec3 headLean = _orientation.getRight() * _head.leanSideways + _orientation.getFront() * _head.leanForward; _joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition += headLean; } // Decay head back to center if turned on if (_returnHeadToCenter) { // Decay back toward center _headPitch *= (1.0f - DECAY * _head.returnSpringScale * 2 * deltaTime); _headYaw *= (1.0f - DECAY * _head.returnSpringScale * 2 * deltaTime); _headRoll *= (1.0f - DECAY * _head.returnSpringScale * 2 * deltaTime); } if (_head.noise) { // Move toward new target _headPitch += (_head.pitchTarget - _headPitch) * 10 * deltaTime; // (1.f - DECAY*deltaTime)*Pitch + ; _headYaw += (_head.yawTarget - _headYaw ) * 10 * deltaTime; // (1.f - DECAY*deltaTime); _headRoll *= 1.f - (DECAY * deltaTime); } _head.leanForward *= (1.f - DECAY * 30 * deltaTime); _head.leanSideways *= (1.f - DECAY * 30 * deltaTime); // Update where the avatar's eyes are // // First, decide if we are making eye contact or not if (randFloat() < 0.005) { _head.eyeContact = !_head.eyeContact; _head.eyeContact = 1; if (!_head.eyeContact) { // If we just stopped making eye contact,move the eyes markedly away _head.eyeballPitch[0] = _head.eyeballPitch[1] = _head.eyeballPitch[0] + 5.0 + (randFloat() - 0.5) * 10; _head.eyeballYaw [0] = _head.eyeballYaw [1] = _head.eyeballYaw [0] + 5.0 + (randFloat() - 0.5) * 5; } else { // If now making eye contact, turn head to look right at viewer SetNewHeadTarget(0,0); } } const float DEGREES_BETWEEN_VIEWER_EYES = 3; const float DEGREES_TO_VIEWER_MOUTH = 7; if (_head.eyeContact) { // Should we pick a new eye contact target? if (randFloat() < 0.01) { // Choose where to look next if (randFloat() < 0.1) { _head.eyeContactTarget = MOUTH; } else { if (randFloat() < 0.5) _head.eyeContactTarget = LEFT_EYE; else _head.eyeContactTarget = RIGHT_EYE; } } // Set eyeball pitch and yaw to make contact float eye_target_yaw_adjust = 0; float eye_target_pitch_adjust = 0; if (_head.eyeContactTarget == LEFT_EYE) eye_target_yaw_adjust = DEGREES_BETWEEN_VIEWER_EYES; if (_head.eyeContactTarget == RIGHT_EYE) eye_target_yaw_adjust = -DEGREES_BETWEEN_VIEWER_EYES; if (_head.eyeContactTarget == MOUTH) eye_target_pitch_adjust = DEGREES_TO_VIEWER_MOUTH; _head.eyeballPitch[0] = _head.eyeballPitch[1] = -_headPitch + eye_target_pitch_adjust; _head.eyeballYaw[0] = _head.eyeballYaw[1] = -_headYaw + eye_target_yaw_adjust; } if (_head.noise) { _headPitch += (randFloat() - 0.5) * 0.2 * _head.noiseEnvelope; _headYaw += (randFloat() - 0.5) * 0.3 *_head.noiseEnvelope; //PupilSize += (randFloat() - 0.5) * 0.001*NoiseEnvelope; if (randFloat() < 0.005) _head.mouthWidth = MouthWidthChoices[rand()%3]; if (!_head.eyeContact) { if (randFloat() < 0.01) _head.eyeballPitch[0] = _head.eyeballPitch[1] = (randFloat() - 0.5) * 20; if (randFloat() < 0.01) _head.eyeballYaw[0] = _head.eyeballYaw[1] = (randFloat()- 0.5) * 10; } if ((randFloat() < 0.005) && (fabs(_head.pitchTarget - _headPitch) < 1.0) && (fabs(_head.yawTarget - _headYaw) < 1.0)) { SetNewHeadTarget((randFloat()-0.5) * 20.0, (randFloat()-0.5) * 45.0); } if (0) { // Pick new target _head.pitchTarget = (randFloat() - 0.5) * 45; _head.yawTarget = (randFloat() - 0.5) * 22; } if (randFloat() < 0.01) { _head.eyebrowPitch[0] = _head.eyebrowPitch[1] = BrowPitchAngle[rand()%3]; _head.eyebrowRoll [0] = _head.eyebrowRoll[1] = BrowRollAngle[rand()%5]; _head.eyebrowRoll [1] *=-1; } } // Update audio trailing average for rendering facial animations const float AUDIO_AVERAGING_SECS = 0.05; _head.averageLoudness = (1.f - deltaTime / AUDIO_AVERAGING_SECS) * _head.averageLoudness + (deltaTime / AUDIO_AVERAGING_SECS) * _audioLoudness; } float Avatar::getHeight() { return _height; } void Avatar::updateCollisionWithSphere( glm::vec3 position, float radius, float deltaTime ) { float myBodyApproximateBoundingRadius = 1.0f; glm::vec3 vectorFromMyBodyToBigSphere(_position - position); bool jointCollision = false; float distanceToBigSphere = glm::length(vectorFromMyBodyToBigSphere); if ( distanceToBigSphere < myBodyApproximateBoundingRadius + radius ) { for (int b = 0; b < NUM_AVATAR_JOINTS; b++) { glm::vec3 vectorFromJointToBigSphereCenter(_joint[b].springyPosition - position); float distanceToBigSphereCenter = glm::length(vectorFromJointToBigSphereCenter); float combinedRadius = _joint[b].radius + radius; if ( distanceToBigSphereCenter < combinedRadius ) { jointCollision = true; if (distanceToBigSphereCenter > 0.0) { glm::vec3 directionVector = vectorFromJointToBigSphereCenter / distanceToBigSphereCenter; float penetration = 1.0 - (distanceToBigSphereCenter / combinedRadius); glm::vec3 collisionForce = vectorFromJointToBigSphereCenter * penetration; _joint[b].springyVelocity += collisionForce * 30.0f * deltaTime; _velocity += collisionForce * 100.0f * deltaTime; _joint[b].springyPosition = position + directionVector * combinedRadius; } } } if ( jointCollision ) { if (!_usingBodySprings) { _usingBodySprings = true; initializeBodySprings(); } } } } //detect collisions with other avatars and respond void Avatar::updateCollisionWithOtherAvatar( Avatar * otherAvatar, float deltaTime ) { // check if the bounding spheres of the two avatars are colliding glm::vec3 vectorBetweenBoundingSpheres(_position - otherAvatar->_position); if ( glm::length(vectorBetweenBoundingSpheres) < _height * ONE_HALF + otherAvatar->_height * ONE_HALF ) { float bodyMomentum = 1.0f; glm::vec3 bodyPushForce = glm::vec3( 0.0, 0.0, 0.0 ); // loop through the joints of each avatar to check for every possible collision for (int b=1; b_joint[o].isCollidable ) { glm::vec3 vectorBetweenJoints(_joint[b].springyPosition - otherAvatar->_joint[o].springyPosition); float distanceBetweenJoints = glm::length(vectorBetweenJoints); if ( distanceBetweenJoints > 0.0 ) { // to avoid divide by zero float combinedRadius = _joint[b].radius + otherAvatar->_joint[o].radius; // check for collision if ( distanceBetweenJoints < combinedRadius * COLLISION_RADIUS_SCALAR) { glm::vec3 directionVector = vectorBetweenJoints / distanceBetweenJoints; // push balls away from each other and apply friction glm::vec3 ballPushForce = directionVector * COLLISION_BALL_FORCE * deltaTime; float ballMomentum = 1.0 - COLLISION_BALL_FRICTION * deltaTime; if ( ballMomentum < 0.0 ) { ballMomentum = 0.0;} _joint[b].springyVelocity += ballPushForce; otherAvatar->_joint[o].springyVelocity -= ballPushForce; _joint[b].springyVelocity *= ballMomentum; otherAvatar->_joint[o].springyVelocity *= ballMomentum; // accumulate forces and frictions to apply to the velocities of avatar bodies bodyPushForce += directionVector * COLLISION_BODY_FORCE * deltaTime; bodyMomentum -= COLLISION_BODY_FRICTION * deltaTime; if ( bodyMomentum < 0.0 ) { bodyMomentum = 0.0;} }// check for collision } // to avoid divide by zero } // o loop } // collidable } // b loop } // collidable //apply forces and frictions on the bodies of both avatars _velocity += bodyPushForce; otherAvatar->_velocity -= bodyPushForce; _velocity *= bodyMomentum; otherAvatar->_velocity *= bodyMomentum; } // bounding sphere collision } //method void Avatar::setDisplayingHead( bool displayingHead ) { _displayingHead = displayingHead; } static TextRenderer* textRenderer() { static TextRenderer* renderer = new TextRenderer(SANS_FONT_FAMILY, 24); return renderer; } void Avatar::render(bool lookingInMirror) { /* // show avatar position glColor4f( 0.5f, 0.5f, 0.5f, 0.6 ); glPushMatrix(); glTranslatef(_position.x, _position.y, _position.z); glScalef( 0.03, 0.03, 0.03 ); glutSolidSphere( 1, 10, 10 ); glPopMatrix(); */ if ( usingBigSphereCollisionTest ) { // show TEST big sphere glColor4f( 0.5f, 0.6f, 0.8f, 0.7 ); glPushMatrix(); glTranslatef(_TEST_bigSpherePosition.x, _TEST_bigSpherePosition.y, _TEST_bigSpherePosition.z); glScalef( _TEST_bigSphereRadius, _TEST_bigSphereRadius, _TEST_bigSphereRadius ); glutSolidSphere( 1, 20, 20 ); glPopMatrix(); } //render body renderBody(); // render head if (_displayingHead) { renderHead(lookingInMirror); } // if this is my avatar, then render my interactions with the other avatar if ( _isMine ) { _avatarTouch.render(); } // Render the balls if (_balls) { glPushMatrix(); glTranslatef(_position.x, _position.y, _position.z); _balls->render(); glPopMatrix(); } if (!_chatMessage.empty()) { int width = 0; int lastWidth; for (string::iterator it = _chatMessage.begin(); it != _chatMessage.end(); it++) { width += (lastWidth = textRenderer()->computeWidth(*it)); } glPushMatrix(); // extract the view direction from the modelview matrix: transform (0, 0, 1) by the // transpose of the modelview to get its direction in world space, then use the X/Z // components to determine the angle float modelview[16]; glGetFloatv(GL_MODELVIEW_MATRIX, modelview); glTranslatef(_position.x, _position.y + chatMessageHeight, _position.z); glRotatef(atan2(-modelview[2], -modelview[10]) * 180 / PI, 0, 1, 0); glColor3f(0, 0.8, 0); glRotatef(180, 0, 0, 1); glScalef(chatMessageScale, chatMessageScale, 1.0f); glDisable(GL_LIGHTING); if (_keyState == NO_KEY_DOWN) { textRenderer()->draw(-width/2, 0, _chatMessage.c_str()); } else { // rather than using substr and allocating a new string, just replace the last // character with a null, then restore it int lastIndex = _chatMessage.size() - 1; char lastChar = _chatMessage[lastIndex]; _chatMessage[lastIndex] = '\0'; textRenderer()->draw(-width/2, 0, _chatMessage.c_str()); _chatMessage[lastIndex] = lastChar; glColor3f(0, 1, 0); textRenderer()->draw(width/2 - lastWidth, 0, _chatMessage.c_str() + lastIndex); } glEnable(GL_LIGHTING); glPopMatrix(); } } void Avatar::renderHead(bool lookingInMirror) { int side = 0; glEnable(GL_DEPTH_TEST); glEnable(GL_RESCALE_NORMAL); // show head orientation //renderOrientationDirections( _joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition, _joint[ AVATAR_JOINT_HEAD_BASE ].orientation, 0.2f ); glPushMatrix(); if (_usingBodySprings) { glTranslatef(_joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition.x, _joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition.y, _joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition.z); } else { glTranslatef(_joint[ AVATAR_JOINT_HEAD_BASE ].position.x, _joint[ AVATAR_JOINT_HEAD_BASE ].position.y, _joint[ AVATAR_JOINT_HEAD_BASE ].position.z); } glScalef ( _joint[ AVATAR_JOINT_HEAD_BASE ].radius, _joint[ AVATAR_JOINT_HEAD_BASE ].radius, _joint[ AVATAR_JOINT_HEAD_BASE ].radius ); if (lookingInMirror) { glRotatef(_bodyYaw - _headYaw, 0, 1, 0); glRotatef(_bodyPitch + _headPitch, 1, 0, 0); glRotatef(_bodyRoll - _headRoll, 0, 0, 1); } else { glRotatef(_bodyYaw + _headYaw, 0, 1, 0); glRotatef(_bodyPitch + _headPitch, 1, 0, 0); glRotatef(_bodyRoll + _headRoll, 0, 0, 1); } //glScalef(2.0, 2.0, 2.0); glColor3fv(skinColor); glutSolidSphere(1, 30, 30); // Ears glPushMatrix(); glTranslatef(1.0, 0, 0); for(side = 0; side < 2; side++) { glPushMatrix(); glScalef(0.3, 0.65, .65); glutSolidSphere(0.5, 30, 30); glPopMatrix(); glTranslatef(-2.0, 0, 0); } glPopMatrix(); // Update audio attack data for facial animation (eyebrows and mouth) _head.audioAttack = 0.9 * _head.audioAttack + 0.1 * fabs(_audioLoudness - _head.lastLoudness); _head.lastLoudness = _audioLoudness; const float BROW_LIFT_THRESHOLD = 100; if (_head.audioAttack > BROW_LIFT_THRESHOLD) _head.browAudioLift += sqrt(_head.audioAttack) / 1000.0; _head.browAudioLift *= .90; // Render Eyebrows glPushMatrix(); glTranslatef(-_head.interBrowDistance / 2.0,0.4,0.45); for(side = 0; side < 2; side++) { glColor3fv(browColor); glPushMatrix(); glTranslatef(0, 0.35 + _head.browAudioLift, 0); glRotatef(_head.eyebrowPitch[side]/2.0, 1, 0, 0); glRotatef(_head.eyebrowRoll[side]/2.0, 0, 0, 1); glScalef(browWidth, browThickness, 1); glutSolidCube(0.5); glPopMatrix(); glTranslatef(_head.interBrowDistance, 0, 0); } glPopMatrix(); // Mouth glPushMatrix(); glTranslatef(0,-0.35,0.75); glColor3f(0,0,0); glRotatef(_head.mouthPitch, 1, 0, 0); glRotatef(_head.mouthYaw, 0, 0, 1); glScalef(_head.mouthWidth*(.7 + sqrt(_head.averageLoudness)/60.0), _head.mouthHeight*(1.0 + sqrt(_head.averageLoudness)/30.0), 1); glutSolidCube(0.5); glPopMatrix(); glTranslatef(0, 1.0, 0); glTranslatef(-_head.interPupilDistance/2.0,-0.68,0.7); // Right Eye glRotatef(-10, 1, 0, 0); glColor3fv(eyeColor); glPushMatrix(); { glTranslatef(_head.interPupilDistance/10.0, 0, 0.05); glRotatef(20, 0, 0, 1); glScalef(_head.eyeballScaleX, _head.eyeballScaleY, _head.eyeballScaleZ); glutSolidSphere(0.25, 30, 30); } glPopMatrix(); // Right Pupil if (_sphere == NULL) { _sphere = gluNewQuadric(); gluQuadricTexture(_sphere, GL_TRUE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); gluQuadricOrientation(_sphere, GLU_OUTSIDE); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, iris_texture_width, iris_texture_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, &iris_texture[0]); } glPushMatrix(); { glRotatef(_head.eyeballPitch[1], 1, 0, 0); glRotatef(_head.eyeballYaw[1] + _headYaw + _head.pupilConverge, 0, 1, 0); glTranslatef(0,0,.35); glRotatef(-75,1,0,0); glScalef(1.0, 0.4, 1.0); glEnable(GL_TEXTURE_2D); gluSphere(_sphere, _head.pupilSize, 15, 15); glDisable(GL_TEXTURE_2D); } glPopMatrix(); // Left Eye glColor3fv(eyeColor); glTranslatef(_head.interPupilDistance, 0, 0); glPushMatrix(); { glTranslatef(-_head.interPupilDistance/10.0, 0, .05); glRotatef(-20, 0, 0, 1); glScalef(_head.eyeballScaleX, _head.eyeballScaleY, _head.eyeballScaleZ); glutSolidSphere(0.25, 30, 30); } glPopMatrix(); // Left Pupil glPushMatrix(); { glRotatef(_head.eyeballPitch[0], 1, 0, 0); glRotatef(_head.eyeballYaw[0] + _headYaw - _head.pupilConverge, 0, 1, 0); glTranslatef(0, 0, .35); glRotatef(-75, 1, 0, 0); glScalef(1.0, 0.4, 1.0); glEnable(GL_TEXTURE_2D); gluSphere(_sphere, _head.pupilSize, 15, 15); glDisable(GL_TEXTURE_2D); } glPopMatrix(); glPopMatrix(); } void Avatar::setHandMovementValues( glm::vec3 handOffset ) { _movedHandOffset = handOffset; } AvatarMode Avatar::getMode() { return _mode; } void Avatar::initializeSkeleton() { for (int b=0; b 0.0f ) { glm::vec3 springDirection = springVector / length; float force = (length - _joint[b].length) * BODY_SPRING_FORCE * deltaTime; _joint[b].springyVelocity -= springDirection * force; if ( _joint[b].parent != AVATAR_JOINT_NULL ) { _joint[_joint[b].parent].springyVelocity += springDirection * force; } } _joint[b].springyVelocity += (_joint[b].position - _joint[b].springyPosition) * _joint[b].springBodyTightness * deltaTime; float decay = 1.0 - BODY_SPRING_DECAY * deltaTime; if (decay > 0.0) { _joint[b].springyVelocity *= decay; } else { _joint[b].springyVelocity = glm::vec3( 0.0f, 0.0f, 0.0f ); } _joint[b].springyPosition += _joint[b].springyVelocity; } } const glm::vec3& Avatar::getHeadPosition() const { //if (_usingBodySprings) { // return _joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition; //} return _joint[ AVATAR_JOINT_HEAD_BASE ].position; } void Avatar::updateArmIKAndConstraints( float deltaTime ) { // determine the arm vector glm::vec3 armVector = _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position; armVector -= _joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position; // test to see if right hand is being dragged beyond maximum arm length float distance = glm::length( armVector ); // don't let right hand get dragged beyond maximum arm length... if ( distance > _maxArmLength ) { // reset right hand to be constrained to maximum arm length _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = _joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position; glm::vec3 armNormal = armVector / distance; armVector = armNormal * _maxArmLength; distance = _maxArmLength; glm::vec3 constrainedPosition = _joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position; constrainedPosition += armVector; _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = constrainedPosition; } // set elbow position glm::vec3 newElbowPosition = _joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position; newElbowPosition += armVector * ONE_HALF; glm::vec3 perpendicular = glm::cross( _orientation.getFront(), armVector ); newElbowPosition += perpendicular * ( 1.0f - ( _maxArmLength / distance ) ) * ONE_HALF; _joint[ AVATAR_JOINT_RIGHT_ELBOW ].position = newElbowPosition; // set wrist position glm::vec3 vv( _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position ); vv -= _joint[ AVATAR_JOINT_RIGHT_ELBOW ].position; glm::vec3 newWristPosition = _joint[ AVATAR_JOINT_RIGHT_ELBOW ].position + vv * 0.7f; _joint[ AVATAR_JOINT_RIGHT_WRIST ].position = newWristPosition; } void Avatar::renderBody() { // Render joint positions as spheres for (int b = 0; b < NUM_AVATAR_JOINTS; b++) { if ( b != AVATAR_JOINT_HEAD_BASE ) { // the head is rendered as a special case in "renderHead" //render bone orientation //renderOrientationDirections( _joint[b].springyPosition, _joint[b].orientation, _joint[b].radius * 2.0 ); if ( _usingBodySprings ) { glColor3fv( skinColor ); glPushMatrix(); glTranslatef( _joint[b].springyPosition.x, _joint[b].springyPosition.y, _joint[b].springyPosition.z ); glutSolidSphere( _joint[b].radius, 20.0f, 20.0f ); glPopMatrix(); } else { glColor3fv( skinColor ); glPushMatrix(); glTranslatef( _joint[b].position.x, _joint[b].position.y, _joint[b].position.z ); glutSolidSphere( _joint[b].radius, 20.0f, 20.0f ); glPopMatrix(); } } } // Render lines connecting the joint positions if ( _usingBodySprings ) { glColor3f( 0.4f, 0.5f, 0.6f ); glLineWidth(3.0); for (int b = 1; b < NUM_AVATAR_JOINTS; b++) { if ( _joint[b].parent != AVATAR_JOINT_NULL ) { glBegin( GL_LINE_STRIP ); glVertex3fv( &_joint[ _joint[ b ].parent ].springyPosition.x ); glVertex3fv( &_joint[ b ].springyPosition.x ); glEnd(); } } } else { glColor3fv( skinColor ); glLineWidth(3.0); for (int b = 1; b < NUM_AVATAR_JOINTS; b++) { if ( _joint[b].parent != AVATAR_JOINT_NULL ) { glBegin( GL_LINE_STRIP ); glVertex3fv( &_joint[ _joint[ b ].parent ].position.x ); glVertex3fv( &_joint[ b ].position.x); glEnd(); } } } } void Avatar::SetNewHeadTarget(float pitch, float yaw) { _head.pitchTarget = pitch; _head.yawTarget = yaw; } // // Process UDP interface data from Android transmitter or Google Glass // void Avatar::processTransmitterData(unsigned char* packetData, int numBytes) { // Read a packet from a transmitter app, process the data float accX, accY, accZ, // Measured acceleration graX, graY, graZ, // Gravity gyrX, gyrY, gyrZ, // Gyro velocity in radians/sec as (pitch, roll, yaw) linX, linY, linZ, // Linear Acceleration (less gravity) rot1, rot2, rot3, rot4; // Rotation of device: // rot1 = roll, ranges from -1 to 1, 0 = flat on table // rot2 = pitch, ranges from -1 to 1, 0 = flat on table // rot3 = yaw, ranges from -1 to 1 char device[100]; // Device ID enum deviceTypes { DEVICE_GLASS, DEVICE_ANDROID, DEVICE_IPHONE, DEVICE_UNKNOWN }; sscanf((char *)packetData, "tacc %f %f %f gra %f %f %f gyr %f %f %f lin %f %f %f rot %f %f %f %f dna \"%s", &accX, &accY, &accZ, &graX, &graY, &graZ, &gyrX, &gyrY, &gyrZ, &linX, &linY, &linZ, &rot1, &rot2, &rot3, &rot4, (char *)&device); // decode transmitter device type deviceTypes deviceType = DEVICE_UNKNOWN; if (strcmp(device, "ADR")) { deviceType = DEVICE_ANDROID; } else { deviceType = DEVICE_GLASS; } if (_transmitterPackets++ == 0) { // If first packet received, note time, turn head spring return OFF, get start rotation gettimeofday(&_transmitterTimer, NULL); if (deviceType == DEVICE_GLASS) { setHeadReturnToCenter(true); setHeadSpringScale(10.f); printLog("Using Google Glass to drive head, springs ON.\n"); } else { setHeadReturnToCenter(false); printLog("Using Transmitter %s to drive head, springs OFF.\n", device); } //printLog("Packet: [%s]\n", packetData); //printLog("Version: %s\n", device); _transmitterInitialReading = glm::vec3( rot3, rot2, rot1 ); } const int TRANSMITTER_COUNT = 100; if (_transmitterPackets % TRANSMITTER_COUNT == 0) { // Every 100 packets, record the observed Hz of the transmitter data timeval now; gettimeofday(&now, NULL); double msecsElapsed = diffclock(&_transmitterTimer, &now); _transmitterHz = static_cast( (double)TRANSMITTER_COUNT / (msecsElapsed / 1000.0) ); _transmitterTimer = now; printLog("Transmitter Hz: %3.1f\n", _transmitterHz); } //printLog("Gyr: %3.1f, %3.1f, %3.1f\n", glm::degrees(gyrZ), glm::degrees(-gyrX), glm::degrees(gyrY)); //printLog("Rot: %3.1f, %3.1f, %3.1f, %3.1f\n", rot1, rot2, rot3, rot4); // Update the head with the transmitter data glm::vec3 eulerAngles((rot3 - _transmitterInitialReading.x) * 180.f, -(rot2 - _transmitterInitialReading.y) * 180.f, (rot1 - _transmitterInitialReading.z) * 180.f); if (eulerAngles.x > 180.f) { eulerAngles.x -= 360.f; } if (eulerAngles.x < -180.f) { eulerAngles.x += 360.f; } glm::vec3 angularVelocity; if (deviceType != DEVICE_GLASS) { angularVelocity = glm::vec3(glm::degrees(gyrZ), glm::degrees(-gyrX), glm::degrees(gyrY)); setHeadFromGyros( &eulerAngles, &angularVelocity, (_transmitterHz == 0.f) ? 0.f : 1.f / _transmitterHz, 1.0); } else { angularVelocity = glm::vec3(glm::degrees(gyrY), glm::degrees(-gyrX), glm::degrees(-gyrZ)); setHeadFromGyros( &eulerAngles, &angularVelocity, (_transmitterHz == 0.f) ? 0.f : 1.f / _transmitterHz, 1000.0); } } void Avatar::setHeadFromGyros(glm::vec3* eulerAngles, glm::vec3* angularVelocity, float deltaTime, float smoothingTime) { // // Given absolute position and angular velocity information, update the avatar's head angles // with the goal of fast instantaneous updates that gradually follow the absolute data. // // Euler Angle format is (Yaw, Pitch, Roll) in degrees // // Angular Velocity is (Yaw, Pitch, Roll) in degrees per second // // SMOOTHING_TIME is the time is seconds over which the head should average to the // absolute eulerAngles passed. // // float const MAX_YAW = 90.f; float const MIN_YAW = -90.f; float const MAX_PITCH = 85.f; float const MIN_PITCH = -85.f; float const MAX_ROLL = 90.f; float const MIN_ROLL = -90.f; if (deltaTime == 0.f) { // On first sample, set head to absolute position setHeadYaw(eulerAngles->x); setHeadPitch(eulerAngles->y); setHeadRoll(eulerAngles->z); } else { glm::vec3 angles(getHeadYaw(), getHeadPitch(), getHeadRoll()); // Increment by detected velocity angles += (*angularVelocity) * deltaTime; // Smooth to slowly follow absolute values angles = ((1.f - deltaTime / smoothingTime) * angles) + (deltaTime / smoothingTime) * (*eulerAngles); setHeadYaw(fmin(fmax(angles.x, MIN_YAW), MAX_YAW)); setHeadPitch(fmin(fmax(angles.y, MIN_PITCH), MAX_PITCH)); setHeadRoll(fmin(fmax(angles.z, MIN_ROLL), MAX_ROLL)); //printLog("Y/P/R: %3.1f, %3.1f, %3.1f\n", angles.x, angles.y, angles.z); } } // Find and return the gravity vector at my location glm::vec3 Avatar::getGravity(glm::vec3 pos) { // // For now, we'll test this with a simple global lookup, but soon we will add getting this // from the domain/voxelserver (or something similar) // if ((pos.x > 0.f) && (pos.x < 10.f) && (pos.z > 0.f) && (pos.z < 10.f) && (pos.y > 0.f) && (pos.y < 3.f)) { // If above ground plane, turn gravity on return glm::vec3(0.f, -1.f, 0.f); } else { // If flying in space, turn gravity OFF return glm::vec3(0.f, 0.f, 0.f); } }