mirror of
https://github.com/HifiExperiments/overte.git
synced 2025-08-04 05:44:50 +02:00
Merge branch 'master' of github.com:highfidelity/hifi into run
This commit is contained in:
commit
eaeebc0215
39 changed files with 921 additions and 298 deletions
|
@ -41,9 +41,9 @@ Item {
|
||||||
onNewViewRequestedCallback: {
|
onNewViewRequestedCallback: {
|
||||||
// desktop is not defined for web-entities or tablet
|
// desktop is not defined for web-entities or tablet
|
||||||
if (typeof desktop !== "undefined") {
|
if (typeof desktop !== "undefined") {
|
||||||
desktop.openBrowserWindow(request, profile);
|
desktop.openBrowserWindow(request, webViewCoreProfile);
|
||||||
} else {
|
} else {
|
||||||
tabletRoot.openBrowserWindow(request, profile);
|
tabletRoot.openBrowserWindow(request, webViewCoreProfile);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -22,7 +22,6 @@ Item {
|
||||||
anchors.fill: parent
|
anchors.fill: parent
|
||||||
id: d
|
id: d
|
||||||
objectName: "stack"
|
objectName: "stack"
|
||||||
initialItem: topMenu
|
|
||||||
|
|
||||||
property var menuStack: []
|
property var menuStack: []
|
||||||
property var topMenu: null;
|
property var topMenu: null;
|
||||||
|
|
|
@ -76,3 +76,5 @@ AnimPose::operator glm::mat4() const {
|
||||||
return glm::mat4(glm::vec4(xAxis, 0.0f), glm::vec4(yAxis, 0.0f),
|
return glm::mat4(glm::vec4(xAxis, 0.0f), glm::vec4(yAxis, 0.0f),
|
||||||
glm::vec4(zAxis, 0.0f), glm::vec4(_trans, 1.0f));
|
glm::vec4(zAxis, 0.0f), glm::vec4(_trans, 1.0f));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1732,6 +1732,14 @@ glm::mat4 Rig::getJointTransform(int jointIndex) const {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
AnimPose Rig::getJointPose(int jointIndex) const {
|
||||||
|
if (isIndexValid(jointIndex)) {
|
||||||
|
return _internalPoseSet._absolutePoses[jointIndex];
|
||||||
|
} else {
|
||||||
|
return AnimPose::identity;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void Rig::copyJointsIntoJointData(QVector<JointData>& jointDataVec) const {
|
void Rig::copyJointsIntoJointData(QVector<JointData>& jointDataVec) const {
|
||||||
|
|
||||||
const AnimPose geometryToRigPose(_geometryToRigTransform);
|
const AnimPose geometryToRigPose(_geometryToRigTransform);
|
||||||
|
|
|
@ -164,6 +164,7 @@ public:
|
||||||
|
|
||||||
// rig space
|
// rig space
|
||||||
glm::mat4 getJointTransform(int jointIndex) const;
|
glm::mat4 getJointTransform(int jointIndex) const;
|
||||||
|
AnimPose getJointPose(int jointIndex) const;
|
||||||
|
|
||||||
// Start or stop animations as needed.
|
// Start or stop animations as needed.
|
||||||
void computeMotionAnimationState(float deltaTime, const glm::vec3& worldPosition, const glm::vec3& worldVelocity, const glm::quat& worldRotation, CharacterControllerState ccState);
|
void computeMotionAnimationState(float deltaTime, const glm::vec3& worldPosition, const glm::vec3& worldVelocity, const glm::quat& worldRotation, CharacterControllerState ccState);
|
||||||
|
|
|
@ -116,6 +116,7 @@ public:
|
||||||
|
|
||||||
int jointIndex;
|
int jointIndex;
|
||||||
glm::mat4 inverseBindMatrix;
|
glm::mat4 inverseBindMatrix;
|
||||||
|
Transform inverseBindTransform;
|
||||||
};
|
};
|
||||||
|
|
||||||
const int MAX_NUM_PIXELS_FOR_FBX_TEXTURE = 2048 * 2048;
|
const int MAX_NUM_PIXELS_FOR_FBX_TEXTURE = 2048 * 2048;
|
||||||
|
@ -225,7 +226,7 @@ public:
|
||||||
QVector<glm::vec2> texCoords;
|
QVector<glm::vec2> texCoords;
|
||||||
QVector<glm::vec2> texCoords1;
|
QVector<glm::vec2> texCoords1;
|
||||||
QVector<uint16_t> clusterIndices;
|
QVector<uint16_t> clusterIndices;
|
||||||
QVector<uint8_t> clusterWeights;
|
QVector<uint16_t> clusterWeights;
|
||||||
QVector<int32_t> originalIndices;
|
QVector<int32_t> originalIndices;
|
||||||
|
|
||||||
QVector<FBXCluster> clusters;
|
QVector<FBXCluster> clusters;
|
||||||
|
|
|
@ -1675,6 +1675,7 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
|
||||||
fbxCluster.jointIndex = 0;
|
fbxCluster.jointIndex = 0;
|
||||||
}
|
}
|
||||||
fbxCluster.inverseBindMatrix = glm::inverse(cluster.transformLink) * modelTransform;
|
fbxCluster.inverseBindMatrix = glm::inverse(cluster.transformLink) * modelTransform;
|
||||||
|
fbxCluster.inverseBindTransform = Transform(fbxCluster.inverseBindMatrix);
|
||||||
extracted.mesh.clusters.append(fbxCluster);
|
extracted.mesh.clusters.append(fbxCluster);
|
||||||
|
|
||||||
// override the bind rotation with the transform link
|
// override the bind rotation with the transform link
|
||||||
|
@ -1789,9 +1790,9 @@ FBXGeometry* FBXReader::extractFBXGeometry(const QVariantHash& mapping, const QS
|
||||||
}
|
}
|
||||||
if (totalWeight > 0.0f) {
|
if (totalWeight > 0.0f) {
|
||||||
const float ALMOST_HALF = 0.499f;
|
const float ALMOST_HALF = 0.499f;
|
||||||
float weightScalingFactor = (float)(UINT8_MAX) / totalWeight;
|
float weightScalingFactor = (float)(UINT16_MAX) / totalWeight;
|
||||||
for (int k = j; k < j + WEIGHTS_PER_VERTEX; ++k) {
|
for (int k = j; k < j + WEIGHTS_PER_VERTEX; ++k) {
|
||||||
extracted.mesh.clusterWeights[k] = (uint8_t)(weightScalingFactor * weightAccumulators[k] + ALMOST_HALF);
|
extracted.mesh.clusterWeights[k] = (uint16_t)(weightScalingFactor * weightAccumulators[k] + ALMOST_HALF);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -624,7 +624,8 @@ void FBXReader::buildModelMesh(FBXMesh& extractedMesh, const QString& url) {
|
||||||
// we need 16 bits instead of just 8 for clusterIndices
|
// we need 16 bits instead of just 8 for clusterIndices
|
||||||
clusterIndicesSize *= 2;
|
clusterIndicesSize *= 2;
|
||||||
}
|
}
|
||||||
const int clusterWeightsSize = fbxMesh.clusterWeights.size() * sizeof(uint8_t);
|
|
||||||
|
const int clusterWeightsSize = fbxMesh.clusterWeights.size() * sizeof(uint16_t);
|
||||||
|
|
||||||
// Normals and tangents are interleaved
|
// Normals and tangents are interleaved
|
||||||
const int normalsOffset = 0;
|
const int normalsOffset = 0;
|
||||||
|
@ -759,7 +760,7 @@ void FBXReader::buildModelMesh(FBXMesh& extractedMesh, const QString& url) {
|
||||||
if (clusterWeightsSize) {
|
if (clusterWeightsSize) {
|
||||||
mesh->addAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT,
|
mesh->addAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT,
|
||||||
model::BufferView(attribBuffer, clusterWeightsOffset, clusterWeightsSize,
|
model::BufferView(attribBuffer, clusterWeightsOffset, clusterWeightsSize,
|
||||||
gpu::Element(gpu::VEC4, gpu::NUINT8, gpu::XYZW)));
|
gpu::Element(gpu::VEC4, gpu::NUINT16, gpu::XYZW)));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -63,12 +63,17 @@ namespace gl {
|
||||||
}
|
}
|
||||||
*/
|
*/
|
||||||
|
|
||||||
qCWarning(glLogging) << "GLShader::compileShader - failed to compile the gl shader object:";
|
qCCritical(glLogging) << "GLShader::compileShader - failed to compile the gl shader object:";
|
||||||
|
int lineNumber = 0;
|
||||||
for (auto s : srcstr) {
|
for (auto s : srcstr) {
|
||||||
qCWarning(glLogging) << s;
|
QString str(s);
|
||||||
|
QStringList lines = str.split("\n");
|
||||||
|
for (auto& line : lines) {
|
||||||
|
qCCritical(glLogging).noquote() << QString("%1: %2").arg(lineNumber++, 5, 10, QChar('0')).arg(line);
|
||||||
}
|
}
|
||||||
qCWarning(glLogging) << "GLShader::compileShader - errors:";
|
}
|
||||||
qCWarning(glLogging) << temp;
|
qCCritical(glLogging) << "GLShader::compileShader - errors:";
|
||||||
|
qCCritical(glLogging) << temp;
|
||||||
|
|
||||||
error = std::string(temp);
|
error = std::string(temp);
|
||||||
delete[] temp;
|
delete[] temp;
|
||||||
|
|
|
@ -20,16 +20,16 @@ using namespace render;
|
||||||
CauterizedMeshPartPayload::CauterizedMeshPartPayload(ModelPointer model, int meshIndex, int partIndex, int shapeIndex, const Transform& transform, const Transform& offsetTransform)
|
CauterizedMeshPartPayload::CauterizedMeshPartPayload(ModelPointer model, int meshIndex, int partIndex, int shapeIndex, const Transform& transform, const Transform& offsetTransform)
|
||||||
: ModelMeshPartPayload(model, meshIndex, partIndex, shapeIndex, transform, offsetTransform) {}
|
: ModelMeshPartPayload(model, meshIndex, partIndex, shapeIndex, transform, offsetTransform) {}
|
||||||
|
|
||||||
void CauterizedMeshPartPayload::updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices, const std::vector<glm::mat4>& cauterizedClusterMatrices) {
|
void CauterizedMeshPartPayload::updateClusterBuffer(const std::vector<TransformType>& clusterTransforms, const std::vector<TransformType>& cauterizedClusterTransforms) {
|
||||||
ModelMeshPartPayload::updateClusterBuffer(clusterMatrices);
|
ModelMeshPartPayload::updateClusterBuffer(clusterTransforms);
|
||||||
|
|
||||||
if (cauterizedClusterMatrices.size() > 1) {
|
if (cauterizedClusterTransforms.size() > 1) {
|
||||||
if (!_cauterizedClusterBuffer) {
|
if (!_cauterizedClusterBuffer) {
|
||||||
_cauterizedClusterBuffer = std::make_shared<gpu::Buffer>(cauterizedClusterMatrices.size() * sizeof(glm::mat4),
|
_cauterizedClusterBuffer = std::make_shared<gpu::Buffer>(cauterizedClusterTransforms.size() * sizeof(TransformType),
|
||||||
(const gpu::Byte*) cauterizedClusterMatrices.data());
|
(const gpu::Byte*) cauterizedClusterTransforms.data());
|
||||||
} else {
|
} else {
|
||||||
_cauterizedClusterBuffer->setSubData(0, cauterizedClusterMatrices.size() * sizeof(glm::mat4),
|
_cauterizedClusterBuffer->setSubData(0, cauterizedClusterTransforms.size() * sizeof(TransformType),
|
||||||
(const gpu::Byte*) cauterizedClusterMatrices.data());
|
(const gpu::Byte*) cauterizedClusterTransforms.data());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -15,7 +15,13 @@ class CauterizedMeshPartPayload : public ModelMeshPartPayload {
|
||||||
public:
|
public:
|
||||||
CauterizedMeshPartPayload(ModelPointer model, int meshIndex, int partIndex, int shapeIndex, const Transform& transform, const Transform& offsetTransform);
|
CauterizedMeshPartPayload(ModelPointer model, int meshIndex, int partIndex, int shapeIndex, const Transform& transform, const Transform& offsetTransform);
|
||||||
|
|
||||||
void updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices, const std::vector<glm::mat4>& cauterizedClusterMatrices);
|
#if defined(SKIN_DQ)
|
||||||
|
using TransformType = Model::TransformDualQuaternion;
|
||||||
|
#else
|
||||||
|
using TransformType = glm::mat4;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
void updateClusterBuffer(const std::vector<TransformType>& clusterTransforms, const std::vector<TransformType>& cauterizedClusterTransforms);
|
||||||
|
|
||||||
void updateTransformForCauterizedMesh(const Transform& renderTransform);
|
void updateTransformForCauterizedMesh(const Transform& renderTransform);
|
||||||
|
|
||||||
|
|
|
@ -9,13 +9,13 @@
|
||||||
#include "CauterizedModel.h"
|
#include "CauterizedModel.h"
|
||||||
|
|
||||||
#include <PerfStat.h>
|
#include <PerfStat.h>
|
||||||
|
#include <DualQuaternion.h>
|
||||||
|
|
||||||
#include "AbstractViewStateInterface.h"
|
#include "AbstractViewStateInterface.h"
|
||||||
#include "MeshPartPayload.h"
|
#include "MeshPartPayload.h"
|
||||||
#include "CauterizedMeshPartPayload.h"
|
#include "CauterizedMeshPartPayload.h"
|
||||||
#include "RenderUtilsLogging.h"
|
#include "RenderUtilsLogging.h"
|
||||||
|
|
||||||
|
|
||||||
CauterizedModel::CauterizedModel(QObject* parent) :
|
CauterizedModel::CauterizedModel(QObject* parent) :
|
||||||
Model(parent) {
|
Model(parent) {
|
||||||
}
|
}
|
||||||
|
@ -35,7 +35,7 @@ bool CauterizedModel::updateGeometry() {
|
||||||
const FBXGeometry& fbxGeometry = getFBXGeometry();
|
const FBXGeometry& fbxGeometry = getFBXGeometry();
|
||||||
foreach (const FBXMesh& mesh, fbxGeometry.meshes) {
|
foreach (const FBXMesh& mesh, fbxGeometry.meshes) {
|
||||||
Model::MeshState state;
|
Model::MeshState state;
|
||||||
state.clusterMatrices.resize(mesh.clusters.size());
|
state.clusterTransforms.resize(mesh.clusters.size());
|
||||||
_cauterizeMeshStates.append(state);
|
_cauterizeMeshStates.append(state);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -109,30 +109,52 @@ void CauterizedModel::updateClusterMatrices() {
|
||||||
const FBXMesh& mesh = geometry.meshes.at(i);
|
const FBXMesh& mesh = geometry.meshes.at(i);
|
||||||
for (int j = 0; j < mesh.clusters.size(); j++) {
|
for (int j = 0; j < mesh.clusters.size(); j++) {
|
||||||
const FBXCluster& cluster = mesh.clusters.at(j);
|
const FBXCluster& cluster = mesh.clusters.at(j);
|
||||||
|
#if defined(SKIN_DQ)
|
||||||
|
auto jointPose = _rig.getJointPose(cluster.jointIndex);
|
||||||
|
Transform jointTransform(jointPose.rot(), jointPose.scale(), jointPose.trans());
|
||||||
|
Transform clusterTransform;
|
||||||
|
Transform::mult(clusterTransform, jointTransform, cluster.inverseBindTransform);
|
||||||
|
state.clusterTransforms[j] = Model::TransformDualQuaternion(clusterTransform);
|
||||||
|
#else
|
||||||
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
|
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
|
||||||
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
|
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// as an optimization, don't build cautrizedClusterMatrices if the boneSet is empty.
|
// as an optimization, don't build cautrizedClusterMatrices if the boneSet is empty.
|
||||||
if (!_cauterizeBoneSet.empty()) {
|
if (!_cauterizeBoneSet.empty()) {
|
||||||
|
#if defined(SKIN_DQ)
|
||||||
|
AnimPose cauterizePose = _rig.getJointPose(geometry.neckJointIndex);
|
||||||
|
cauterizePose.scale() = glm::vec3(0.0001f, 0.0001f, 0.0001f);
|
||||||
|
#else
|
||||||
static const glm::mat4 zeroScale(
|
static const glm::mat4 zeroScale(
|
||||||
glm::vec4(0.0f, 0.0f, 0.0f, 0.0f),
|
glm::vec4(0.0001f, 0.0f, 0.0f, 0.0f),
|
||||||
glm::vec4(0.0f, 0.0f, 0.0f, 0.0f),
|
glm::vec4(0.0f, 0.0001f, 0.0f, 0.0f),
|
||||||
glm::vec4(0.0f, 0.0f, 0.0f, 0.0f),
|
glm::vec4(0.0f, 0.0f, 0.0001f, 0.0f),
|
||||||
glm::vec4(0.0f, 0.0f, 0.0f, 1.0f));
|
glm::vec4(0.0f, 0.0f, 0.0f, 1.0f));
|
||||||
auto cauterizeMatrix = _rig.getJointTransform(geometry.neckJointIndex) * zeroScale;
|
auto cauterizeMatrix = _rig.getJointTransform(geometry.neckJointIndex) * zeroScale;
|
||||||
|
#endif
|
||||||
for (int i = 0; i < _cauterizeMeshStates.size(); i++) {
|
for (int i = 0; i < _cauterizeMeshStates.size(); i++) {
|
||||||
Model::MeshState& state = _cauterizeMeshStates[i];
|
Model::MeshState& state = _cauterizeMeshStates[i];
|
||||||
const FBXMesh& mesh = geometry.meshes.at(i);
|
const FBXMesh& mesh = geometry.meshes.at(i);
|
||||||
|
|
||||||
for (int j = 0; j < mesh.clusters.size(); j++) {
|
for (int j = 0; j < mesh.clusters.size(); j++) {
|
||||||
const FBXCluster& cluster = mesh.clusters.at(j);
|
const FBXCluster& cluster = mesh.clusters.at(j);
|
||||||
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
|
|
||||||
if (_cauterizeBoneSet.find(cluster.jointIndex) != _cauterizeBoneSet.end()) {
|
if (_cauterizeBoneSet.find(cluster.jointIndex) == _cauterizeBoneSet.end()) {
|
||||||
jointMatrix = cauterizeMatrix;
|
// not cauterized so just copy the value from the non-cauterized version.
|
||||||
|
state.clusterTransforms[j] = _meshStates[i].clusterTransforms[j];
|
||||||
|
} else {
|
||||||
|
#if defined(SKIN_DQ)
|
||||||
|
Transform jointTransform(cauterizePose.rot(), cauterizePose.scale(), cauterizePose.trans());
|
||||||
|
Transform clusterTransform;
|
||||||
|
Transform::mult(clusterTransform, jointTransform, cluster.inverseBindTransform);
|
||||||
|
state.clusterTransforms[j] = Model::TransformDualQuaternion(clusterTransform);
|
||||||
|
#else
|
||||||
|
glm_mat4u_mul(cauterizeMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -189,24 +211,38 @@ void CauterizedModel::updateRenderItems() {
|
||||||
|
|
||||||
auto itemID = self->_modelMeshRenderItemIDs[i];
|
auto itemID = self->_modelMeshRenderItemIDs[i];
|
||||||
auto meshIndex = self->_modelMeshRenderItemShapes[i].meshIndex;
|
auto meshIndex = self->_modelMeshRenderItemShapes[i].meshIndex;
|
||||||
auto clusterMatrices(self->getMeshState(meshIndex).clusterMatrices);
|
auto clusterTransforms(self->getMeshState(meshIndex).clusterTransforms);
|
||||||
auto clusterMatricesCauterized(self->getCauterizeMeshState(meshIndex).clusterMatrices);
|
auto clusterTransformsCauterized(self->getCauterizeMeshState(meshIndex).clusterTransforms);
|
||||||
|
|
||||||
bool invalidatePayloadShapeKey = self->shouldInvalidatePayloadShapeKey(meshIndex);
|
bool invalidatePayloadShapeKey = self->shouldInvalidatePayloadShapeKey(meshIndex);
|
||||||
|
|
||||||
transaction.updateItem<CauterizedMeshPartPayload>(itemID, [modelTransform, clusterMatrices, clusterMatricesCauterized, invalidatePayloadShapeKey,
|
transaction.updateItem<CauterizedMeshPartPayload>(itemID, [modelTransform, clusterTransforms, clusterTransformsCauterized, invalidatePayloadShapeKey,
|
||||||
isWireframe, isVisible, isLayeredInFront, isLayeredInHUD, enableCauterization](CauterizedMeshPartPayload& data) {
|
isWireframe, isVisible, isLayeredInFront, isLayeredInHUD, enableCauterization](CauterizedMeshPartPayload& data) {
|
||||||
data.updateClusterBuffer(clusterMatrices, clusterMatricesCauterized);
|
data.updateClusterBuffer(clusterTransforms, clusterTransformsCauterized);
|
||||||
|
|
||||||
Transform renderTransform = modelTransform;
|
Transform renderTransform = modelTransform;
|
||||||
if (clusterMatrices.size() == 1) {
|
if (clusterTransforms.size() == 1) {
|
||||||
renderTransform = modelTransform.worldTransform(Transform(clusterMatrices[0]));
|
#if defined(SKIN_DQ)
|
||||||
|
Transform transform(clusterTransforms[0].getRotation(),
|
||||||
|
clusterTransforms[0].getScale(),
|
||||||
|
clusterTransforms[0].getTranslation());
|
||||||
|
renderTransform = modelTransform.worldTransform(transform);
|
||||||
|
#else
|
||||||
|
renderTransform = modelTransform.worldTransform(Transform(clusterTransforms[0]));
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
data.updateTransformForSkinnedMesh(renderTransform, modelTransform);
|
data.updateTransformForSkinnedMesh(renderTransform, modelTransform);
|
||||||
|
|
||||||
renderTransform = modelTransform;
|
renderTransform = modelTransform;
|
||||||
if (clusterMatricesCauterized.size() == 1) {
|
if (clusterTransformsCauterized.size() == 1) {
|
||||||
renderTransform = modelTransform.worldTransform(Transform(clusterMatricesCauterized[0]));
|
#if defined(SKIN_DQ)
|
||||||
|
Transform transform(clusterTransforms[0].getRotation(),
|
||||||
|
clusterTransforms[0].getScale(),
|
||||||
|
clusterTransforms[0].getTranslation());
|
||||||
|
renderTransform = modelTransform.worldTransform(Transform(transform));
|
||||||
|
#else
|
||||||
|
renderTransform = modelTransform.worldTransform(Transform(clusterTransformsCauterized[0]));
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
data.updateTransformForCauterizedMesh(renderTransform);
|
data.updateTransformForCauterizedMesh(renderTransform);
|
||||||
|
|
||||||
|
|
|
@ -46,6 +46,15 @@ struct DeferredFragment {
|
||||||
float depthVal;
|
float depthVal;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
<@if not GETFRESNEL0@>
|
||||||
|
<@def GETFRESNEL0@>
|
||||||
|
vec3 getFresnelF0(float metallic, vec3 metalF0) {
|
||||||
|
// Enable continuous metallness value by lerping between dielectric
|
||||||
|
// and metal fresnel F0 value based on the "metallic" parameter
|
||||||
|
return mix(vec3(0.03), metalF0, metallic);
|
||||||
|
}
|
||||||
|
<@endif@>
|
||||||
|
|
||||||
DeferredFragment unpackDeferredFragmentNoPosition(vec2 texcoord) {
|
DeferredFragment unpackDeferredFragmentNoPosition(vec2 texcoord) {
|
||||||
vec4 normalVal;
|
vec4 normalVal;
|
||||||
vec4 diffuseVal;
|
vec4 diffuseVal;
|
||||||
|
@ -73,13 +82,7 @@ DeferredFragment unpackDeferredFragmentNoPosition(vec2 texcoord) {
|
||||||
frag.scattering = specularVal.x;
|
frag.scattering = specularVal.x;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (frag.metallic <= 0.5) {
|
frag.fresnel = getFresnelF0(frag.metallic, diffuseVal.xyz);
|
||||||
frag.metallic = 0.0;
|
|
||||||
frag.fresnel = vec3(0.03); // Default Di-electric fresnel value
|
|
||||||
} else {
|
|
||||||
frag.fresnel = vec3(diffuseVal.xyz);
|
|
||||||
frag.metallic = 1.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
return frag;
|
return frag;
|
||||||
}
|
}
|
||||||
|
@ -106,14 +109,7 @@ DeferredFragment unpackDeferredFragmentNoPositionNoAmbient(vec2 texcoord) {
|
||||||
//frag.emissive = specularVal.xyz;
|
//frag.emissive = specularVal.xyz;
|
||||||
frag.obscurance = 1.0;
|
frag.obscurance = 1.0;
|
||||||
|
|
||||||
|
frag.fresnel = getFresnelF0(frag.metallic, diffuseVal.xyz);
|
||||||
if (frag.metallic <= 0.5) {
|
|
||||||
frag.metallic = 0.0;
|
|
||||||
frag.fresnel = vec3(0.03); // Default Di-electric fresnel value
|
|
||||||
} else {
|
|
||||||
frag.fresnel = vec3(diffuseVal.xyz);
|
|
||||||
frag.metallic = 1.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
return frag;
|
return frag;
|
||||||
}
|
}
|
||||||
|
|
|
@ -65,10 +65,12 @@ vec3 albedo, vec3 fresnel, float metallic, float roughness
|
||||||
|
|
||||||
<$prepareGlobalLight($supportScattering$)$>
|
<$prepareGlobalLight($supportScattering$)$>
|
||||||
|
|
||||||
|
SurfaceData surface = initSurfaceData(roughness, fragNormal, fragEyeDir);
|
||||||
|
|
||||||
// Ambient
|
// Ambient
|
||||||
vec3 ambientDiffuse;
|
vec3 ambientDiffuse;
|
||||||
vec3 ambientSpecular;
|
vec3 ambientSpecular;
|
||||||
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, obscurance
|
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, surface, metallic, fresnel, albedo, obscurance
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@> );
|
<@endif@> );
|
||||||
|
@ -79,7 +81,7 @@ vec3 albedo, vec3 fresnel, float metallic, float roughness
|
||||||
// Directional
|
// Directional
|
||||||
vec3 directionalDiffuse;
|
vec3 directionalDiffuse;
|
||||||
vec3 directionalSpecular;
|
vec3 directionalSpecular;
|
||||||
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, shadowAttenuation
|
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, surface, metallic, fresnel, albedo, shadowAttenuation
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@> );
|
<@endif@> );
|
||||||
|
@ -110,10 +112,12 @@ vec3 evalSkyboxGlobalColor(mat4 invViewMat, float shadowAttenuation, float obscu
|
||||||
) {
|
) {
|
||||||
<$prepareGlobalLight($supportScattering$)$>
|
<$prepareGlobalLight($supportScattering$)$>
|
||||||
|
|
||||||
|
SurfaceData surface = initSurfaceData(roughness, fragNormal, fragEyeDir);
|
||||||
|
|
||||||
// Ambient
|
// Ambient
|
||||||
vec3 ambientDiffuse;
|
vec3 ambientDiffuse;
|
||||||
vec3 ambientSpecular;
|
vec3 ambientSpecular;
|
||||||
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, obscurance
|
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, surface, metallic, fresnel, albedo, obscurance
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@>
|
<@endif@>
|
||||||
|
@ -123,7 +127,7 @@ vec3 evalSkyboxGlobalColor(mat4 invViewMat, float shadowAttenuation, float obscu
|
||||||
|
|
||||||
vec3 directionalDiffuse;
|
vec3 directionalDiffuse;
|
||||||
vec3 directionalSpecular;
|
vec3 directionalSpecular;
|
||||||
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, shadowAttenuation
|
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, surface, metallic, fresnel, albedo, shadowAttenuation
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@>
|
<@endif@>
|
||||||
|
@ -174,19 +178,21 @@ vec3 evalLightmappedColor(mat4 invViewMat, float shadowAttenuation, float obscur
|
||||||
vec3 evalGlobalLightingAlphaBlended(mat4 invViewMat, float shadowAttenuation, float obscurance, vec3 position, vec3 normal, vec3 albedo, vec3 fresnel, float metallic, vec3 emissive, float roughness, float opacity) {
|
vec3 evalGlobalLightingAlphaBlended(mat4 invViewMat, float shadowAttenuation, float obscurance, vec3 position, vec3 normal, vec3 albedo, vec3 fresnel, float metallic, vec3 emissive, float roughness, float opacity) {
|
||||||
<$prepareGlobalLight()$>
|
<$prepareGlobalLight()$>
|
||||||
|
|
||||||
|
SurfaceData surface = initSurfaceData(roughness, fragNormal, fragEyeDir);
|
||||||
|
|
||||||
color += emissive * isEmissiveEnabled();
|
color += emissive * isEmissiveEnabled();
|
||||||
|
|
||||||
// Ambient
|
// Ambient
|
||||||
vec3 ambientDiffuse;
|
vec3 ambientDiffuse;
|
||||||
vec3 ambientSpecular;
|
vec3 ambientSpecular;
|
||||||
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, obscurance);
|
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, surface, metallic, fresnel, albedo, obscurance);
|
||||||
color += ambientDiffuse;
|
color += ambientDiffuse;
|
||||||
color += ambientSpecular / opacity;
|
color += ambientSpecular / opacity;
|
||||||
|
|
||||||
// Directional
|
// Directional
|
||||||
vec3 directionalDiffuse;
|
vec3 directionalDiffuse;
|
||||||
vec3 directionalSpecular;
|
vec3 directionalSpecular;
|
||||||
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, shadowAttenuation);
|
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, surface, metallic, fresnel, albedo, shadowAttenuation);
|
||||||
color += directionalDiffuse;
|
color += directionalDiffuse;
|
||||||
color += directionalSpecular / opacity;
|
color += directionalSpecular / opacity;
|
||||||
|
|
||||||
|
@ -199,19 +205,21 @@ vec3 evalGlobalLightingAlphaBlendedWithHaze(
|
||||||
{
|
{
|
||||||
<$prepareGlobalLight()$>
|
<$prepareGlobalLight()$>
|
||||||
|
|
||||||
|
SurfaceData surface = initSurfaceData(roughness, fragNormal, fragEyeDir);
|
||||||
|
|
||||||
color += emissive * isEmissiveEnabled();
|
color += emissive * isEmissiveEnabled();
|
||||||
|
|
||||||
// Ambient
|
// Ambient
|
||||||
vec3 ambientDiffuse;
|
vec3 ambientDiffuse;
|
||||||
vec3 ambientSpecular;
|
vec3 ambientSpecular;
|
||||||
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, obscurance);
|
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, surface, metallic, fresnel, albedo, obscurance);
|
||||||
color += ambientDiffuse;
|
color += ambientDiffuse;
|
||||||
color += ambientSpecular / opacity;
|
color += ambientSpecular / opacity;
|
||||||
|
|
||||||
// Directional
|
// Directional
|
||||||
vec3 directionalDiffuse;
|
vec3 directionalDiffuse;
|
||||||
vec3 directionalSpecular;
|
vec3 directionalSpecular;
|
||||||
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, shadowAttenuation);
|
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, surface, metallic, fresnel, albedo, shadowAttenuation);
|
||||||
color += directionalDiffuse;
|
color += directionalDiffuse;
|
||||||
color += directionalSpecular / opacity;
|
color += directionalSpecular / opacity;
|
||||||
|
|
||||||
|
|
|
@ -65,10 +65,12 @@ vec3 albedo, vec3 fresnel, float metallic, float roughness
|
||||||
|
|
||||||
<$prepareGlobalLight($supportScattering$)$>
|
<$prepareGlobalLight($supportScattering$)$>
|
||||||
|
|
||||||
|
SurfaceData surface = initSurfaceData(roughness, fragNormal, fragEyeDir);
|
||||||
|
|
||||||
// Ambient
|
// Ambient
|
||||||
vec3 ambientDiffuse;
|
vec3 ambientDiffuse;
|
||||||
vec3 ambientSpecular;
|
vec3 ambientSpecular;
|
||||||
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, obscurance
|
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, surface, metallic, fresnel, albedo, obscurance
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@> );
|
<@endif@> );
|
||||||
|
@ -79,7 +81,7 @@ vec3 albedo, vec3 fresnel, float metallic, float roughness
|
||||||
// Directional
|
// Directional
|
||||||
vec3 directionalDiffuse;
|
vec3 directionalDiffuse;
|
||||||
vec3 directionalSpecular;
|
vec3 directionalSpecular;
|
||||||
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, shadowAttenuation
|
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, surface, metallic, fresnel, albedo, shadowAttenuation
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@> );
|
<@endif@> );
|
||||||
|
@ -109,10 +111,12 @@ vec3 evalSkyboxGlobalColor(mat4 invViewMat, float shadowAttenuation, float obscu
|
||||||
) {
|
) {
|
||||||
<$prepareGlobalLight($supportScattering$)$>
|
<$prepareGlobalLight($supportScattering$)$>
|
||||||
|
|
||||||
|
SurfaceData surface = initSurfaceData(roughness, fragNormal, fragEyeDir);
|
||||||
|
|
||||||
// Ambient
|
// Ambient
|
||||||
vec3 ambientDiffuse;
|
vec3 ambientDiffuse;
|
||||||
vec3 ambientSpecular;
|
vec3 ambientSpecular;
|
||||||
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, obscurance
|
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, surface, metallic, fresnel, albedo, obscurance
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@>
|
<@endif@>
|
||||||
|
@ -124,7 +128,7 @@ vec3 evalSkyboxGlobalColor(mat4 invViewMat, float shadowAttenuation, float obscu
|
||||||
// Directional
|
// Directional
|
||||||
vec3 directionalDiffuse;
|
vec3 directionalDiffuse;
|
||||||
vec3 directionalSpecular;
|
vec3 directionalSpecular;
|
||||||
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, shadowAttenuation
|
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, surface, metallic, fresnel, albedo, shadowAttenuation
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@>
|
<@endif@>
|
||||||
|
@ -173,19 +177,21 @@ vec3 evalLightmappedColor(mat4 invViewMat, float shadowAttenuation, float obscur
|
||||||
vec3 evalGlobalLightingAlphaBlended(mat4 invViewMat, float shadowAttenuation, float obscurance, vec3 position, vec3 normal, vec3 albedo, vec3 fresnel, float metallic, vec3 emissive, float roughness, float opacity) {
|
vec3 evalGlobalLightingAlphaBlended(mat4 invViewMat, float shadowAttenuation, float obscurance, vec3 position, vec3 normal, vec3 albedo, vec3 fresnel, float metallic, vec3 emissive, float roughness, float opacity) {
|
||||||
<$prepareGlobalLight()$>
|
<$prepareGlobalLight()$>
|
||||||
|
|
||||||
|
SurfaceData surface = initSurfaceData(roughness, fragNormal, fragEyeDir);
|
||||||
|
|
||||||
color += emissive * isEmissiveEnabled();
|
color += emissive * isEmissiveEnabled();
|
||||||
|
|
||||||
// Ambient
|
// Ambient
|
||||||
vec3 ambientDiffuse;
|
vec3 ambientDiffuse;
|
||||||
vec3 ambientSpecular;
|
vec3 ambientSpecular;
|
||||||
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, obscurance);
|
evalLightingAmbient(ambientDiffuse, ambientSpecular, lightAmbient, surface, metallic, fresnel, albedo, obscurance);
|
||||||
color += ambientDiffuse;
|
color += ambientDiffuse;
|
||||||
color += ambientSpecular / opacity;
|
color += ambientSpecular / opacity;
|
||||||
|
|
||||||
// Directional
|
// Directional
|
||||||
vec3 directionalDiffuse;
|
vec3 directionalDiffuse;
|
||||||
vec3 directionalSpecular;
|
vec3 directionalSpecular;
|
||||||
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, shadowAttenuation);
|
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, surface, metallic, fresnel, albedo, shadowAttenuation);
|
||||||
color += directionalDiffuse;
|
color += directionalDiffuse;
|
||||||
color += directionalSpecular / opacity;
|
color += directionalSpecular / opacity;
|
||||||
|
|
||||||
|
|
|
@ -16,22 +16,27 @@ uniform samplerCube skyboxMap;
|
||||||
vec4 evalSkyboxLight(vec3 direction, float lod) {
|
vec4 evalSkyboxLight(vec3 direction, float lod) {
|
||||||
// textureQueryLevels is not available until #430, so we require explicit lod
|
// textureQueryLevels is not available until #430, so we require explicit lod
|
||||||
// float mipmapLevel = lod * textureQueryLevels(skyboxMap);
|
// float mipmapLevel = lod * textureQueryLevels(skyboxMap);
|
||||||
|
float filterLod = textureQueryLod(skyboxMap, direction).x;
|
||||||
|
// Keep texture filtering LOD as limit to prevent aliasing on specular reflection
|
||||||
|
lod = max(lod, filterLod);
|
||||||
return textureLod(skyboxMap, direction, lod);
|
return textureLod(skyboxMap, direction, lod);
|
||||||
}
|
}
|
||||||
<@endfunc@>
|
<@endfunc@>
|
||||||
|
|
||||||
<@func declareEvalAmbientSpecularIrradiance(supportAmbientSphere, supportAmbientMap, supportIfAmbientMapElseAmbientSphere)@>
|
<@func declareEvalAmbientSpecularIrradiance(supportAmbientSphere, supportAmbientMap, supportIfAmbientMapElseAmbientSphere)@>
|
||||||
|
|
||||||
vec3 fresnelSchlickAmbient(vec3 fresnelColor, vec3 lightDir, vec3 halfDir, float gloss) {
|
vec3 fresnelSchlickAmbient(vec3 fresnelColor, float ndotd, float gloss) {
|
||||||
return fresnelColor + (max(vec3(gloss), fresnelColor) - fresnelColor) * pow(1.0 - clamp(dot(lightDir, halfDir), 0.0, 1.0), 5.0);
|
float f = pow(1.0 - ndotd, 5.0);
|
||||||
|
return fresnelColor + (max(vec3(gloss), fresnelColor) - fresnelColor) * f;
|
||||||
|
// return fresnelColor + (vec3(1.0) - fresnelColor) * f;
|
||||||
}
|
}
|
||||||
|
|
||||||
<@if supportAmbientMap@>
|
<@if supportAmbientMap@>
|
||||||
<$declareSkyboxMap()$>
|
<$declareSkyboxMap()$>
|
||||||
<@endif@>
|
<@endif@>
|
||||||
|
|
||||||
vec3 evalAmbientSpecularIrradiance(LightAmbient ambient, vec3 fragEyeDir, vec3 fragNormal, float roughness) {
|
vec3 evalAmbientSpecularIrradiance(LightAmbient ambient, SurfaceData surface) {
|
||||||
vec3 direction = -reflect(fragEyeDir, fragNormal);
|
vec3 lightDir = -reflect(surface.eyeDir, surface.normal);
|
||||||
vec3 specularLight;
|
vec3 specularLight;
|
||||||
<@if supportIfAmbientMapElseAmbientSphere@>
|
<@if supportIfAmbientMapElseAmbientSphere@>
|
||||||
if (getLightHasAmbientMap(ambient))
|
if (getLightHasAmbientMap(ambient))
|
||||||
|
@ -39,8 +44,10 @@ vec3 evalAmbientSpecularIrradiance(LightAmbient ambient, vec3 fragEyeDir, vec3 f
|
||||||
<@if supportAmbientMap@>
|
<@if supportAmbientMap@>
|
||||||
{
|
{
|
||||||
float levels = getLightAmbientMapNumMips(ambient);
|
float levels = getLightAmbientMapNumMips(ambient);
|
||||||
float lod = min(((roughness)* levels), levels);
|
float m = 12.0 / (1.0+11.0*surface.roughness);
|
||||||
specularLight = evalSkyboxLight(direction, lod).xyz;
|
float lod = levels - m;
|
||||||
|
lod = max(lod, 0);
|
||||||
|
specularLight = evalSkyboxLight(lightDir, lod).xyz;
|
||||||
}
|
}
|
||||||
<@endif@>
|
<@endif@>
|
||||||
<@if supportIfAmbientMapElseAmbientSphere@>
|
<@if supportIfAmbientMapElseAmbientSphere@>
|
||||||
|
@ -48,7 +55,7 @@ vec3 evalAmbientSpecularIrradiance(LightAmbient ambient, vec3 fragEyeDir, vec3 f
|
||||||
<@endif@>
|
<@endif@>
|
||||||
<@if supportAmbientSphere@>
|
<@if supportAmbientSphere@>
|
||||||
{
|
{
|
||||||
specularLight = sphericalHarmonics_evalSphericalLight(getLightAmbientSphere(ambient), direction).xyz;
|
specularLight = sphericalHarmonics_evalSphericalLight(getLightAmbientSphere(ambient), lightDir).xyz;
|
||||||
}
|
}
|
||||||
<@endif@>
|
<@endif@>
|
||||||
|
|
||||||
|
@ -66,21 +73,21 @@ float curvatureAO(in float k) {
|
||||||
}
|
}
|
||||||
<@endif@>
|
<@endif@>
|
||||||
|
|
||||||
void evalLightingAmbient(out vec3 diffuse, out vec3 specular, LightAmbient ambient, vec3 eyeDir, vec3 normal,
|
void evalLightingAmbient(out vec3 diffuse, out vec3 specular, LightAmbient ambient, SurfaceData surface,
|
||||||
float roughness, float metallic, vec3 fresnel, vec3 albedo, float obscurance
|
float metallic, vec3 fresnelF0, vec3 albedo, float obscurance
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
, float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature
|
, float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature
|
||||||
<@endif@>
|
<@endif@>
|
||||||
) {
|
) {
|
||||||
|
|
||||||
// Fresnel
|
// Fresnel
|
||||||
vec3 ambientFresnel = fresnelSchlickAmbient(fresnel, eyeDir, normal, 1.0 - roughness);
|
vec3 ambientFresnel = fresnelSchlickAmbient(fresnelF0, surface.ndotv, 1.0-surface.roughness);
|
||||||
|
|
||||||
// Diffuse from ambient
|
// Diffuse from ambient
|
||||||
diffuse = (1.0 - metallic) * (vec3(1.0) - ambientFresnel) * sphericalHarmonics_evalSphericalLight(getLightAmbientSphere(ambient), normal).xyz;
|
diffuse = (1.0 - metallic) * (vec3(1.0) - ambientFresnel) * sphericalHarmonics_evalSphericalLight(getLightAmbientSphere(ambient), surface.normal).xyz;
|
||||||
|
|
||||||
// Specular highlight from ambient
|
// Specular highlight from ambient
|
||||||
specular = evalAmbientSpecularIrradiance(ambient, eyeDir, normal, roughness) * ambientFresnel;
|
specular = evalAmbientSpecularIrradiance(ambient, surface) * ambientFresnel;
|
||||||
|
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
if (scattering * isScatteringEnabled() > 0.0) {
|
if (scattering * isScatteringEnabled() > 0.0) {
|
||||||
|
@ -92,7 +99,7 @@ void evalLightingAmbient(out vec3 diffuse, out vec3 specular, LightAmbient ambie
|
||||||
|
|
||||||
// Diffuse from ambient
|
// Diffuse from ambient
|
||||||
diffuse = sphericalHarmonics_evalSphericalLight(getLightAmbientSphere(ambient), lowNormalCurvature.xyz).xyz;
|
diffuse = sphericalHarmonics_evalSphericalLight(getLightAmbientSphere(ambient), lowNormalCurvature.xyz).xyz;
|
||||||
|
diffuse /= 3.1415926;
|
||||||
specular = vec3(0.0);
|
specular = vec3(0.0);
|
||||||
}
|
}
|
||||||
<@endif@>
|
<@endif@>
|
||||||
|
@ -107,8 +114,9 @@ void evalLightingAmbient(out vec3 diffuse, out vec3 specular, LightAmbient ambie
|
||||||
diffuse *= albedo;
|
diffuse *= albedo;
|
||||||
}
|
}
|
||||||
|
|
||||||
diffuse *= lightEnergy * isDiffuseEnabled() * isAmbientEnabled();
|
lightEnergy *= isAmbientEnabled();
|
||||||
specular *= lightEnergy * isSpecularEnabled() * isAmbientEnabled();
|
diffuse *= lightEnergy * isDiffuseEnabled();
|
||||||
|
specular *= lightEnergy * isSpecularEnabled();
|
||||||
}
|
}
|
||||||
|
|
||||||
<@endfunc@>
|
<@endfunc@>
|
||||||
|
|
|
@ -12,7 +12,7 @@
|
||||||
<@func declareLightingDirectional(supportScattering)@>
|
<@func declareLightingDirectional(supportScattering)@>
|
||||||
|
|
||||||
void evalLightingDirectional(out vec3 diffuse, out vec3 specular, vec3 lightDir, vec3 lightIrradiance,
|
void evalLightingDirectional(out vec3 diffuse, out vec3 specular, vec3 lightDir, vec3 lightIrradiance,
|
||||||
vec3 eyeDir, vec3 normal, float roughness,
|
SurfaceData surface,
|
||||||
float metallic, vec3 fresnel, vec3 albedo, float shadow
|
float metallic, vec3 fresnel, vec3 albedo, float shadow
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
, float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature
|
, float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature
|
||||||
|
@ -22,14 +22,17 @@ void evalLightingDirectional(out vec3 diffuse, out vec3 specular, vec3 lightDir,
|
||||||
// Attenuation
|
// Attenuation
|
||||||
vec3 lightEnergy = shadow * lightIrradiance;
|
vec3 lightEnergy = shadow * lightIrradiance;
|
||||||
|
|
||||||
evalFragShading(diffuse, specular, normal, -lightDir, eyeDir, metallic, fresnel, roughness, albedo
|
updateSurfaceDataWithLight(surface, -lightDir);
|
||||||
|
|
||||||
|
evalFragShading(diffuse, specular, metallic, fresnel, surface, albedo
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@>
|
<@endif@>
|
||||||
);
|
);
|
||||||
|
|
||||||
diffuse *= lightEnergy * isDiffuseEnabled() * isDirectionalEnabled();
|
lightEnergy *= isDirectionalEnabled();
|
||||||
specular *= lightEnergy * isSpecularEnabled() * isDirectionalEnabled();
|
diffuse *= lightEnergy * isDiffuseEnabled();
|
||||||
|
specular *= lightEnergy * isSpecularEnabled();
|
||||||
}
|
}
|
||||||
|
|
||||||
<@endfunc@>
|
<@endfunc@>
|
||||||
|
|
|
@ -12,7 +12,7 @@
|
||||||
<@func declareLightingPoint(supportScattering)@>
|
<@func declareLightingPoint(supportScattering)@>
|
||||||
|
|
||||||
void evalLightingPoint(out vec3 diffuse, out vec3 specular, Light light,
|
void evalLightingPoint(out vec3 diffuse, out vec3 specular, Light light,
|
||||||
vec4 fragLightDirLen, vec3 fragEyeDir, vec3 normal, float roughness,
|
vec4 fragLightDirLen, SurfaceData surface,
|
||||||
float metallic, vec3 fresnel, vec3 albedo, float shadow
|
float metallic, vec3 fresnel, vec3 albedo, float shadow
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
, float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature
|
, float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature
|
||||||
|
@ -23,19 +23,22 @@ void evalLightingPoint(out vec3 diffuse, out vec3 specular, Light light,
|
||||||
float fragLightDistance = fragLightDirLen.w;
|
float fragLightDistance = fragLightDirLen.w;
|
||||||
vec3 fragLightDir = fragLightDirLen.xyz;
|
vec3 fragLightDir = fragLightDirLen.xyz;
|
||||||
|
|
||||||
|
updateSurfaceDataWithLight(surface, fragLightDir);
|
||||||
|
|
||||||
// Eval attenuation
|
// Eval attenuation
|
||||||
float radialAttenuation = lightIrradiance_evalLightAttenuation(light.irradiance, fragLightDistance);
|
float radialAttenuation = lightIrradiance_evalLightAttenuation(light.irradiance, fragLightDistance);
|
||||||
vec3 lightEnergy = radialAttenuation * shadow * getLightIrradiance(light);
|
vec3 lightEnergy = radialAttenuation * shadow * getLightIrradiance(light);
|
||||||
|
|
||||||
// Eval shading
|
// Eval shading
|
||||||
evalFragShading(diffuse, specular, normal, fragLightDir, fragEyeDir, metallic, fresnel, roughness, albedo
|
evalFragShading(diffuse, specular, metallic, fresnel, surface, albedo
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@>
|
<@endif@>
|
||||||
);
|
);
|
||||||
|
|
||||||
diffuse *= lightEnergy * isDiffuseEnabled() * isPointEnabled();
|
lightEnergy *= isPointEnabled();
|
||||||
specular *= lightEnergy * isSpecularEnabled() * isPointEnabled();
|
diffuse *= lightEnergy * isDiffuseEnabled();
|
||||||
|
specular *= lightEnergy * isSpecularEnabled();
|
||||||
|
|
||||||
if (isShowLightContour() > 0.0) {
|
if (isShowLightContour() > 0.0) {
|
||||||
// Show edge
|
// Show edge
|
||||||
|
|
|
@ -12,7 +12,7 @@
|
||||||
<@func declareLightingSpot(supportScattering)@>
|
<@func declareLightingSpot(supportScattering)@>
|
||||||
|
|
||||||
void evalLightingSpot(out vec3 diffuse, out vec3 specular, Light light,
|
void evalLightingSpot(out vec3 diffuse, out vec3 specular, Light light,
|
||||||
vec4 fragLightDirLen, float cosSpotAngle, vec3 fragEyeDir, vec3 normal, float roughness,
|
vec4 fragLightDirLen, float cosSpotAngle, SurfaceData surface,
|
||||||
float metallic, vec3 fresnel, vec3 albedo, float shadow
|
float metallic, vec3 fresnel, vec3 albedo, float shadow
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
, float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature
|
, float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature
|
||||||
|
@ -23,6 +23,7 @@ void evalLightingSpot(out vec3 diffuse, out vec3 specular, Light light,
|
||||||
float fragLightDistance = fragLightDirLen.w;
|
float fragLightDistance = fragLightDirLen.w;
|
||||||
vec3 fragLightDir = fragLightDirLen.xyz;
|
vec3 fragLightDir = fragLightDirLen.xyz;
|
||||||
|
|
||||||
|
updateSurfaceDataWithLight(surface, fragLightDir);
|
||||||
|
|
||||||
// Eval attenuation
|
// Eval attenuation
|
||||||
float radialAttenuation = lightIrradiance_evalLightAttenuation(light.irradiance, fragLightDistance);
|
float radialAttenuation = lightIrradiance_evalLightAttenuation(light.irradiance, fragLightDistance);
|
||||||
|
@ -30,14 +31,15 @@ void evalLightingSpot(out vec3 diffuse, out vec3 specular, Light light,
|
||||||
vec3 lightEnergy = angularAttenuation * radialAttenuation * shadow *getLightIrradiance(light);
|
vec3 lightEnergy = angularAttenuation * radialAttenuation * shadow *getLightIrradiance(light);
|
||||||
|
|
||||||
// Eval shading
|
// Eval shading
|
||||||
evalFragShading(diffuse, specular, normal, fragLightDir, fragEyeDir, metallic, fresnel, roughness, albedo
|
evalFragShading(diffuse, specular, metallic, fresnel, surface, albedo
|
||||||
<@if supportScattering@>
|
<@if supportScattering@>
|
||||||
,scattering, midNormalCurvature, lowNormalCurvature
|
,scattering, midNormalCurvature, lowNormalCurvature
|
||||||
<@endif@>
|
<@endif@>
|
||||||
);
|
);
|
||||||
|
|
||||||
diffuse *= lightEnergy * isDiffuseEnabled() * isSpotEnabled();
|
lightEnergy *= isSpotEnabled();
|
||||||
specular *= lightEnergy * isSpecularEnabled() * isSpotEnabled();
|
diffuse *= lightEnergy * isDiffuseEnabled();
|
||||||
|
specular *= lightEnergy * isSpecularEnabled();
|
||||||
|
|
||||||
if (isShowLightContour() > 0.0) {
|
if (isShowLightContour() > 0.0) {
|
||||||
// Show edges
|
// Show edges
|
||||||
|
|
|
@ -77,6 +77,30 @@ float isWireframeEnabled() {
|
||||||
<@endfunc@>
|
<@endfunc@>
|
||||||
<$declareLightingModel()$>
|
<$declareLightingModel()$>
|
||||||
|
|
||||||
|
struct SurfaceData {
|
||||||
|
vec3 normal;
|
||||||
|
vec3 eyeDir;
|
||||||
|
vec3 lightDir;
|
||||||
|
vec3 halfDir;
|
||||||
|
float roughness;
|
||||||
|
float roughness2;
|
||||||
|
float roughness4;
|
||||||
|
float ndotv;
|
||||||
|
float ndotl;
|
||||||
|
float ndoth;
|
||||||
|
float ldoth;
|
||||||
|
float smithInvG1NdotV;
|
||||||
|
};
|
||||||
|
|
||||||
|
<@if not GETFRESNEL0@>
|
||||||
|
<@def GETFRESNEL0@>
|
||||||
|
vec3 getFresnelF0(float metallic, vec3 metalF0) {
|
||||||
|
// Enable continuous metallness value by lerping between dielectric
|
||||||
|
// and metal fresnel F0 value based on the "metallic" parameter
|
||||||
|
return mix(vec3(0.03), metalF0, metallic);
|
||||||
|
}
|
||||||
|
<@endif@>
|
||||||
|
|
||||||
<@func declareBeckmannSpecular()@>
|
<@func declareBeckmannSpecular()@>
|
||||||
|
|
||||||
uniform sampler2D scatteringSpecularBeckmann;
|
uniform sampler2D scatteringSpecularBeckmann;
|
||||||
|
@ -85,17 +109,13 @@ float fetchSpecularBeckmann(float ndoth, float roughness) {
|
||||||
return pow(2.0 * texture(scatteringSpecularBeckmann, vec2(ndoth, roughness)).r, 10.0);
|
return pow(2.0 * texture(scatteringSpecularBeckmann, vec2(ndoth, roughness)).r, 10.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
vec2 skinSpecular(vec3 N, vec3 L, vec3 V, float roughness, float intensity) {
|
vec2 skinSpecular(SurfaceData surface, float intensity) {
|
||||||
vec2 result = vec2(0.0, 1.0);
|
vec2 result = vec2(0.0, 1.0);
|
||||||
float ndotl = dot(N, L);
|
if (surface.ndotl > 0.0) {
|
||||||
if (ndotl > 0.0) {
|
float PH = fetchSpecularBeckmann(surface.ndoth, surface.roughness);
|
||||||
vec3 h = L + V;
|
float F = fresnelSchlickScalar(0.028, surface);
|
||||||
vec3 H = normalize(h);
|
float frSpec = max(PH * F / dot(surface.halfDir, surface.halfDir), 0.0);
|
||||||
float ndoth = dot(N, H);
|
result.x = surface.ndotl * intensity * frSpec;
|
||||||
float PH = fetchSpecularBeckmann(ndoth, roughness);
|
|
||||||
float F = fresnelSchlickScalar(0.028, H, V);
|
|
||||||
float frSpec = max(PH * F / dot(h, h), 0.0);
|
|
||||||
result.x = ndotl * intensity * frSpec;
|
|
||||||
result.y -= F;
|
result.y -= F;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -105,117 +125,136 @@ vec2 skinSpecular(vec3 N, vec3 L, vec3 V, float roughness, float intensity) {
|
||||||
|
|
||||||
<@func declareEvalPBRShading()@>
|
<@func declareEvalPBRShading()@>
|
||||||
|
|
||||||
vec3 fresnelSchlickColor(vec3 fresnelColor, vec3 lightDir, vec3 halfDir) {
|
float evalSmithInvG1(float roughness4, float ndotd) {
|
||||||
float base = 1.0 - clamp(dot(lightDir, halfDir), 0.0, 1.0);
|
return ndotd + sqrt(roughness4+ndotd*ndotd*(1.0-roughness4));
|
||||||
|
}
|
||||||
|
|
||||||
|
SurfaceData initSurfaceData(float roughness, vec3 normal, vec3 eyeDir) {
|
||||||
|
SurfaceData surface;
|
||||||
|
surface.eyeDir = eyeDir;
|
||||||
|
surface.normal = normal;
|
||||||
|
surface.roughness = mix(0.001, 1.0, roughness);
|
||||||
|
surface.roughness2 = surface.roughness * surface.roughness;
|
||||||
|
surface.roughness4 = surface.roughness2 * surface.roughness2;
|
||||||
|
surface.ndotv = clamp(dot(normal, eyeDir), 0.0, 1.0);
|
||||||
|
surface.smithInvG1NdotV = evalSmithInvG1(surface.roughness4, surface.ndotv);
|
||||||
|
|
||||||
|
// These values will be set when we know the light direction, in updateSurfaceDataWithLight
|
||||||
|
surface.ndoth = 0.0;
|
||||||
|
surface.ndotl = 0.0;
|
||||||
|
surface.ldoth = 0.0;
|
||||||
|
surface.lightDir = vec3(0,0,1);
|
||||||
|
surface.halfDir = vec3(0,0,1);
|
||||||
|
|
||||||
|
return surface;
|
||||||
|
}
|
||||||
|
|
||||||
|
void updateSurfaceDataWithLight(inout SurfaceData surface, vec3 lightDir) {
|
||||||
|
surface.lightDir = lightDir;
|
||||||
|
surface.halfDir = normalize(surface.eyeDir + lightDir);
|
||||||
|
vec3 dots;
|
||||||
|
dots.x = dot(surface.normal, surface.halfDir);
|
||||||
|
dots.y = dot(surface.normal, surface.lightDir);
|
||||||
|
dots.z = dot(surface.halfDir, surface.lightDir);
|
||||||
|
dots = clamp(dots, vec3(0), vec3(1));
|
||||||
|
surface.ndoth = dots.x;
|
||||||
|
surface.ndotl = dots.y;
|
||||||
|
surface.ldoth = dots.z;
|
||||||
|
}
|
||||||
|
|
||||||
|
vec3 fresnelSchlickColor(vec3 fresnelColor, SurfaceData surface) {
|
||||||
|
float base = 1.0 - surface.ldoth;
|
||||||
//float exponential = pow(base, 5.0);
|
//float exponential = pow(base, 5.0);
|
||||||
float base2 = base * base;
|
float base2 = base * base;
|
||||||
float exponential = base * base2 * base2;
|
float exponential = base * base2 * base2;
|
||||||
return vec3(exponential) + fresnelColor * (1.0 - exponential);
|
return vec3(exponential) + fresnelColor * (1.0 - exponential);
|
||||||
}
|
}
|
||||||
|
|
||||||
float fresnelSchlickScalar(float fresnelScalar, vec3 lightDir, vec3 halfDir) {
|
float fresnelSchlickScalar(float fresnelScalar, SurfaceData surface) {
|
||||||
float base = 1.0 - clamp(dot(lightDir, halfDir), 0.0, 1.0);
|
float base = 1.0 - surface.ldoth;
|
||||||
//float exponential = pow(base, 5.0);
|
//float exponential = pow(base, 5.0);
|
||||||
float base2 = base * base;
|
float base2 = base * base;
|
||||||
float exponential = base * base2 * base2;
|
float exponential = base * base2 * base2;
|
||||||
return (exponential) + fresnelScalar * (1.0 - exponential);
|
return (exponential) + fresnelScalar * (1.0 - exponential);
|
||||||
}
|
}
|
||||||
|
|
||||||
float specularDistribution(float roughness, vec3 normal, vec3 halfDir) {
|
float specularDistribution(SurfaceData surface) {
|
||||||
float ndoth = clamp(dot(halfDir, normal), 0.0, 1.0);
|
// See https://www.khronos.org/assets/uploads/developers/library/2017-web3d/glTF-2.0-Launch_Jun17.pdf
|
||||||
// float gloss2 = pow(0.001 + roughness, 4);
|
// for details of equations, especially page 20
|
||||||
float gloss2 = (0.001 + roughness);
|
float denom = (surface.ndoth*surface.ndoth * (surface.roughness2 - 1.0) + 1.0);
|
||||||
gloss2 *= gloss2; // pow 2
|
denom *= denom;
|
||||||
gloss2 *= gloss2; // pow 4
|
// Add geometric factors G1(n,l) and G1(n,v)
|
||||||
float denom = (ndoth * ndoth*(gloss2 - 1.0) + 1.0);
|
float smithInvG1NdotL = evalSmithInvG1(surface.roughness4, surface.ndotl);
|
||||||
float power = gloss2 / (3.14159 * denom * denom);
|
denom *= surface.smithInvG1NdotV * smithInvG1NdotL;
|
||||||
|
// Don't divide by PI as it will be done later
|
||||||
|
float power = surface.roughness4 / denom;
|
||||||
return power;
|
return power;
|
||||||
}
|
}
|
||||||
float specularDistributionGloss(float gloss2, vec3 normal, vec3 halfDir) {
|
|
||||||
float ndoth = clamp(dot(halfDir, normal), 0.0, 1.0);
|
|
||||||
// float gloss2 = pow(0.001 + roughness, 4);
|
|
||||||
float denom = (ndoth * ndoth*(gloss2 - 1.0) + 1.0);
|
|
||||||
float power = gloss2 / (3.14159 * denom * denom);
|
|
||||||
return power;
|
|
||||||
}
|
|
||||||
<! //NOTE: ANother implementation for specularDistribution
|
|
||||||
float specularDistribution(float roughness, vec3 normal, vec3 halfDir) {
|
|
||||||
float gloss = exp2(10 * (1.0 - roughness) + 1);
|
|
||||||
float power = pow(clamp(dot(halfDir, normal), 0.0, 1.0), gloss);
|
|
||||||
power *= (gloss * 0.125 + 0.25);
|
|
||||||
return power;
|
|
||||||
}
|
|
||||||
!>
|
|
||||||
// Frag Shading returns the diffuse amount as W and the specular rgb as xyz
|
|
||||||
vec4 evalPBRShading(vec3 fragNormal, vec3 fragLightDir, vec3 fragEyeDir, float metallic, vec3 fresnel, float roughness) {
|
|
||||||
// Diffuse Lighting
|
|
||||||
float diffuse = clamp(dot(fragNormal, fragLightDir), 0.0, 1.0);
|
|
||||||
|
|
||||||
// Specular Lighting
|
|
||||||
vec3 halfDir = normalize(fragEyeDir + fragLightDir);
|
|
||||||
vec3 fresnelColor = fresnelSchlickColor(fresnel, fragLightDir, halfDir);
|
|
||||||
float power = specularDistribution(roughness, fragNormal, halfDir);
|
|
||||||
vec3 specular = fresnelColor * power * diffuse;
|
|
||||||
|
|
||||||
return vec4(specular, (1.0 - metallic) * diffuse * (1.0 - fresnelColor.x));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Frag Shading returns the diffuse amount as W and the specular rgb as xyz
|
// Frag Shading returns the diffuse amount as W and the specular rgb as xyz
|
||||||
vec4 evalPBRShadingDielectric(vec3 fragNormal, vec3 fragLightDir, vec3 fragEyeDir, float roughness, float fresnel) {
|
vec4 evalPBRShading(float metallic, vec3 fresnel, SurfaceData surface) {
|
||||||
// Diffuse Lighting
|
// Incident angle attenuation
|
||||||
float diffuse = clamp(dot(fragNormal, fragLightDir), 0.0, 1.0);
|
float angleAttenuation = surface.ndotl;
|
||||||
|
|
||||||
// Specular Lighting
|
// Specular Lighting
|
||||||
vec3 halfDir = normalize(fragEyeDir + fragLightDir);
|
vec3 fresnelColor = fresnelSchlickColor(fresnel, surface);
|
||||||
float fresnelScalar = fresnelSchlickScalar(fresnel, fragLightDir, halfDir);
|
float power = specularDistribution(surface);
|
||||||
float power = specularDistribution(roughness, fragNormal, halfDir);
|
vec3 specular = fresnelColor * power * angleAttenuation;
|
||||||
vec3 specular = vec3(fresnelScalar) * power * diffuse;
|
float diffuse = (1.0 - metallic) * angleAttenuation * (1.0 - fresnelColor.x);
|
||||||
|
|
||||||
return vec4(specular, diffuse * (1.0 - fresnelScalar));
|
diffuse /= 3.1415926;
|
||||||
|
// Diffuse is divided by PI but specular isn't because an infinitesimal volume light source
|
||||||
|
// has a multiplier of PI, says Naty Hoffman.
|
||||||
|
// (see http://blog.selfshadow.com/publications/s2013-shading-course/hoffman/s2013_pbs_physics_math_notes.pdf
|
||||||
|
// page 23 paragraph "Punctual light sources")
|
||||||
|
|
||||||
|
return vec4(specular, diffuse);
|
||||||
}
|
}
|
||||||
|
|
||||||
vec4 evalPBRShadingMetallic(vec3 fragNormal, vec3 fragLightDir, vec3 fragEyeDir, float roughness, vec3 fresnel) {
|
// Frag Shading returns the diffuse amount as W and the specular rgb as xyz
|
||||||
// Diffuse Lighting
|
vec4 evalPBRShadingDielectric(SurfaceData surface, float fresnel) {
|
||||||
float diffuse = clamp(dot(fragNormal, fragLightDir), 0.0, 1.0);
|
// Incident angle attenuation
|
||||||
|
float angleAttenuation = surface.ndotl;
|
||||||
|
|
||||||
// Specular Lighting
|
// Specular Lighting
|
||||||
vec3 halfDir = normalize(fragEyeDir + fragLightDir);
|
float fresnelScalar = fresnelSchlickScalar(fresnel, surface);
|
||||||
vec3 fresnelColor = fresnelSchlickColor(fresnel, fragLightDir, halfDir);
|
float power = specularDistribution(surface);
|
||||||
float power = specularDistribution(roughness, fragNormal, halfDir);
|
vec3 specular = vec3(fresnelScalar) * power * angleAttenuation;
|
||||||
vec3 specular = fresnelColor * power * diffuse;
|
float diffuse = angleAttenuation * (1.0 - fresnelScalar);
|
||||||
|
|
||||||
|
diffuse /= 3.1415926;
|
||||||
|
// Diffuse is divided by PI but specular isn't because an infinitesimal volume light source
|
||||||
|
// has a multiplier of PI, says Naty Hoffman.
|
||||||
|
// (see http://blog.selfshadow.com/publications/s2013-shading-course/hoffman/s2013_pbs_physics_math_notes.pdf
|
||||||
|
// page 23 paragraph "Punctual light sources")
|
||||||
|
return vec4(specular, diffuse);
|
||||||
|
}
|
||||||
|
|
||||||
|
vec4 evalPBRShadingMetallic(SurfaceData surface, vec3 fresnel) {
|
||||||
|
// Incident angle attenuation
|
||||||
|
float angleAttenuation = surface.ndotl;
|
||||||
|
|
||||||
|
// Specular Lighting
|
||||||
|
vec3 fresnelColor = fresnelSchlickColor(fresnel, surface);
|
||||||
|
float power = specularDistribution(surface);
|
||||||
|
vec3 specular = fresnelColor * power * angleAttenuation;
|
||||||
|
|
||||||
|
// Specular isn't divided by PI because an infinitesimal volume light source
|
||||||
|
// has a multiplier of PI, says Naty Hoffman.
|
||||||
|
// (see http://blog.selfshadow.com/publications/s2013-shading-course/hoffman/s2013_pbs_physics_math_notes.pdf
|
||||||
|
// page 23 paragraph "Punctual light sources")
|
||||||
return vec4(specular, 0.f);
|
return vec4(specular, 0.f);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Frag Shading returns the diffuse amount as W and the specular rgb as xyz
|
|
||||||
vec4 evalPBRShadingGloss(vec3 fragNormal, vec3 fragLightDir, vec3 fragEyeDir, float metallic, vec3 fresnel, float gloss2) {
|
|
||||||
// Diffuse Lighting
|
|
||||||
float diffuse = clamp(dot(fragNormal, fragLightDir), 0.0, 1.0);
|
|
||||||
|
|
||||||
// Specular Lighting
|
|
||||||
vec3 halfDir = normalize(fragEyeDir + fragLightDir);
|
|
||||||
vec3 fresnelColor = fresnelSchlickColor(fresnel, fragLightDir, halfDir);
|
|
||||||
float power = specularDistributionGloss(gloss2, fragNormal, halfDir);
|
|
||||||
vec3 specular = fresnelColor * power * diffuse;
|
|
||||||
|
|
||||||
return vec4(specular, (1.0 - metallic) * diffuse * (1.0 - fresnelColor.x));
|
|
||||||
}
|
|
||||||
|
|
||||||
<@endfunc@>
|
<@endfunc@>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
<$declareEvalPBRShading()$>
|
<$declareEvalPBRShading()$>
|
||||||
|
|
||||||
// Return xyz the specular/reflection component and w the diffuse component
|
|
||||||
//vec4 evalFragShading(vec3 fragNormal, vec3 fragLightDir, vec3 fragEyeDir, float metallic, vec3 fresnel, float roughness) {
|
|
||||||
// return evalPBRShading(fragNormal, fragLightDir, fragEyeDir, metallic, fresnel, roughness);
|
|
||||||
//}
|
|
||||||
|
|
||||||
void evalFragShading(out vec3 diffuse, out vec3 specular,
|
void evalFragShading(out vec3 diffuse, out vec3 specular,
|
||||||
vec3 fragNormal, vec3 fragLightDir, vec3 fragEyeDir,
|
float metallic, vec3 fresnel, SurfaceData surface, vec3 albedo) {
|
||||||
float metallic, vec3 fresnel, float roughness, vec3 albedo) {
|
vec4 shading = evalPBRShading(metallic, fresnel, surface);
|
||||||
vec4 shading = evalPBRShading(fragNormal, fragLightDir, fragEyeDir, metallic, fresnel, roughness);
|
|
||||||
diffuse = vec3(shading.w);
|
diffuse = vec3(shading.w);
|
||||||
if (isAlbedoEnabled() > 0.0) {
|
if (isAlbedoEnabled() > 0.0) {
|
||||||
diffuse *= albedo;
|
diffuse *= albedo;
|
||||||
|
@ -229,22 +268,19 @@ void evalFragShading(out vec3 diffuse, out vec3 specular,
|
||||||
|
|
||||||
|
|
||||||
void evalFragShading(out vec3 diffuse, out vec3 specular,
|
void evalFragShading(out vec3 diffuse, out vec3 specular,
|
||||||
vec3 fragNormal, vec3 fragLightDir, vec3 fragEyeDir,
|
float metallic, vec3 fresnel, SurfaceData surface, vec3 albedo,
|
||||||
float metallic, vec3 fresnel, float roughness, vec3 albedo,
|
|
||||||
float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature) {
|
float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature) {
|
||||||
if (scattering * isScatteringEnabled() > 0.0) {
|
if (scattering * isScatteringEnabled() > 0.0) {
|
||||||
vec3 brdf = evalSkinBRDF(fragLightDir, fragNormal, midNormalCurvature.xyz, lowNormalCurvature.xyz, lowNormalCurvature.w);
|
vec3 brdf = evalSkinBRDF(surface.lightDir, surface.normal, midNormalCurvature.xyz, lowNormalCurvature.xyz, lowNormalCurvature.w);
|
||||||
float NdotL = clamp(dot(fragNormal, fragLightDir), 0.0, 1.0);
|
diffuse = mix(vec3(surface.ndotl), brdf, scattering);
|
||||||
diffuse = mix(vec3(NdotL), brdf, scattering);
|
|
||||||
|
|
||||||
// Specular Lighting
|
// Specular Lighting
|
||||||
vec3 halfDir = normalize(fragEyeDir + fragLightDir);
|
vec2 specularBrdf = skinSpecular(surface, 1.0);
|
||||||
vec2 specularBrdf = skinSpecular(fragNormal, fragLightDir, fragEyeDir, roughness, 1.0);
|
|
||||||
|
|
||||||
diffuse *= specularBrdf.y;
|
diffuse *= specularBrdf.y;
|
||||||
specular = vec3(specularBrdf.x);
|
specular = vec3(specularBrdf.x);
|
||||||
} else {
|
} else {
|
||||||
vec4 shading = evalPBRShadingGloss(fragNormal, fragLightDir, fragEyeDir, metallic, fresnel, roughness);
|
vec4 shading = evalPBRShading(metallic, fresnel, surface);
|
||||||
diffuse = vec3(shading.w);
|
diffuse = vec3(shading.w);
|
||||||
specular = shading.xyz;
|
specular = shading.xyz;
|
||||||
}
|
}
|
||||||
|
@ -253,17 +289,15 @@ void evalFragShading(out vec3 diffuse, out vec3 specular,
|
||||||
|
|
||||||
|
|
||||||
void evalFragShadingScattering(out vec3 diffuse, out vec3 specular,
|
void evalFragShadingScattering(out vec3 diffuse, out vec3 specular,
|
||||||
vec3 fragNormal, vec3 fragLightDir, vec3 fragEyeDir,
|
float metallic, vec3 fresnel, SurfaceData surface, vec3 albedo
|
||||||
float metallic, vec3 fresnel, float roughness, vec3 albedo
|
|
||||||
,float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature
|
,float scattering, vec4 midNormalCurvature, vec4 lowNormalCurvature
|
||||||
) {
|
) {
|
||||||
vec3 brdf = evalSkinBRDF(fragLightDir, fragNormal, midNormalCurvature.xyz, lowNormalCurvature.xyz, lowNormalCurvature.w);
|
vec3 brdf = evalSkinBRDF(surface.lightDir, surface.normal, midNormalCurvature.xyz, lowNormalCurvature.xyz, lowNormalCurvature.w);
|
||||||
float NdotL = clamp(dot(fragNormal, fragLightDir), 0.0, 1.0);
|
float NdotL = surface.ndotl;
|
||||||
diffuse = mix(vec3(NdotL), brdf, scattering);
|
diffuse = mix(vec3(NdotL), brdf, scattering);
|
||||||
|
|
||||||
// Specular Lighting
|
// Specular Lighting
|
||||||
vec3 halfDir = normalize(fragEyeDir + fragLightDir);
|
vec2 specularBrdf = skinSpecular(surface, 1.0);
|
||||||
vec2 specularBrdf = skinSpecular(fragNormal, fragLightDir, fragEyeDir, roughness, 1.0);
|
|
||||||
|
|
||||||
diffuse *= specularBrdf.y;
|
diffuse *= specularBrdf.y;
|
||||||
specular = vec3(specularBrdf.x);
|
specular = vec3(specularBrdf.x);
|
||||||
|
@ -271,10 +305,9 @@ void evalFragShadingScattering(out vec3 diffuse, out vec3 specular,
|
||||||
}
|
}
|
||||||
|
|
||||||
void evalFragShadingGloss(out vec3 diffuse, out vec3 specular,
|
void evalFragShadingGloss(out vec3 diffuse, out vec3 specular,
|
||||||
vec3 fragNormal, vec3 fragLightDir, vec3 fragEyeDir,
|
float metallic, vec3 fresnel, SurfaceData surface, vec3 albedo
|
||||||
float metallic, vec3 fresnel, float gloss, vec3 albedo
|
|
||||||
) {
|
) {
|
||||||
vec4 shading = evalPBRShadingGloss(fragNormal, fragLightDir, fragEyeDir, metallic, fresnel, gloss);
|
vec4 shading = evalPBRShading(metallic, fresnel, surface);
|
||||||
diffuse = vec3(shading.w);
|
diffuse = vec3(shading.w);
|
||||||
diffuse *= mix(vec3(1.0), albedo, isAlbedoEnabled());
|
diffuse *= mix(vec3(1.0), albedo, isAlbedoEnabled());
|
||||||
specular = shading.xyz;
|
specular = shading.xyz;
|
||||||
|
|
|
@ -12,6 +12,7 @@
|
||||||
#include "MeshPartPayload.h"
|
#include "MeshPartPayload.h"
|
||||||
|
|
||||||
#include <PerfStat.h>
|
#include <PerfStat.h>
|
||||||
|
#include <DualQuaternion.h>
|
||||||
|
|
||||||
#include "DeferredLightingEffect.h"
|
#include "DeferredLightingEffect.h"
|
||||||
|
|
||||||
|
@ -325,12 +326,20 @@ ModelMeshPartPayload::ModelMeshPartPayload(ModelPointer model, int meshIndex, in
|
||||||
const Model::MeshState& state = model->getMeshState(_meshIndex);
|
const Model::MeshState& state = model->getMeshState(_meshIndex);
|
||||||
|
|
||||||
updateMeshPart(modelMesh, partIndex);
|
updateMeshPart(modelMesh, partIndex);
|
||||||
computeAdjustedLocalBound(state.clusterMatrices);
|
computeAdjustedLocalBound(state.clusterTransforms);
|
||||||
|
|
||||||
updateTransform(transform, offsetTransform);
|
updateTransform(transform, offsetTransform);
|
||||||
Transform renderTransform = transform;
|
Transform renderTransform = transform;
|
||||||
if (state.clusterMatrices.size() == 1) {
|
if (state.clusterTransforms.size() == 1) {
|
||||||
renderTransform = transform.worldTransform(Transform(state.clusterMatrices[0]));
|
#if defined(SKIN_DQ)
|
||||||
|
Transform transform(state.clusterTransforms[0].getRotation(),
|
||||||
|
state.clusterTransforms[0].getScale(),
|
||||||
|
state.clusterTransforms[0].getTranslation());
|
||||||
|
renderTransform = transform.worldTransform(Transform(transform));
|
||||||
|
#else
|
||||||
|
renderTransform = transform.worldTransform(Transform(state.clusterTransforms[0]));
|
||||||
|
#endif
|
||||||
|
|
||||||
}
|
}
|
||||||
updateTransformForSkinnedMesh(renderTransform, transform);
|
updateTransformForSkinnedMesh(renderTransform, transform);
|
||||||
|
|
||||||
|
@ -360,17 +369,16 @@ void ModelMeshPartPayload::notifyLocationChanged() {
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void ModelMeshPartPayload::updateClusterBuffer(const std::vector<TransformType>& clusterTransforms) {
|
||||||
void ModelMeshPartPayload::updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices) {
|
|
||||||
// Once computed the cluster matrices, update the buffer(s)
|
// Once computed the cluster matrices, update the buffer(s)
|
||||||
if (clusterMatrices.size() > 1) {
|
if (clusterTransforms.size() > 1) {
|
||||||
if (!_clusterBuffer) {
|
if (!_clusterBuffer) {
|
||||||
_clusterBuffer = std::make_shared<gpu::Buffer>(clusterMatrices.size() * sizeof(glm::mat4),
|
_clusterBuffer = std::make_shared<gpu::Buffer>(clusterTransforms.size() * sizeof(TransformType),
|
||||||
(const gpu::Byte*) clusterMatrices.data());
|
(const gpu::Byte*) clusterTransforms.data());
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
_clusterBuffer->setSubData(0, clusterMatrices.size() * sizeof(glm::mat4),
|
_clusterBuffer->setSubData(0, clusterTransforms.size() * sizeof(TransformType),
|
||||||
(const gpu::Byte*) clusterMatrices.data());
|
(const gpu::Byte*) clusterTransforms.data());
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -530,13 +538,29 @@ void ModelMeshPartPayload::render(RenderArgs* args) {
|
||||||
args->_details._trianglesRendered += _drawPart._numIndices / INDICES_PER_TRIANGLE;
|
args->_details._trianglesRendered += _drawPart._numIndices / INDICES_PER_TRIANGLE;
|
||||||
}
|
}
|
||||||
|
|
||||||
void ModelMeshPartPayload::computeAdjustedLocalBound(const std::vector<glm::mat4>& clusterMatrices) {
|
|
||||||
|
void ModelMeshPartPayload::computeAdjustedLocalBound(const std::vector<TransformType>& clusterTransforms) {
|
||||||
_adjustedLocalBound = _localBound;
|
_adjustedLocalBound = _localBound;
|
||||||
if (clusterMatrices.size() > 0) {
|
if (clusterTransforms.size() > 0) {
|
||||||
_adjustedLocalBound.transform(clusterMatrices[0]);
|
#if defined(SKIN_DQ)
|
||||||
for (int i = 1; i < (int)clusterMatrices.size(); ++i) {
|
Transform rootTransform(clusterTransforms[0].getRotation(),
|
||||||
|
clusterTransforms[0].getScale(),
|
||||||
|
clusterTransforms[0].getTranslation());
|
||||||
|
_adjustedLocalBound.transform(rootTransform);
|
||||||
|
#else
|
||||||
|
_adjustedLocalBound.transform(clusterTransforms[0]);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (int i = 1; i < (int)clusterTransforms.size(); ++i) {
|
||||||
AABox clusterBound = _localBound;
|
AABox clusterBound = _localBound;
|
||||||
clusterBound.transform(clusterMatrices[i]);
|
#if defined(SKIN_DQ)
|
||||||
|
Transform transform(clusterTransforms[i].getRotation(),
|
||||||
|
clusterTransforms[i].getScale(),
|
||||||
|
clusterTransforms[i].getTranslation());
|
||||||
|
clusterBound.transform(transform);
|
||||||
|
#else
|
||||||
|
clusterBound.transform(clusterTransforms[i]);
|
||||||
|
#endif
|
||||||
_adjustedLocalBound += clusterBound;
|
_adjustedLocalBound += clusterBound;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -87,7 +87,14 @@ public:
|
||||||
typedef Payload::DataPointer Pointer;
|
typedef Payload::DataPointer Pointer;
|
||||||
|
|
||||||
void notifyLocationChanged() override;
|
void notifyLocationChanged() override;
|
||||||
void updateClusterBuffer(const std::vector<glm::mat4>& clusterMatrices);
|
|
||||||
|
#if defined(SKIN_DQ)
|
||||||
|
using TransformType = Model::TransformDualQuaternion;
|
||||||
|
#else
|
||||||
|
using TransformType = glm::mat4;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
void updateClusterBuffer(const std::vector<TransformType>& clusterTransforms);
|
||||||
void updateTransformForSkinnedMesh(const Transform& renderTransform, const Transform& boundTransform);
|
void updateTransformForSkinnedMesh(const Transform& renderTransform, const Transform& boundTransform);
|
||||||
|
|
||||||
// Render Item interface
|
// Render Item interface
|
||||||
|
@ -104,7 +111,7 @@ public:
|
||||||
void bindMesh(gpu::Batch& batch) override;
|
void bindMesh(gpu::Batch& batch) override;
|
||||||
void bindTransform(gpu::Batch& batch, const render::ShapePipeline::LocationsPointer locations, RenderArgs::RenderMode renderMode) const override;
|
void bindTransform(gpu::Batch& batch, const render::ShapePipeline::LocationsPointer locations, RenderArgs::RenderMode renderMode) const override;
|
||||||
|
|
||||||
void computeAdjustedLocalBound(const std::vector<glm::mat4>& clusterMatrices);
|
void computeAdjustedLocalBound(const std::vector<TransformType>& clusterTransforms);
|
||||||
|
|
||||||
gpu::BufferPointer _clusterBuffer;
|
gpu::BufferPointer _clusterBuffer;
|
||||||
|
|
||||||
|
|
|
@ -27,6 +27,7 @@
|
||||||
#include <TBBHelpers.h>
|
#include <TBBHelpers.h>
|
||||||
|
|
||||||
#include <model-networking/SimpleMeshProxy.h>
|
#include <model-networking/SimpleMeshProxy.h>
|
||||||
|
#include <DualQuaternion.h>
|
||||||
|
|
||||||
#include <glm/gtc/packing.hpp>
|
#include <glm/gtc/packing.hpp>
|
||||||
|
|
||||||
|
@ -269,16 +270,24 @@ void Model::updateRenderItems() {
|
||||||
|
|
||||||
auto itemID = self->_modelMeshRenderItemIDs[i];
|
auto itemID = self->_modelMeshRenderItemIDs[i];
|
||||||
auto meshIndex = self->_modelMeshRenderItemShapes[i].meshIndex;
|
auto meshIndex = self->_modelMeshRenderItemShapes[i].meshIndex;
|
||||||
auto clusterMatrices(self->getMeshState(meshIndex).clusterMatrices);
|
auto clusterTransforms(self->getMeshState(meshIndex).clusterTransforms);
|
||||||
|
|
||||||
bool invalidatePayloadShapeKey = self->shouldInvalidatePayloadShapeKey(meshIndex);
|
bool invalidatePayloadShapeKey = self->shouldInvalidatePayloadShapeKey(meshIndex);
|
||||||
|
|
||||||
transaction.updateItem<ModelMeshPartPayload>(itemID, [modelTransform, clusterMatrices, invalidatePayloadShapeKey,
|
transaction.updateItem<ModelMeshPartPayload>(itemID, [modelTransform, clusterTransforms, invalidatePayloadShapeKey,
|
||||||
isWireframe, isVisible, isLayeredInFront, isLayeredInHUD](ModelMeshPartPayload& data) {
|
isWireframe, isVisible, isLayeredInFront, isLayeredInHUD](ModelMeshPartPayload& data) {
|
||||||
data.updateClusterBuffer(clusterMatrices);
|
data.updateClusterBuffer(clusterTransforms);
|
||||||
|
|
||||||
Transform renderTransform = modelTransform;
|
Transform renderTransform = modelTransform;
|
||||||
if (clusterMatrices.size() == 1) {
|
if (clusterTransforms.size() == 1) {
|
||||||
renderTransform = modelTransform.worldTransform(Transform(clusterMatrices[0]));
|
#if defined(SKIN_DQ)
|
||||||
|
Transform transform(clusterTransforms[0].getRotation(),
|
||||||
|
clusterTransforms[0].getScale(),
|
||||||
|
clusterTransforms[0].getTranslation());
|
||||||
|
renderTransform = modelTransform.worldTransform(Transform(transform));
|
||||||
|
#else
|
||||||
|
renderTransform = modelTransform.worldTransform(Transform(clusterTransforms[0]));
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
data.updateTransformForSkinnedMesh(renderTransform, modelTransform);
|
data.updateTransformForSkinnedMesh(renderTransform, modelTransform);
|
||||||
|
|
||||||
|
@ -359,7 +368,7 @@ bool Model::updateGeometry() {
|
||||||
const FBXGeometry& fbxGeometry = getFBXGeometry();
|
const FBXGeometry& fbxGeometry = getFBXGeometry();
|
||||||
foreach (const FBXMesh& mesh, fbxGeometry.meshes) {
|
foreach (const FBXMesh& mesh, fbxGeometry.meshes) {
|
||||||
MeshState state;
|
MeshState state;
|
||||||
state.clusterMatrices.resize(mesh.clusters.size());
|
state.clusterTransforms.resize(mesh.clusters.size());
|
||||||
_meshStates.push_back(state);
|
_meshStates.push_back(state);
|
||||||
|
|
||||||
// Note: we add empty buffers for meshes that lack blendshapes so we can access the buffers by index
|
// Note: we add empty buffers for meshes that lack blendshapes so we can access the buffers by index
|
||||||
|
@ -1211,7 +1220,7 @@ void Model::updateRig(float deltaTime, glm::mat4 parentTransform) {
|
||||||
void Model::computeMeshPartLocalBounds() {
|
void Model::computeMeshPartLocalBounds() {
|
||||||
for (auto& part : _modelMeshRenderItems) {
|
for (auto& part : _modelMeshRenderItems) {
|
||||||
const Model::MeshState& state = _meshStates.at(part->_meshIndex);
|
const Model::MeshState& state = _meshStates.at(part->_meshIndex);
|
||||||
part->computeAdjustedLocalBound(state.clusterMatrices);
|
part->computeAdjustedLocalBound(state.clusterTransforms);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1222,6 +1231,7 @@ void Model::updateClusterMatrices() {
|
||||||
if (!_needsUpdateClusterMatrices || !isLoaded()) {
|
if (!_needsUpdateClusterMatrices || !isLoaded()) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
_needsUpdateClusterMatrices = false;
|
_needsUpdateClusterMatrices = false;
|
||||||
const FBXGeometry& geometry = getFBXGeometry();
|
const FBXGeometry& geometry = getFBXGeometry();
|
||||||
for (int i = 0; i < (int) _meshStates.size(); i++) {
|
for (int i = 0; i < (int) _meshStates.size(); i++) {
|
||||||
|
@ -1229,8 +1239,16 @@ void Model::updateClusterMatrices() {
|
||||||
const FBXMesh& mesh = geometry.meshes.at(i);
|
const FBXMesh& mesh = geometry.meshes.at(i);
|
||||||
for (int j = 0; j < mesh.clusters.size(); j++) {
|
for (int j = 0; j < mesh.clusters.size(); j++) {
|
||||||
const FBXCluster& cluster = mesh.clusters.at(j);
|
const FBXCluster& cluster = mesh.clusters.at(j);
|
||||||
|
#if defined(SKIN_DQ)
|
||||||
|
auto jointPose = _rig.getJointPose(cluster.jointIndex);
|
||||||
|
Transform jointTransform(jointPose.rot(), jointPose.scale(), jointPose.trans());
|
||||||
|
Transform clusterTransform;
|
||||||
|
Transform::mult(clusterTransform, jointTransform, cluster.inverseBindTransform);
|
||||||
|
state.clusterTransforms[j] = Model::TransformDualQuaternion(clusterTransform);
|
||||||
|
#else
|
||||||
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
|
auto jointMatrix = _rig.getJointTransform(cluster.jointIndex);
|
||||||
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
|
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -30,11 +30,15 @@
|
||||||
#include <Transform.h>
|
#include <Transform.h>
|
||||||
#include <SpatiallyNestable.h>
|
#include <SpatiallyNestable.h>
|
||||||
#include <TriangleSet.h>
|
#include <TriangleSet.h>
|
||||||
|
#include <DualQuaternion.h>
|
||||||
|
|
||||||
#include "GeometryCache.h"
|
#include "GeometryCache.h"
|
||||||
#include "TextureCache.h"
|
#include "TextureCache.h"
|
||||||
#include "Rig.h"
|
#include "Rig.h"
|
||||||
|
|
||||||
|
// Use dual quaternion skinning!
|
||||||
|
// Must match define in Skinning.slh
|
||||||
|
#define SKIN_DQ
|
||||||
|
|
||||||
class AbstractViewStateInterface;
|
class AbstractViewStateInterface;
|
||||||
class QScriptEngine;
|
class QScriptEngine;
|
||||||
|
@ -246,9 +250,46 @@ public:
|
||||||
int getRenderInfoDrawCalls() const { return _renderInfoDrawCalls; }
|
int getRenderInfoDrawCalls() const { return _renderInfoDrawCalls; }
|
||||||
bool getRenderInfoHasTransparent() const { return _renderInfoHasTransparent; }
|
bool getRenderInfoHasTransparent() const { return _renderInfoHasTransparent; }
|
||||||
|
|
||||||
|
|
||||||
|
#if defined(SKIN_DQ)
|
||||||
|
class TransformDualQuaternion {
|
||||||
|
public:
|
||||||
|
TransformDualQuaternion() {}
|
||||||
|
TransformDualQuaternion(const glm::mat4& m) {
|
||||||
|
AnimPose p(m);
|
||||||
|
_scale.x = p.scale().x;
|
||||||
|
_scale.y = p.scale().y;
|
||||||
|
_scale.z = p.scale().z;
|
||||||
|
_dq = DualQuaternion(p.rot(), p.trans());
|
||||||
|
}
|
||||||
|
TransformDualQuaternion(const glm::vec3& scale, const glm::quat& rot, const glm::vec3& trans) {
|
||||||
|
_scale.x = scale.x;
|
||||||
|
_scale.y = scale.y;
|
||||||
|
_scale.z = scale.z;
|
||||||
|
_dq = DualQuaternion(rot, trans);
|
||||||
|
}
|
||||||
|
TransformDualQuaternion(const Transform& transform) {
|
||||||
|
_scale = glm::vec4(transform.getScale(), 0.0f);
|
||||||
|
_dq = DualQuaternion(transform.getRotation(), transform.getTranslation());
|
||||||
|
}
|
||||||
|
glm::vec3 getScale() const { return glm::vec3(_scale); }
|
||||||
|
glm::quat getRotation() const { return _dq.getRotation(); }
|
||||||
|
glm::vec3 getTranslation() const { return _dq.getTranslation(); }
|
||||||
|
glm::mat4 getMatrix() const { return createMatFromScaleQuatAndPos(getScale(), getRotation(), getTranslation()); };
|
||||||
|
protected:
|
||||||
|
glm::vec4 _scale { 1.0f, 1.0f, 1.0f, 0.0f };
|
||||||
|
DualQuaternion _dq;
|
||||||
|
glm::vec4 _padding;
|
||||||
|
};
|
||||||
|
#endif
|
||||||
|
|
||||||
class MeshState {
|
class MeshState {
|
||||||
public:
|
public:
|
||||||
std::vector<glm::mat4> clusterMatrices;
|
#if defined(SKIN_DQ)
|
||||||
|
std::vector<TransformDualQuaternion> clusterTransforms;
|
||||||
|
#else
|
||||||
|
std::vector<glm::mat4> clusterTransforms;
|
||||||
|
#endif
|
||||||
};
|
};
|
||||||
|
|
||||||
const MeshState& getMeshState(int index) { return _meshStates.at(index); }
|
const MeshState& getMeshState(int index) { return _meshStates.at(index); }
|
||||||
|
|
|
@ -11,6 +11,10 @@
|
||||||
<@if not SKINNING_SLH@>
|
<@if not SKINNING_SLH@>
|
||||||
<@def SKINNING_SLH@>
|
<@def SKINNING_SLH@>
|
||||||
|
|
||||||
|
// Use dual quaternion skinning
|
||||||
|
// Must match #define SKIN_DQ in Model.h
|
||||||
|
<@def SKIN_DQ@>
|
||||||
|
|
||||||
const int MAX_CLUSTERS = 128;
|
const int MAX_CLUSTERS = 128;
|
||||||
const int INDICES_PER_VERTEX = 4;
|
const int INDICES_PER_VERTEX = 4;
|
||||||
|
|
||||||
|
@ -18,6 +22,156 @@ layout(std140) uniform skinClusterBuffer {
|
||||||
mat4 clusterMatrices[MAX_CLUSTERS];
|
mat4 clusterMatrices[MAX_CLUSTERS];
|
||||||
};
|
};
|
||||||
|
|
||||||
|
<@if SKIN_DQ@>
|
||||||
|
|
||||||
|
mat4 dualQuatToMat4(vec4 real, vec4 dual) {
|
||||||
|
float twoRealXSq = 2.0 * real.x * real.x;
|
||||||
|
float twoRealYSq = 2.0 * real.y * real.y;
|
||||||
|
float twoRealZSq = 2.0 * real.z * real.z;
|
||||||
|
float twoRealXY = 2.0 * real.x * real.y;
|
||||||
|
float twoRealXZ = 2.0 * real.x * real.z;
|
||||||
|
float twoRealXW = 2.0 * real.x * real.w;
|
||||||
|
float twoRealZW = 2.0 * real.z * real.w;
|
||||||
|
float twoRealYZ = 2.0 * real.y * real.z;
|
||||||
|
float twoRealYW = 2.0 * real.y * real.w;
|
||||||
|
vec4 col0 = vec4(1.0 - twoRealYSq - twoRealZSq,
|
||||||
|
twoRealXY + twoRealZW,
|
||||||
|
twoRealXZ - twoRealYW,
|
||||||
|
0.0);
|
||||||
|
vec4 col1 = vec4(twoRealXY - twoRealZW,
|
||||||
|
1 - twoRealXSq - twoRealZSq,
|
||||||
|
twoRealYZ + twoRealXW,
|
||||||
|
0.0);
|
||||||
|
vec4 col2 = vec4(twoRealXZ + twoRealYW,
|
||||||
|
twoRealYZ - twoRealXW,
|
||||||
|
1 - twoRealXSq - twoRealYSq,
|
||||||
|
0.0);
|
||||||
|
vec4 col3 = vec4(2.0 * (-dual.w * real.x + dual.x * real.w - dual.y * real.z + dual.z * real.y),
|
||||||
|
2.0 * (-dual.w * real.y + dual.x * real.z + dual.y * real.w - dual.z * real.x),
|
||||||
|
2.0 * (-dual.w * real.z - dual.x * real.y + dual.y * real.x + dual.z * real.w),
|
||||||
|
1.0);
|
||||||
|
|
||||||
|
return mat4(col0, col1, col2, col3);
|
||||||
|
}
|
||||||
|
|
||||||
|
// dual quaternion linear blending
|
||||||
|
void skinPosition(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, out vec4 skinnedPosition) {
|
||||||
|
|
||||||
|
// linearly blend scale and dual quaternion components
|
||||||
|
vec3 sAccum = vec3(0.0, 0.0, 0.0);
|
||||||
|
vec4 rAccum = vec4(0.0, 0.0, 0.0, 0.0);
|
||||||
|
vec4 dAccum = vec4(0.0, 0.0, 0.0, 0.0);
|
||||||
|
vec4 polarityReference = clusterMatrices[skinClusterIndex[0]][1];
|
||||||
|
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
|
||||||
|
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
|
||||||
|
float clusterWeight = skinClusterWeight[i];
|
||||||
|
|
||||||
|
vec3 scale = vec3(clusterMatrix[0]);
|
||||||
|
vec4 real = clusterMatrix[1];
|
||||||
|
vec4 dual = clusterMatrix[2];
|
||||||
|
|
||||||
|
// to ensure that we rotate along the shortest arc, reverse dual quaternions with negative polarity.
|
||||||
|
float dqClusterWeight = clusterWeight;
|
||||||
|
if (dot(real, polarityReference) < 0) {
|
||||||
|
dqClusterWeight = -clusterWeight;
|
||||||
|
}
|
||||||
|
|
||||||
|
sAccum += scale * clusterWeight;
|
||||||
|
rAccum += real * dqClusterWeight;
|
||||||
|
dAccum += dual * dqClusterWeight;
|
||||||
|
}
|
||||||
|
|
||||||
|
// normalize dual quaternion
|
||||||
|
float norm = length(rAccum);
|
||||||
|
rAccum /= norm;
|
||||||
|
dAccum /= norm;
|
||||||
|
|
||||||
|
// conversion from dual quaternion to 4x4 matrix.
|
||||||
|
mat4 m = dualQuatToMat4(rAccum, dAccum);
|
||||||
|
skinnedPosition = m * (vec4(sAccum, 1) * inPosition);
|
||||||
|
}
|
||||||
|
|
||||||
|
void skinPositionNormal(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, vec3 inNormal,
|
||||||
|
out vec4 skinnedPosition, out vec3 skinnedNormal) {
|
||||||
|
|
||||||
|
// linearly blend scale and dual quaternion components
|
||||||
|
vec3 sAccum = vec3(0.0, 0.0, 0.0);
|
||||||
|
vec4 rAccum = vec4(0.0, 0.0, 0.0, 0.0);
|
||||||
|
vec4 dAccum = vec4(0.0, 0.0, 0.0, 0.0);
|
||||||
|
vec4 polarityReference = clusterMatrices[skinClusterIndex[0]][1];
|
||||||
|
|
||||||
|
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
|
||||||
|
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
|
||||||
|
float clusterWeight = skinClusterWeight[i];
|
||||||
|
|
||||||
|
vec3 scale = vec3(clusterMatrix[0]);
|
||||||
|
vec4 real = clusterMatrix[1];
|
||||||
|
vec4 dual = clusterMatrix[2];
|
||||||
|
|
||||||
|
// to ensure that we rotate along the shortest arc, reverse dual quaternions with negative polarity.
|
||||||
|
float dqClusterWeight = clusterWeight;
|
||||||
|
if (dot(real, polarityReference) < 0) {
|
||||||
|
dqClusterWeight = -clusterWeight;
|
||||||
|
}
|
||||||
|
|
||||||
|
sAccum += scale * clusterWeight;
|
||||||
|
rAccum += real * dqClusterWeight;
|
||||||
|
dAccum += dual * dqClusterWeight;
|
||||||
|
}
|
||||||
|
|
||||||
|
// normalize dual quaternion
|
||||||
|
float norm = length(rAccum);
|
||||||
|
rAccum /= norm;
|
||||||
|
dAccum /= norm;
|
||||||
|
|
||||||
|
// conversion from dual quaternion to 4x4 matrix.
|
||||||
|
mat4 m = dualQuatToMat4(rAccum, dAccum);
|
||||||
|
skinnedPosition = m * (vec4(sAccum, 1) * inPosition);
|
||||||
|
skinnedNormal = vec3(m * vec4(inNormal, 0));
|
||||||
|
}
|
||||||
|
|
||||||
|
void skinPositionNormalTangent(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, vec3 inNormal, vec3 inTangent,
|
||||||
|
out vec4 skinnedPosition, out vec3 skinnedNormal, out vec3 skinnedTangent) {
|
||||||
|
|
||||||
|
// linearly blend scale and dual quaternion components
|
||||||
|
vec3 sAccum = vec3(0.0, 0.0, 0.0);
|
||||||
|
vec4 rAccum = vec4(0.0, 0.0, 0.0, 0.0);
|
||||||
|
vec4 dAccum = vec4(0.0, 0.0, 0.0, 0.0);
|
||||||
|
vec4 polarityReference = clusterMatrices[skinClusterIndex[0]][1];
|
||||||
|
|
||||||
|
for (int i = 0; i < INDICES_PER_VERTEX; i++) {
|
||||||
|
mat4 clusterMatrix = clusterMatrices[(skinClusterIndex[i])];
|
||||||
|
float clusterWeight = skinClusterWeight[i];
|
||||||
|
|
||||||
|
vec3 scale = vec3(clusterMatrix[0]);
|
||||||
|
vec4 real = clusterMatrix[1];
|
||||||
|
vec4 dual = clusterMatrix[2];
|
||||||
|
|
||||||
|
// to ensure that we rotate along the shortest arc, reverse dual quaternions with negative polarity.
|
||||||
|
float dqClusterWeight = clusterWeight;
|
||||||
|
if (dot(real, polarityReference) < 0) {
|
||||||
|
dqClusterWeight = -clusterWeight;
|
||||||
|
}
|
||||||
|
|
||||||
|
sAccum += scale * clusterWeight;
|
||||||
|
rAccum += real * dqClusterWeight;
|
||||||
|
dAccum += dual * dqClusterWeight;
|
||||||
|
}
|
||||||
|
|
||||||
|
// normalize dual quaternion
|
||||||
|
float norm = length(rAccum);
|
||||||
|
rAccum /= norm;
|
||||||
|
dAccum /= norm;
|
||||||
|
|
||||||
|
// conversion from dual quaternion to 4x4 matrix.
|
||||||
|
mat4 m = dualQuatToMat4(rAccum, dAccum);
|
||||||
|
skinnedPosition = m * (vec4(sAccum, 1) * inPosition);
|
||||||
|
skinnedNormal = vec3(m * vec4(inNormal, 0));
|
||||||
|
skinnedTangent = vec3(m * vec4(inTangent, 0));
|
||||||
|
}
|
||||||
|
|
||||||
|
<@else@> // SKIN_DQ
|
||||||
|
|
||||||
void skinPosition(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, out vec4 skinnedPosition) {
|
void skinPosition(ivec4 skinClusterIndex, vec4 skinClusterWeight, vec4 inPosition, out vec4 skinnedPosition) {
|
||||||
vec4 newPosition = vec4(0.0, 0.0, 0.0, 0.0);
|
vec4 newPosition = vec4(0.0, 0.0, 0.0, 0.0);
|
||||||
|
|
||||||
|
@ -65,5 +219,6 @@ void skinPositionNormalTangent(ivec4 skinClusterIndex, vec4 skinClusterWeight, v
|
||||||
skinnedTangent = newTangent.xyz;
|
skinnedTangent = newTangent.xyz;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
<@endif@> // if SKIN_DQ
|
||||||
|
|
||||||
<@endif@>
|
<@endif@> // if not SKINNING_SLH
|
||||||
|
|
|
@ -52,13 +52,27 @@ void SoftAttachmentModel::updateClusterMatrices() {
|
||||||
|
|
||||||
// TODO: cache these look-ups as an optimization
|
// TODO: cache these look-ups as an optimization
|
||||||
int jointIndexOverride = getJointIndexOverride(cluster.jointIndex);
|
int jointIndexOverride = getJointIndexOverride(cluster.jointIndex);
|
||||||
|
#if defined(SKIN_DQ)
|
||||||
glm::mat4 jointMatrix;
|
glm::mat4 jointMatrix;
|
||||||
if (jointIndexOverride >= 0 && jointIndexOverride < _rigOverride.getJointStateCount()) {
|
if (jointIndexOverride >= 0 && jointIndexOverride < _rigOverride.getJointStateCount()) {
|
||||||
jointMatrix = _rigOverride.getJointTransform(jointIndexOverride);
|
jointMatrix = _rigOverride.getJointTransform(jointIndexOverride);
|
||||||
} else {
|
} else {
|
||||||
jointMatrix = _rig.getJointTransform(cluster.jointIndex);
|
jointMatrix = _rig.getJointTransform(cluster.jointIndex);
|
||||||
}
|
}
|
||||||
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterMatrices[j]);
|
|
||||||
|
glm::mat4 m;
|
||||||
|
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, m);
|
||||||
|
state.clusterTransforms[j] = Model::TransformDualQuaternion(m);
|
||||||
|
#else
|
||||||
|
glm::mat4 jointMatrix;
|
||||||
|
if (jointIndexOverride >= 0 && jointIndexOverride < _rigOverride.getJointStateCount()) {
|
||||||
|
jointMatrix = _rigOverride.getJointTransform(jointIndexOverride);
|
||||||
|
} else {
|
||||||
|
jointMatrix = _rig.getJointTransform(cluster.jointIndex);
|
||||||
|
}
|
||||||
|
|
||||||
|
glm_mat4u_mul(jointMatrix, cluster.inverseBindMatrix, state.clusterTransforms[j]);
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -63,38 +63,6 @@ vec3 scatter(float r) {
|
||||||
<@endfunc@>
|
<@endfunc@>
|
||||||
|
|
||||||
|
|
||||||
<@func declareSkinSpecularLighting()@>
|
|
||||||
|
|
||||||
uniform sampler2D scatteringSpecularBeckmann;
|
|
||||||
|
|
||||||
float fetchSpecularBeckmann(float ndoth, float roughness) {
|
|
||||||
return pow( 2.0 * texture(scatteringSpecularBeckmann, vec2(ndoth, roughness)).r, 10.0);
|
|
||||||
}
|
|
||||||
|
|
||||||
float fresnelReflectance(vec3 H, vec3 V, float Fo) {
|
|
||||||
float base = 1.0 - dot(V, H);
|
|
||||||
float exponential = pow(base, 5.0);
|
|
||||||
return exponential + Fo * (1.0 - exponential);
|
|
||||||
}
|
|
||||||
|
|
||||||
float skinSpecular(vec3 N, vec3 L, vec3 V, float roughness, float intensity) {
|
|
||||||
float result = 0.0;
|
|
||||||
float ndotl = dot(N, L);
|
|
||||||
if (ndotl > 0.0) {
|
|
||||||
vec3 h = L + V;
|
|
||||||
vec3 H = normalize(h);
|
|
||||||
float ndoth = dot(N, H);
|
|
||||||
float PH = fetchSpecularBeckmann(ndoth, roughness);
|
|
||||||
float F = fresnelReflectance(H, V, 0.028);
|
|
||||||
float frSpec = max(PH * F / dot(h, h), 0.0);
|
|
||||||
result = ndotl * intensity * frSpec;
|
|
||||||
}
|
|
||||||
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
<@endfunc@>
|
|
||||||
|
|
||||||
<@func declareSubsurfaceScatteringIntegrate(NumIntegrationSteps)@>
|
<@func declareSubsurfaceScatteringIntegrate(NumIntegrationSteps)@>
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -85,8 +85,7 @@ void main(void) {
|
||||||
vec4 fragEyeVector = invViewMat * vec4(-frag.position.xyz, 0.0);
|
vec4 fragEyeVector = invViewMat * vec4(-frag.position.xyz, 0.0);
|
||||||
vec3 fragEyeDir = normalize(fragEyeVector.xyz);
|
vec3 fragEyeDir = normalize(fragEyeVector.xyz);
|
||||||
|
|
||||||
// Compute the rougness into gloss2 once:
|
SurfaceData surface = initSurfaceData(frag.roughness, frag.normal, fragEyeDir);
|
||||||
float fragGloss2 = pow(frag.roughness + 0.001, 4.0);
|
|
||||||
bool withScattering = (frag.scattering * isScatteringEnabled() > 0.0);
|
bool withScattering = (frag.scattering * isScatteringEnabled() > 0.0);
|
||||||
|
|
||||||
int numLightTouching = 0;
|
int numLightTouching = 0;
|
||||||
|
@ -119,16 +118,18 @@ void main(void) {
|
||||||
float fragLightDistance = fragLightDirLen.w;
|
float fragLightDistance = fragLightDirLen.w;
|
||||||
vec3 fragLightDir = fragLightDirLen.xyz;
|
vec3 fragLightDir = fragLightDirLen.xyz;
|
||||||
|
|
||||||
|
updateSurfaceDataWithLight(surface, fragLightDir);
|
||||||
|
|
||||||
// Eval attenuation
|
// Eval attenuation
|
||||||
float radialAttenuation = lightIrradiance_evalLightAttenuation(light.irradiance, fragLightDistance);
|
float radialAttenuation = lightIrradiance_evalLightAttenuation(light.irradiance, fragLightDistance);
|
||||||
vec3 lightEnergy = radialAttenuation * getLightIrradiance(light);
|
vec3 lightEnergy = radialAttenuation * getLightIrradiance(light);
|
||||||
|
|
||||||
// Eval shading
|
// Eval shading
|
||||||
if (withScattering) {
|
if (withScattering) {
|
||||||
evalFragShadingScattering(diffuse, specular, frag.normal, fragLightDir, fragEyeDir, frag.metallic, frag.fresnel, frag.roughness, frag.albedo
|
evalFragShadingScattering(diffuse, specular, frag.metallic, frag.fresnel, surface, frag.albedo
|
||||||
,frag.scattering, midNormalCurvature, lowNormalCurvature );
|
,frag.scattering, midNormalCurvature, lowNormalCurvature );
|
||||||
} else {
|
} else {
|
||||||
evalFragShadingGloss(diffuse, specular, frag.normal, fragLightDir, fragEyeDir, frag.metallic, frag.fresnel, fragGloss2, frag.albedo);
|
evalFragShadingGloss(diffuse, specular, frag.metallic, frag.fresnel, surface, frag.albedo);
|
||||||
}
|
}
|
||||||
|
|
||||||
diffuse *= lightEnergy * isDiffuseEnabled();
|
diffuse *= lightEnergy * isDiffuseEnabled();
|
||||||
|
@ -173,6 +174,8 @@ void main(void) {
|
||||||
float fragLightDistance = fragLightDirLen.w;
|
float fragLightDistance = fragLightDirLen.w;
|
||||||
vec3 fragLightDir = fragLightDirLen.xyz;
|
vec3 fragLightDir = fragLightDirLen.xyz;
|
||||||
|
|
||||||
|
updateSurfaceDataWithLight(surface, fragLightDir);
|
||||||
|
|
||||||
// Eval attenuation
|
// Eval attenuation
|
||||||
float radialAttenuation = lightIrradiance_evalLightAttenuation(light.irradiance, fragLightDistance);
|
float radialAttenuation = lightIrradiance_evalLightAttenuation(light.irradiance, fragLightDistance);
|
||||||
float angularAttenuation = lightIrradiance_evalLightSpotAttenuation(light.irradiance, cosSpotAngle);
|
float angularAttenuation = lightIrradiance_evalLightSpotAttenuation(light.irradiance, cosSpotAngle);
|
||||||
|
@ -180,10 +183,10 @@ void main(void) {
|
||||||
|
|
||||||
// Eval shading
|
// Eval shading
|
||||||
if (withScattering) {
|
if (withScattering) {
|
||||||
evalFragShadingScattering(diffuse, specular, frag.normal, fragLightDir, fragEyeDir, frag.metallic, frag.fresnel, frag.roughness, frag.albedo
|
evalFragShadingScattering(diffuse, specular, frag.metallic, frag.fresnel, surface, frag.albedo
|
||||||
,frag.scattering, midNormalCurvature, lowNormalCurvature );
|
,frag.scattering, midNormalCurvature, lowNormalCurvature );
|
||||||
} else {
|
} else {
|
||||||
evalFragShadingGloss(diffuse, specular, frag.normal, fragLightDir, fragEyeDir, frag.metallic, frag.fresnel, fragGloss2, frag.albedo);
|
evalFragShadingGloss(diffuse, specular, frag.metallic, frag.fresnel, surface, frag.albedo);
|
||||||
}
|
}
|
||||||
|
|
||||||
diffuse *= lightEnergy * isDiffuseEnabled();
|
diffuse *= lightEnergy * isDiffuseEnabled();
|
||||||
|
|
|
@ -50,13 +50,7 @@ void main(void) {
|
||||||
<$evalMaterialRoughness(roughnessTex, roughness, matKey, roughness)$>;
|
<$evalMaterialRoughness(roughnessTex, roughness, matKey, roughness)$>;
|
||||||
|
|
||||||
float metallic = getMaterialMetallic(mat);
|
float metallic = getMaterialMetallic(mat);
|
||||||
vec3 fresnel = vec3(0.03); // Default Di-electric fresnel value
|
vec3 fresnel = getFresnelF0(metallic, albedo);
|
||||||
if (metallic <= 0.5) {
|
|
||||||
metallic = 0.0;
|
|
||||||
} else {
|
|
||||||
fresnel = albedo;
|
|
||||||
metallic = 1.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
vec3 emissive = getMaterialEmissive(mat);
|
vec3 emissive = getMaterialEmissive(mat);
|
||||||
<$evalMaterialEmissive(emissiveTex, emissive, matKey, emissive)$>;
|
<$evalMaterialEmissive(emissiveTex, emissive, matKey, emissive)$>;
|
||||||
|
|
|
@ -60,13 +60,7 @@ void main(void) {
|
||||||
<$evalMaterialRoughness(roughnessTex, roughness, matKey, roughness)$>;
|
<$evalMaterialRoughness(roughnessTex, roughness, matKey, roughness)$>;
|
||||||
|
|
||||||
float metallic = getMaterialMetallic(mat);
|
float metallic = getMaterialMetallic(mat);
|
||||||
vec3 fresnel = vec3(0.03); // Default Di-electric fresnel value
|
vec3 fresnel = getFresnelF0(metallic, albedo);
|
||||||
if (metallic <= 0.5) {
|
|
||||||
metallic = 0.0;
|
|
||||||
} else {
|
|
||||||
fresnel = albedo;
|
|
||||||
metallic = 1.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
vec3 emissive = getMaterialEmissive(mat);
|
vec3 emissive = getMaterialEmissive(mat);
|
||||||
<$evalMaterialEmissive(emissiveTex, emissive, matKey, emissive)$>;
|
<$evalMaterialEmissive(emissiveTex, emissive, matKey, emissive)$>;
|
||||||
|
|
|
@ -40,12 +40,14 @@ vec4 evalGlobalColor(float shadowAttenuation, vec3 position, vec3 normal, vec3 a
|
||||||
vec3 fragEyeDir;
|
vec3 fragEyeDir;
|
||||||
<$transformEyeToWorldDir(cam, fragEyeVectorView, fragEyeDir)$>
|
<$transformEyeToWorldDir(cam, fragEyeVectorView, fragEyeDir)$>
|
||||||
|
|
||||||
|
SurfaceData surface = initSurfaceData(roughness, normal, fragEyeDir);
|
||||||
|
|
||||||
vec3 color = opacity * albedo * getLightColor(light) * getLightAmbientIntensity(ambient);
|
vec3 color = opacity * albedo * getLightColor(light) * getLightAmbientIntensity(ambient);
|
||||||
|
|
||||||
// Directional
|
// Directional
|
||||||
vec3 directionalDiffuse;
|
vec3 directionalDiffuse;
|
||||||
vec3 directionalSpecular;
|
vec3 directionalSpecular;
|
||||||
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, shadowAttenuation);
|
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, surface, metallic, fresnel, albedo, shadowAttenuation);
|
||||||
color += directionalDiffuse * isDiffuseEnabled() * isDirectionalEnabled();
|
color += directionalDiffuse * isDiffuseEnabled() * isDirectionalEnabled();
|
||||||
color += directionalSpecular * isSpecularEnabled() * isDirectionalEnabled();
|
color += directionalSpecular * isSpecularEnabled() * isDirectionalEnabled();
|
||||||
|
|
||||||
|
|
|
@ -46,13 +46,7 @@ void main(void) {
|
||||||
albedo *= _color;
|
albedo *= _color;
|
||||||
|
|
||||||
float metallic = getMaterialMetallic(mat);
|
float metallic = getMaterialMetallic(mat);
|
||||||
vec3 fresnel = vec3(0.03); // Default Di-electric fresnel value
|
vec3 fresnel = getFresnelF0(metallic, albedo);
|
||||||
if (metallic <= 0.5) {
|
|
||||||
metallic = 0.0;
|
|
||||||
} else {
|
|
||||||
fresnel = albedo;
|
|
||||||
metallic = 1.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
float roughness = getMaterialRoughness(mat);
|
float roughness = getMaterialRoughness(mat);
|
||||||
<$evalMaterialRoughness(roughnessTex, roughness, matKey, roughness)$>;
|
<$evalMaterialRoughness(roughnessTex, roughness, matKey, roughness)$>;
|
||||||
|
|
|
@ -44,13 +44,7 @@ void main(void) {
|
||||||
albedo *= _color;
|
albedo *= _color;
|
||||||
|
|
||||||
float metallic = getMaterialMetallic(mat);
|
float metallic = getMaterialMetallic(mat);
|
||||||
vec3 fresnel = vec3(0.03); // Default Di-electric fresnel value
|
vec3 fresnel = getFresnelF0(metallic, albedo);
|
||||||
if (metallic <= 0.5) {
|
|
||||||
metallic = 0.0;
|
|
||||||
} else {
|
|
||||||
fresnel = albedo;
|
|
||||||
metallic = 1.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
float roughness = getMaterialRoughness(mat);
|
float roughness = getMaterialRoughness(mat);
|
||||||
<$evalMaterialRoughness(roughnessTex, roughness, matKey, roughness)$>;
|
<$evalMaterialRoughness(roughnessTex, roughness, matKey, roughness)$>;
|
||||||
|
|
|
@ -40,12 +40,14 @@ vec4 evalGlobalColor(float shadowAttenuation, vec3 position, vec3 normal, vec3 a
|
||||||
vec3 fragEyeDir;
|
vec3 fragEyeDir;
|
||||||
<$transformEyeToWorldDir(cam, fragEyeVectorView, fragEyeDir)$>
|
<$transformEyeToWorldDir(cam, fragEyeVectorView, fragEyeDir)$>
|
||||||
|
|
||||||
|
SurfaceData surface = initSurfaceData(roughness, normal, fragEyeDir);
|
||||||
|
|
||||||
vec3 color = opacity * albedo * getLightColor(light) * getLightAmbientIntensity(ambient);
|
vec3 color = opacity * albedo * getLightColor(light) * getLightAmbientIntensity(ambient);
|
||||||
|
|
||||||
// Directional
|
// Directional
|
||||||
vec3 directionalDiffuse;
|
vec3 directionalDiffuse;
|
||||||
vec3 directionalSpecular;
|
vec3 directionalSpecular;
|
||||||
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, fragEyeDir, fragNormal, roughness, metallic, fresnel, albedo, shadowAttenuation);
|
evalLightingDirectional(directionalDiffuse, directionalSpecular, lightDirection, lightIrradiance, surface, metallic, fresnel, albedo, shadowAttenuation);
|
||||||
color += directionalDiffuse;
|
color += directionalDiffuse;
|
||||||
color += directionalSpecular / opacity;
|
color += directionalSpecular / opacity;
|
||||||
|
|
||||||
|
|
92
libraries/shared/src/DualQuaternion.cpp
Normal file
92
libraries/shared/src/DualQuaternion.cpp
Normal file
|
@ -0,0 +1,92 @@
|
||||||
|
//
|
||||||
|
// DualQuaternion.cpp
|
||||||
|
//
|
||||||
|
// Created by Anthony J. Thibault on Dec 13th 2017.
|
||||||
|
// Copyright (c) 2017 High Fidelity, Inc. All rights reserved.
|
||||||
|
//
|
||||||
|
// Distributed under the Apache License, Version 2.0.
|
||||||
|
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||||
|
//
|
||||||
|
|
||||||
|
#include "DualQuaternion.h"
|
||||||
|
#include "GLMHelpers.h"
|
||||||
|
|
||||||
|
// delegating constructor
|
||||||
|
DualQuaternion::DualQuaternion() : _real(1.0f, 0.0f, 0.0f, 0.0), _dual(0.0f, 0.0f, 0.0f, 0.0f) {
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion::DualQuaternion(const glm::mat4& m) : DualQuaternion(glmExtractRotation(m), extractTranslation(m)) {
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion::DualQuaternion(const glm::quat& real, const glm::quat& dual) : _real(real), _dual(dual) {
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion::DualQuaternion(const glm::vec4& real, const glm::vec4& dual) :
|
||||||
|
_real(real.w, real.x, real.y, real.z),
|
||||||
|
_dual(dual.w, dual.x, dual.y, dual.z) {
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion::DualQuaternion(const glm::quat& rotation, const glm::vec3& translation) {
|
||||||
|
_real = rotation;
|
||||||
|
_dual = glm::quat(0.0f, 0.5f * translation.x, 0.5f * translation.y, 0.5f * translation.z) * rotation;
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion DualQuaternion::operator*(const DualQuaternion& rhs) const {
|
||||||
|
return DualQuaternion(_real * rhs._real, _real * rhs._dual + _dual * rhs._real);
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion DualQuaternion::operator*(float scalar) const {
|
||||||
|
return DualQuaternion(_real * scalar, _dual * scalar);
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion DualQuaternion::operator+(const DualQuaternion& rhs) const {
|
||||||
|
return DualQuaternion(_real + rhs._real, _dual + rhs._dual);
|
||||||
|
}
|
||||||
|
|
||||||
|
glm::vec3 DualQuaternion::xformPoint(const glm::vec3& rhs) const {
|
||||||
|
DualQuaternion v(glm::quat(), glm::quat(0.0f, rhs.x, rhs.y, rhs.z));
|
||||||
|
DualQuaternion dualConj(glm::conjugate(_real), -glm::conjugate(_dual));
|
||||||
|
DualQuaternion result = *this * v * dualConj;
|
||||||
|
return vec3(result._dual.x, result._dual.y, result._dual.z);
|
||||||
|
}
|
||||||
|
|
||||||
|
glm::quat DualQuaternion::getRotation() const {
|
||||||
|
return _real;
|
||||||
|
}
|
||||||
|
|
||||||
|
glm::vec3 DualQuaternion::getTranslation() const {
|
||||||
|
glm::quat result = 2.0f * (_dual * glm::inverse(_real));
|
||||||
|
return glm::vec3(result.x, result.y, result.z);
|
||||||
|
}
|
||||||
|
|
||||||
|
glm::vec3 DualQuaternion::xformVector(const glm::vec3& rhs) const {
|
||||||
|
return _real * rhs;
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion DualQuaternion::inverse() const {
|
||||||
|
glm::quat invReal = glm::inverse(_real);
|
||||||
|
return DualQuaternion(invReal, - invReal * _dual * invReal);
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion DualQuaternion::conjugate() const {
|
||||||
|
return DualQuaternion(glm::conjugate(_real), glm::conjugate(_dual));
|
||||||
|
}
|
||||||
|
|
||||||
|
float DualQuaternion::length() const {
|
||||||
|
float dot = this->dot(*this);
|
||||||
|
return sqrtf(dot);
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion DualQuaternion::normalize() const {
|
||||||
|
float invLen = 1.0f / length();
|
||||||
|
return *this * invLen;
|
||||||
|
}
|
||||||
|
|
||||||
|
float DualQuaternion::dot(const DualQuaternion& rhs) const {
|
||||||
|
DualQuaternion result = *this * conjugate();
|
||||||
|
return result._real.w;
|
||||||
|
}
|
||||||
|
|
||||||
|
DualQuaternion DualQuaternion::operator-() const {
|
||||||
|
return DualQuaternion(-_real, -_dual);
|
||||||
|
}
|
62
libraries/shared/src/DualQuaternion.h
Normal file
62
libraries/shared/src/DualQuaternion.h
Normal file
|
@ -0,0 +1,62 @@
|
||||||
|
//
|
||||||
|
// DualQuaternion.h
|
||||||
|
//
|
||||||
|
// Created by Anthony J. Thibault on Dec 13th 2017.
|
||||||
|
// Copyright (c) 2017 High Fidelity, Inc. All rights reserved.
|
||||||
|
//
|
||||||
|
// Distributed under the Apache License, Version 2.0.
|
||||||
|
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||||
|
//
|
||||||
|
|
||||||
|
|
||||||
|
#ifndef hifi_DualQuaternion
|
||||||
|
#define hifi_DualQuaternion
|
||||||
|
|
||||||
|
#include <QtGlobal>
|
||||||
|
#include <QDebug>
|
||||||
|
#include <glm/glm.hpp>
|
||||||
|
#include <glm/gtc/quaternion.hpp>
|
||||||
|
|
||||||
|
class DualQuaternion {
|
||||||
|
public:
|
||||||
|
DualQuaternion();
|
||||||
|
explicit DualQuaternion(const glm::mat4& m);
|
||||||
|
DualQuaternion(const glm::quat& real, const glm::quat& imag);
|
||||||
|
DualQuaternion(const glm::quat& rotation, const glm::vec3& translation);
|
||||||
|
DualQuaternion(const glm::vec4& real, const glm::vec4& imag);
|
||||||
|
DualQuaternion operator*(const DualQuaternion& rhs) const;
|
||||||
|
DualQuaternion operator*(float scalar) const;
|
||||||
|
DualQuaternion operator+(const DualQuaternion& rhs) const;
|
||||||
|
|
||||||
|
const glm::quat& real() const { return _real; }
|
||||||
|
glm::quat& real() { return _real; }
|
||||||
|
|
||||||
|
const glm::quat& dual() const { return _dual; }
|
||||||
|
glm::quat& dual() { return _dual; }
|
||||||
|
|
||||||
|
glm::quat getRotation() const;
|
||||||
|
glm::vec3 getTranslation() const;
|
||||||
|
|
||||||
|
glm::vec3 xformPoint(const glm::vec3& rhs) const;
|
||||||
|
glm::vec3 xformVector(const glm::vec3& rhs) const;
|
||||||
|
|
||||||
|
DualQuaternion inverse() const;
|
||||||
|
DualQuaternion conjugate() const;
|
||||||
|
float length() const;
|
||||||
|
DualQuaternion normalize() const;
|
||||||
|
float dot(const DualQuaternion& rhs) const;
|
||||||
|
DualQuaternion operator-() const;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
friend QDebug operator<<(QDebug debug, const DualQuaternion& pose);
|
||||||
|
glm::quat _real;
|
||||||
|
glm::quat _dual;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
inline QDebug operator<<(QDebug debug, const DualQuaternion& dq) {
|
||||||
|
debug << "AnimPose, real = (" << dq._real.x << dq._real.y << dq._real.z << dq._real.w << "), dual = (" << dq._dual.x << dq._dual.y << dq._dual.z << dq._dual.w << ")";
|
||||||
|
return debug;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
|
@ -58,7 +58,7 @@ public:
|
||||||
_rotation(rotation),
|
_rotation(rotation),
|
||||||
_scale(scale),
|
_scale(scale),
|
||||||
_translation(translation),
|
_translation(translation),
|
||||||
_flags(FLAG_CACHE_INVALID_BITSET) // invalid cache
|
_flags(0xf) // FLAG_TRANSLATION | FLAG_ROTATION | FLAG_SCALING | FLAG_NON_UNIFORM
|
||||||
{
|
{
|
||||||
if (!isValidScale(_scale)) {
|
if (!isValidScale(_scale)) {
|
||||||
_scale = Vec3(1.0f);
|
_scale = Vec3(1.0f);
|
||||||
|
|
115
tests/shared/src/DualQuaternionTests.cpp
Normal file
115
tests/shared/src/DualQuaternionTests.cpp
Normal file
|
@ -0,0 +1,115 @@
|
||||||
|
//
|
||||||
|
// DualQuaternionTests.cpp
|
||||||
|
// tests/shared/src
|
||||||
|
//
|
||||||
|
// Copyright 2017 High Fidelity, Inc.
|
||||||
|
//
|
||||||
|
// Distributed under the Apache License, Version 2.0.
|
||||||
|
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||||
|
//
|
||||||
|
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
#include "DualQuaternionTests.h"
|
||||||
|
|
||||||
|
#include <DualQuaternion.h>
|
||||||
|
#include <GLMHelpers.h>
|
||||||
|
#include <NumericalConstants.h>
|
||||||
|
#include <StreamUtils.h>
|
||||||
|
|
||||||
|
#include <../GLMTestUtils.h>
|
||||||
|
#include <../QTestExtensions.h>
|
||||||
|
|
||||||
|
QTEST_MAIN(DualQuaternionTests)
|
||||||
|
|
||||||
|
static void quatComp(const glm::quat& q1, const glm::quat& q2) {
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(q1.x, q2.x, EPSILON);
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(q1.y, q2.y, EPSILON);
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(q1.z, q2.z, EPSILON);
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(q1.w, q2.w, EPSILON);
|
||||||
|
}
|
||||||
|
|
||||||
|
void DualQuaternionTests::ctor() {
|
||||||
|
glm::quat real = angleAxis(PI / 2.0f, Vectors::UNIT_Y);
|
||||||
|
glm::quat dual(0.0f, 1.0f, 2.0f, 3.0f);
|
||||||
|
|
||||||
|
DualQuaternion dq(real, dual);
|
||||||
|
quatComp(real, dq.real());
|
||||||
|
quatComp(dual, dq.dual());
|
||||||
|
|
||||||
|
glm::quat rotation = angleAxis(PI / 3.0f, Vectors::UNIT_X);
|
||||||
|
glm::vec3 translation(1.0, 2.0f, 3.0f);
|
||||||
|
dq = DualQuaternion(rotation, translation);
|
||||||
|
quatComp(rotation, dq.getRotation());
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(translation, dq.getTranslation(), EPSILON);
|
||||||
|
|
||||||
|
rotation = angleAxis(-2.0f * PI / 7.0f, Vectors::UNIT_Z);
|
||||||
|
translation = glm::vec3(-1.0, 12.0f, 2.0f);
|
||||||
|
glm::mat4 m = createMatFromQuatAndPos(rotation, translation);
|
||||||
|
dq = DualQuaternion(m);
|
||||||
|
quatComp(rotation, dq.getRotation());
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(translation, dq.getTranslation(), EPSILON);
|
||||||
|
}
|
||||||
|
|
||||||
|
void DualQuaternionTests::mult() {
|
||||||
|
|
||||||
|
glm::quat rotation = angleAxis(PI / 3.0f, Vectors::UNIT_X);
|
||||||
|
glm::vec3 translation(1.0, 2.0f, 3.0f);
|
||||||
|
glm::mat4 m1 = createMatFromQuatAndPos(rotation, translation);
|
||||||
|
DualQuaternion dq1(m1);
|
||||||
|
|
||||||
|
rotation = angleAxis(-2.0f * PI / 7.0f, Vectors::UNIT_Z);
|
||||||
|
translation = glm::vec3(-1.0, 12.0f, 2.0f);
|
||||||
|
glm::mat4 m2 = createMatFromQuatAndPos(rotation, translation);
|
||||||
|
DualQuaternion dq2(m2);
|
||||||
|
|
||||||
|
DualQuaternion dq3 = dq1 * dq2;
|
||||||
|
glm::mat4 m3 = m1 * m2;
|
||||||
|
|
||||||
|
rotation = glmExtractRotation(m3);
|
||||||
|
translation = extractTranslation(m3);
|
||||||
|
|
||||||
|
quatComp(rotation, dq3.getRotation());
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(translation, dq3.getTranslation(), EPSILON);
|
||||||
|
}
|
||||||
|
|
||||||
|
void DualQuaternionTests::xform() {
|
||||||
|
|
||||||
|
glm::quat rotation = angleAxis(PI / 3.0f, Vectors::UNIT_X);
|
||||||
|
glm::vec3 translation(1.0, 2.0f, 3.0f);
|
||||||
|
glm::mat4 m1 = createMatFromQuatAndPos(rotation, translation);
|
||||||
|
DualQuaternion dq1(m1);
|
||||||
|
|
||||||
|
rotation = angleAxis(-2.0f * PI / 7.0f, Vectors::UNIT_Z);
|
||||||
|
translation = glm::vec3(-1.0, 12.0f, 2.0f);
|
||||||
|
glm::mat4 m2 = createMatFromQuatAndPos(rotation, translation);
|
||||||
|
DualQuaternion dq2(m2);
|
||||||
|
|
||||||
|
DualQuaternion dq3 = dq1 * dq2;
|
||||||
|
glm::mat4 m3 = m1 * m2;
|
||||||
|
|
||||||
|
glm::vec3 p(1.0f, 2.0f, 3.0f);
|
||||||
|
|
||||||
|
glm::vec3 p1 = transformPoint(m3, p);
|
||||||
|
glm::vec3 p2 = dq3.xformPoint(p);
|
||||||
|
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(p1, p2, 0.001f);
|
||||||
|
|
||||||
|
p1 = transformVectorFast(m3, p);
|
||||||
|
p2 = dq3.xformVector(p);
|
||||||
|
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(p1, p2, 0.001f);
|
||||||
|
}
|
||||||
|
|
||||||
|
void DualQuaternionTests::trans() {
|
||||||
|
glm::vec3 t1 = glm::vec3();
|
||||||
|
DualQuaternion dq1(Quaternions::IDENTITY, t1);
|
||||||
|
glm::vec3 t2 = glm::vec3(1.0f, 2.0f, 3.0f);
|
||||||
|
DualQuaternion dq2(angleAxis(PI / 3.0f, Vectors::UNIT_X), t2);
|
||||||
|
glm::vec3 t3 = glm::vec3(3.0f, 2.0f, 1.0f);
|
||||||
|
DualQuaternion dq3(angleAxis(PI / 5.0f, Vectors::UNIT_Y), t3);
|
||||||
|
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(t1, dq1.getTranslation(), 0.001f);
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(t2, dq2.getTranslation(), 0.001f);
|
||||||
|
QCOMPARE_WITH_ABS_ERROR(t3, dq3.getTranslation(), 0.001f);
|
||||||
|
}
|
25
tests/shared/src/DualQuaternionTests.h
Normal file
25
tests/shared/src/DualQuaternionTests.h
Normal file
|
@ -0,0 +1,25 @@
|
||||||
|
//
|
||||||
|
// DualQuaternionTests.h
|
||||||
|
// tests/shared/src
|
||||||
|
//
|
||||||
|
// Copyright 2017 High Fidelity, Inc.
|
||||||
|
//
|
||||||
|
// Distributed under the Apache License, Version 2.0.
|
||||||
|
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
||||||
|
//
|
||||||
|
|
||||||
|
#ifndef hifi_DualQuaternionTests_h
|
||||||
|
#define hifi_DualQuaternionTests_h
|
||||||
|
|
||||||
|
#include <QtTest/QtTest>
|
||||||
|
|
||||||
|
class DualQuaternionTests : public QObject {
|
||||||
|
Q_OBJECT
|
||||||
|
private slots:
|
||||||
|
void ctor();
|
||||||
|
void mult();
|
||||||
|
void xform();
|
||||||
|
void trans();
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // hifi_DualQuaternionTests_h
|
Loading…
Reference in a new issue