Merge pull request #13714 from sabrina-shanman/safe-teleport-target

Create CollisionPick API
This commit is contained in:
Seth Alves 2018-08-14 09:56:51 -07:00 committed by GitHub
commit dce7b6eae6
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
13 changed files with 776 additions and 6 deletions

View file

@ -6708,7 +6708,8 @@ void Application::registerScriptEngineWithApplicationServices(ScriptEnginePointe
registerInteractiveWindowMetaType(scriptEngine.data());
DependencyManager::get<PickScriptingInterface>()->registerMetaTypes(scriptEngine.data());
auto pickScriptingInterface = DependencyManager::get<PickScriptingInterface>();
pickScriptingInterface->registerMetaTypes(scriptEngine.data());
// connect this script engines printedMessage signal to the global ScriptEngines these various messages
connect(scriptEngine.data(), &ScriptEngine::printedMessage,

View file

@ -0,0 +1,353 @@
//
// Created by Sabrina Shanman 7/16/2018
// Copyright 2018 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "CollisionPick.h"
#include <QtCore/QDebug>
#include <glm/gtx/transform.hpp>
#include "ScriptEngineLogging.h"
#include "UUIDHasher.h"
void buildObjectIntersectionsMap(IntersectionType intersectionType, const std::vector<ContactTestResult>& objectIntersections, std::unordered_map<QUuid, QVariantMap>& intersections, std::unordered_map<QUuid, QVariantList>& collisionPointPairs) {
for (auto& objectIntersection : objectIntersections) {
auto at = intersections.find(objectIntersection.foundID);
if (at == intersections.end()) {
QVariantMap intersectingObject;
intersectingObject["id"] = objectIntersection.foundID;
intersectingObject["type"] = intersectionType;
intersections[objectIntersection.foundID] = intersectingObject;
collisionPointPairs[objectIntersection.foundID] = QVariantList();
}
QVariantMap collisionPointPair;
collisionPointPair["pointOnPick"] = vec3toVariant(objectIntersection.testCollisionPoint);
collisionPointPair["pointOnObject"] = vec3toVariant(objectIntersection.foundCollisionPoint);
collisionPointPairs[objectIntersection.foundID].append(collisionPointPair);
}
}
QVariantMap CollisionPickResult::toVariantMap() const {
QVariantMap variantMap;
variantMap["intersects"] = intersects;
std::unordered_map<QUuid, QVariantMap> intersections;
std::unordered_map<QUuid, QVariantList> collisionPointPairs;
buildObjectIntersectionsMap(ENTITY, entityIntersections, intersections, collisionPointPairs);
buildObjectIntersectionsMap(AVATAR, avatarIntersections, intersections, collisionPointPairs);
QVariantList qIntersectingObjects;
for (auto& intersectionKeyVal : intersections) {
const QUuid& id = intersectionKeyVal.first;
QVariantMap& intersection = intersectionKeyVal.second;
intersection["collisionContacts"] = collisionPointPairs[id];
qIntersectingObjects.append(intersection);
}
variantMap["intersectingObjects"] = qIntersectingObjects;
variantMap["loaded"] = (loadState == LOAD_STATE_LOADED);
variantMap["collisionRegion"] = pickVariant;
return variantMap;
}
bool CollisionPick::isShapeInfoReady() {
if (_mathPick.shouldComputeShapeInfo()) {
if (_cachedResource && _cachedResource->isLoaded()) {
computeShapeInfo(_mathPick, *_mathPick.shapeInfo, _cachedResource);
return true;
}
return false;
}
return true;
}
void CollisionPick::computeShapeInfo(CollisionRegion& pick, ShapeInfo& shapeInfo, QSharedPointer<GeometryResource> resource) {
// This code was copied and modified from RenderableModelEntityItem::computeShapeInfo
// TODO: Move to some shared code area (in entities-renderer? model-networking?)
// after we verify this is working and do a diff comparison with RenderableModelEntityItem::computeShapeInfo
// to consolidate the code.
// We may also want to make computeShapeInfo always abstract away from the gpu model mesh, like it does here.
const uint32_t TRIANGLE_STRIDE = 3;
const uint32_t QUAD_STRIDE = 4;
ShapeType type = shapeInfo.getType();
glm::vec3 dimensions = pick.transform.getScale();
if (type == SHAPE_TYPE_COMPOUND) {
// should never fall in here when collision model not fully loaded
// TODO: assert that all geometries exist and are loaded
//assert(_model && _model->isLoaded() && _compoundShapeResource && _compoundShapeResource->isLoaded());
const FBXGeometry& collisionGeometry = resource->getFBXGeometry();
ShapeInfo::PointCollection& pointCollection = shapeInfo.getPointCollection();
pointCollection.clear();
uint32_t i = 0;
// the way OBJ files get read, each section under a "g" line is its own meshPart. We only expect
// to find one actual "mesh" (with one or more meshParts in it), but we loop over the meshes, just in case.
foreach (const FBXMesh& mesh, collisionGeometry.meshes) {
// each meshPart is a convex hull
foreach (const FBXMeshPart &meshPart, mesh.parts) {
pointCollection.push_back(QVector<glm::vec3>());
ShapeInfo::PointList& pointsInPart = pointCollection[i];
// run through all the triangles and (uniquely) add each point to the hull
uint32_t numIndices = (uint32_t)meshPart.triangleIndices.size();
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices % TRIANGLE_STRIDE == 0);
numIndices -= numIndices % TRIANGLE_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
for (uint32_t j = 0; j < numIndices; j += TRIANGLE_STRIDE) {
glm::vec3 p0 = mesh.vertices[meshPart.triangleIndices[j]];
glm::vec3 p1 = mesh.vertices[meshPart.triangleIndices[j + 1]];
glm::vec3 p2 = mesh.vertices[meshPart.triangleIndices[j + 2]];
if (!pointsInPart.contains(p0)) {
pointsInPart << p0;
}
if (!pointsInPart.contains(p1)) {
pointsInPart << p1;
}
if (!pointsInPart.contains(p2)) {
pointsInPart << p2;
}
}
// run through all the quads and (uniquely) add each point to the hull
numIndices = (uint32_t)meshPart.quadIndices.size();
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices % QUAD_STRIDE == 0);
numIndices -= numIndices % QUAD_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
for (uint32_t j = 0; j < numIndices; j += QUAD_STRIDE) {
glm::vec3 p0 = mesh.vertices[meshPart.quadIndices[j]];
glm::vec3 p1 = mesh.vertices[meshPart.quadIndices[j + 1]];
glm::vec3 p2 = mesh.vertices[meshPart.quadIndices[j + 2]];
glm::vec3 p3 = mesh.vertices[meshPart.quadIndices[j + 3]];
if (!pointsInPart.contains(p0)) {
pointsInPart << p0;
}
if (!pointsInPart.contains(p1)) {
pointsInPart << p1;
}
if (!pointsInPart.contains(p2)) {
pointsInPart << p2;
}
if (!pointsInPart.contains(p3)) {
pointsInPart << p3;
}
}
if (pointsInPart.size() == 0) {
qCDebug(scriptengine) << "Warning -- meshPart has no faces";
pointCollection.pop_back();
continue;
}
++i;
}
}
// We expect that the collision model will have the same units and will be displaced
// from its origin in the same way the visual model is. The visual model has
// been centered and probably scaled. We take the scaling and offset which were applied
// to the visual model and apply them to the collision model (without regard for the
// collision model's extents).
glm::vec3 scaleToFit = dimensions / resource->getFBXGeometry().getUnscaledMeshExtents().size();
// multiply each point by scale
for (int32_t i = 0; i < pointCollection.size(); i++) {
for (int32_t j = 0; j < pointCollection[i].size(); j++) {
// back compensate for registration so we can apply that offset to the shapeInfo later
pointCollection[i][j] = scaleToFit * pointCollection[i][j];
}
}
shapeInfo.setParams(type, dimensions, resource->getURL().toString());
} else if (type >= SHAPE_TYPE_SIMPLE_HULL && type <= SHAPE_TYPE_STATIC_MESH) {
const FBXGeometry& fbxGeometry = resource->getFBXGeometry();
int numFbxMeshes = fbxGeometry.meshes.size();
int totalNumVertices = 0;
for (int i = 0; i < numFbxMeshes; i++) {
const FBXMesh& mesh = fbxGeometry.meshes.at(i);
totalNumVertices += mesh.vertices.size();
}
const int32_t MAX_VERTICES_PER_STATIC_MESH = 1e6;
if (totalNumVertices > MAX_VERTICES_PER_STATIC_MESH) {
qWarning() << "model" << resource->getURL() << "has too many vertices" << totalNumVertices << "and will collide as a box.";
shapeInfo.setParams(SHAPE_TYPE_BOX, 0.5f * dimensions);
return;
}
auto& meshes = resource->getFBXGeometry().meshes;
int32_t numMeshes = (int32_t)(meshes.size());
const int MAX_ALLOWED_MESH_COUNT = 1000;
if (numMeshes > MAX_ALLOWED_MESH_COUNT) {
// too many will cause the deadlock timer to throw...
shapeInfo.setParams(SHAPE_TYPE_BOX, 0.5f * dimensions);
return;
}
ShapeInfo::PointCollection& pointCollection = shapeInfo.getPointCollection();
pointCollection.clear();
if (type == SHAPE_TYPE_SIMPLE_COMPOUND) {
pointCollection.resize(numMeshes);
} else {
pointCollection.resize(1);
}
ShapeInfo::TriangleIndices& triangleIndices = shapeInfo.getTriangleIndices();
triangleIndices.clear();
Extents extents;
int32_t meshCount = 0;
int32_t pointListIndex = 0;
for (auto& mesh : meshes) {
if (!mesh.vertices.size()) {
continue;
}
QVector<glm::vec3> vertices = mesh.vertices;
ShapeInfo::PointList& points = pointCollection[pointListIndex];
// reserve room
int32_t sizeToReserve = (int32_t)(vertices.count());
if (type == SHAPE_TYPE_SIMPLE_COMPOUND) {
// a list of points for each mesh
pointListIndex++;
} else {
// only one list of points
sizeToReserve += (int32_t)points.size();
}
points.reserve(sizeToReserve);
// copy points
const glm::vec3* vertexItr = vertices.cbegin();
while (vertexItr != vertices.cend()) {
glm::vec3 point = *vertexItr;
points.push_back(point);
extents.addPoint(point);
++vertexItr;
}
if (type == SHAPE_TYPE_STATIC_MESH) {
// copy into triangleIndices
size_t triangleIndicesCount = 0;
for (const FBXMeshPart& meshPart : mesh.parts) {
triangleIndicesCount += meshPart.triangleIndices.count();
}
triangleIndices.reserve((int)triangleIndicesCount);
for (const FBXMeshPart& meshPart : mesh.parts) {
const int* indexItr = meshPart.triangleIndices.cbegin();
while (indexItr != meshPart.triangleIndices.cend()) {
triangleIndices.push_back(*indexItr);
++indexItr;
}
}
} else if (type == SHAPE_TYPE_SIMPLE_COMPOUND) {
// for each mesh copy unique part indices, separated by special bogus (flag) index values
for (const FBXMeshPart& meshPart : mesh.parts) {
// collect unique list of indices for this part
std::set<int32_t> uniqueIndices;
auto numIndices = meshPart.triangleIndices.count();
// TODO: assert rather than workaround after we start sanitizing FBXMesh higher up
//assert(numIndices% TRIANGLE_STRIDE == 0);
numIndices -= numIndices % TRIANGLE_STRIDE; // WORKAROUND lack of sanity checking in FBXReader
auto indexItr = meshPart.triangleIndices.cbegin();
while (indexItr != meshPart.triangleIndices.cend()) {
uniqueIndices.insert(*indexItr);
++indexItr;
}
// store uniqueIndices in triangleIndices
triangleIndices.reserve(triangleIndices.size() + (int32_t)uniqueIndices.size());
for (auto index : uniqueIndices) {
triangleIndices.push_back(index);
}
// flag end of part
triangleIndices.push_back(END_OF_MESH_PART);
}
// flag end of mesh
triangleIndices.push_back(END_OF_MESH);
}
++meshCount;
}
// scale and shift
glm::vec3 extentsSize = extents.size();
glm::vec3 scaleToFit = dimensions / extentsSize;
for (int32_t i = 0; i < 3; ++i) {
if (extentsSize[i] < 1.0e-6f) {
scaleToFit[i] = 1.0f;
}
}
for (auto points : pointCollection) {
for (int32_t i = 0; i < points.size(); ++i) {
points[i] = (points[i] * scaleToFit);
}
}
shapeInfo.setParams(type, 0.5f * dimensions, resource->getURL().toString());
}
}
CollisionRegion CollisionPick::getMathematicalPick() const {
return _mathPick;
}
const std::vector<ContactTestResult> CollisionPick::filterIntersections(const std::vector<ContactTestResult>& intersections) const {
std::vector<ContactTestResult> filteredIntersections;
const QVector<QUuid>& ignoreItems = getIgnoreItems();
const QVector<QUuid>& includeItems = getIncludeItems();
bool isWhitelist = includeItems.size();
for (const auto& intersection : intersections) {
const QUuid& id = intersection.foundID;
if (!ignoreItems.contains(id) && (!isWhitelist || includeItems.contains(id))) {
filteredIntersections.push_back(intersection);
}
}
return filteredIntersections;
}
PickResultPointer CollisionPick::getEntityIntersection(const CollisionRegion& pick) {
if (!isShapeInfoReady()) {
// Cannot compute result
return std::make_shared<CollisionPickResult>(pick.toVariantMap(), CollisionPickResult::LOAD_STATE_NOT_LOADED, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
}
const auto& entityIntersections = filterIntersections(_physicsEngine->getCollidingInRegion(MOTIONSTATE_TYPE_ENTITY, *pick.shapeInfo, pick.transform));
return std::make_shared<CollisionPickResult>(pick, CollisionPickResult::LOAD_STATE_LOADED, entityIntersections, std::vector<ContactTestResult>());
}
PickResultPointer CollisionPick::getOverlayIntersection(const CollisionRegion& pick) {
return std::make_shared<CollisionPickResult>(pick.toVariantMap(), isShapeInfoReady() ? CollisionPickResult::LOAD_STATE_LOADED : CollisionPickResult::LOAD_STATE_NOT_LOADED, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
}
PickResultPointer CollisionPick::getAvatarIntersection(const CollisionRegion& pick) {
if (!isShapeInfoReady()) {
// Cannot compute result
return std::make_shared<CollisionPickResult>(pick.toVariantMap(), CollisionPickResult::LOAD_STATE_NOT_LOADED, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
}
const auto& avatarIntersections = filterIntersections(_physicsEngine->getCollidingInRegion(MOTIONSTATE_TYPE_AVATAR, *pick.shapeInfo, pick.transform));
return std::make_shared<CollisionPickResult>(pick, CollisionPickResult::LOAD_STATE_LOADED, std::vector<ContactTestResult>(), avatarIntersections);
}
PickResultPointer CollisionPick::getHUDIntersection(const CollisionRegion& pick) {
return std::make_shared<CollisionPickResult>(pick.toVariantMap(), isShapeInfoReady() ? CollisionPickResult::LOAD_STATE_LOADED : CollisionPickResult::LOAD_STATE_NOT_LOADED, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
}

View file

@ -0,0 +1,102 @@
//
// Created by Sabrina Shanman 7/11/2018
// Copyright 2018 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_CollisionPick_h
#define hifi_CollisionPick_h
#include <PhysicsEngine.h>
#include <model-networking/ModelCache.h>
#include <RegisteredMetaTypes.h>
#include <Pick.h>
class CollisionPickResult : public PickResult {
public:
enum LoadState {
LOAD_STATE_UNKNOWN,
LOAD_STATE_NOT_LOADED,
LOAD_STATE_LOADED
};
CollisionPickResult() {}
CollisionPickResult(const QVariantMap& pickVariant) : PickResult(pickVariant) {}
CollisionPickResult(const CollisionRegion& searchRegion, LoadState loadState, const std::vector<ContactTestResult>& entityIntersections, const std::vector<ContactTestResult>& avatarIntersections) :
PickResult(searchRegion.toVariantMap()),
loadState(loadState),
intersects(entityIntersections.size() || avatarIntersections.size()),
entityIntersections(entityIntersections),
avatarIntersections(avatarIntersections) {
}
CollisionPickResult(const CollisionPickResult& collisionPickResult) : PickResult(collisionPickResult.pickVariant) {
avatarIntersections = collisionPickResult.avatarIntersections;
entityIntersections = collisionPickResult.entityIntersections;
intersects = collisionPickResult.intersects;
loadState = collisionPickResult.loadState;
}
LoadState loadState { LOAD_STATE_UNKNOWN };
bool intersects { false };
std::vector<ContactTestResult> entityIntersections;
std::vector<ContactTestResult> avatarIntersections;
QVariantMap toVariantMap() const override;
bool doesIntersect() const override { return intersects; }
bool checkOrFilterAgainstMaxDistance(float maxDistance) override { return true; }
PickResultPointer compareAndProcessNewResult(const PickResultPointer& newRes) override {
const std::shared_ptr<CollisionPickResult> newCollisionResult = std::static_pointer_cast<CollisionPickResult>(newRes);
for (ContactTestResult& entityIntersection : newCollisionResult->entityIntersections) {
entityIntersections.push_back(entityIntersection);
}
for (ContactTestResult& avatarIntersection : newCollisionResult->avatarIntersections) {
avatarIntersections.push_back(avatarIntersection);
}
intersects = entityIntersections.size() || avatarIntersections.size();
if (newCollisionResult->loadState == LOAD_STATE_NOT_LOADED || loadState == LOAD_STATE_UNKNOWN) {
loadState = (LoadState)newCollisionResult->loadState;
}
return std::make_shared<CollisionPickResult>(*this);
}
};
class CollisionPick : public Pick<CollisionRegion> {
public:
CollisionPick(const PickFilter& filter, float maxDistance, bool enabled, CollisionRegion collisionRegion, PhysicsEnginePointer physicsEngine) :
Pick(filter, maxDistance, enabled),
_mathPick(collisionRegion),
_physicsEngine(physicsEngine) {
if (collisionRegion.shouldComputeShapeInfo()) {
_cachedResource = DependencyManager::get<ModelCache>()->getCollisionGeometryResource(collisionRegion.modelURL);
}
}
CollisionRegion getMathematicalPick() const override;
PickResultPointer getDefaultResult(const QVariantMap& pickVariant) const override {
return std::make_shared<CollisionPickResult>(pickVariant, CollisionPickResult::LOAD_STATE_UNKNOWN, std::vector<ContactTestResult>(), std::vector<ContactTestResult>());
}
PickResultPointer getEntityIntersection(const CollisionRegion& pick) override;
PickResultPointer getOverlayIntersection(const CollisionRegion& pick) override;
PickResultPointer getAvatarIntersection(const CollisionRegion& pick) override;
PickResultPointer getHUDIntersection(const CollisionRegion& pick) override;
protected:
// Returns true if pick.shapeInfo is valid. Otherwise, attempts to get the shapeInfo ready for use.
bool isShapeInfoReady();
void computeShapeInfo(CollisionRegion& pick, ShapeInfo& shapeInfo, QSharedPointer<GeometryResource> resource);
const std::vector<ContactTestResult> filterIntersections(const std::vector<ContactTestResult>& intersections) const;
CollisionRegion _mathPick;
PhysicsEnginePointer _physicsEngine;
QSharedPointer<GeometryResource> _cachedResource;
};
#endif // hifi_CollisionPick_h

View file

@ -11,6 +11,7 @@
#include <QVariant>
#include "GLMHelpers.h"
#include "Application.h"
#include <PickManager.h>
#include "StaticRayPick.h"
@ -20,6 +21,7 @@
#include "StaticParabolaPick.h"
#include "JointParabolaPick.h"
#include "MouseParabolaPick.h"
#include "CollisionPick.h"
#include <ScriptEngine.h>
@ -31,6 +33,8 @@ unsigned int PickScriptingInterface::createPick(const PickQuery::PickType type,
return createStylusPick(properties);
case PickQuery::PickType::Parabola:
return createParabolaPick(properties);
case PickQuery::PickType::Collision:
return createCollisionPick(properties);
default:
return PickManager::INVALID_PICK_ID;
}
@ -234,6 +238,48 @@ unsigned int PickScriptingInterface::createParabolaPick(const QVariant& properti
return PickManager::INVALID_PICK_ID;
}
/**jsdoc
* A Shape defines a physical volume.
*
* @typedef {object} Shape
* @property {string} shapeType The type of shape to use. Can be one of the following: "box", "sphere", "capsule-x", "capsule-y", "capsule-z", "cylinder-x", "cylinder-y", "cylinder-z"
* @property {Vec3} dimensions - The size to scale the shape to.
*/
// TODO: Add this property to the Shape jsdoc above once model picks work properly
// * @property {string} modelURL - If shapeType is one of: "compound", "simple-hull", "simple-compound", or "static-mesh", this defines the model to load to generate the collision volume.
/**jsdoc
* A set of properties that can be passed to {@link Picks.createPick} to create a new Collision Pick.
* @typedef {object} Picks.CollisionPickProperties
* @property {Shape} shape - The information about the collision region's size and shape.
* @property {Vec3} position - The position of the collision region.
* @property {Quat} orientation - The orientation of the collision region.
*/
unsigned int PickScriptingInterface::createCollisionPick(const QVariant& properties) {
QVariantMap propMap = properties.toMap();
bool enabled = false;
if (propMap["enabled"].isValid()) {
enabled = propMap["enabled"].toBool();
}
PickFilter filter = PickFilter();
if (propMap["filter"].isValid()) {
filter = PickFilter(propMap["filter"].toUInt());
}
float maxDistance = 0.0f;
if (propMap["maxDistance"].isValid()) {
maxDistance = propMap["maxDistance"].toFloat();
}
CollisionRegion collisionRegion(propMap);
return DependencyManager::get<PickManager>()->addPick(PickQuery::Collision, std::make_shared<CollisionPick>(filter, maxDistance, enabled, collisionRegion, qApp->getPhysicsEngine()));
}
void PickScriptingInterface::enablePick(unsigned int uid) {
DependencyManager::get<PickManager>()->enablePick(uid);
}

View file

@ -12,6 +12,7 @@
#include <RegisteredMetaTypes.h>
#include <DependencyManager.h>
#include <PhysicsEngine.h>
#include <Pick.h>
/**jsdoc
@ -62,6 +63,7 @@ class PickScriptingInterface : public QObject, public Dependency {
public:
unsigned int createRayPick(const QVariant& properties);
unsigned int createStylusPick(const QVariant& properties);
unsigned int createCollisionPick(const QVariant& properties);
unsigned int createParabolaPick(const QVariant& properties);
void registerMetaTypes(QScriptEngine* engine);
@ -72,7 +74,7 @@ public:
* with PickType.Ray, depending on which optional parameters you pass, you could create a Static Ray Pick, a Mouse Ray Pick, or a Joint Ray Pick.
* @function Picks.createPick
* @param {PickType} type A PickType that specifies the method of picking to use
* @param {Picks.RayPickProperties|Picks.StylusPickProperties|Picks.ParabolaPickProperties} properties A PickProperties object, containing all the properties for initializing this Pick
* @param {Picks.RayPickProperties|Picks.StylusPickProperties|Picks.ParabolaPickProperties|Picks.CollisionPickProperties} properties A PickProperties object, containing all the properties for initializing this Pick
* @returns {number} The ID of the created Pick. Used for managing the Pick. 0 if invalid.
*/
Q_INVOKABLE unsigned int createPick(const PickQuery::PickType type, const QVariant& properties);
@ -141,11 +143,40 @@ public:
* @property {PickParabola} parabola The PickParabola that was used. Valid even if there was no intersection.
*/
/**jsdoc
* An intersection result for a Collision Pick.
*
* @typedef {object} CollisionPickResult
* @property {boolean} intersects If there was at least one valid intersection (intersectingObjects.length > 0)
* @property {IntersectingObject[]} intersectingObjects The collision information of each object which intersect with the CollisionRegion.
* @property {CollisionRegion} collisionRegion The CollisionRegion that was used. Valid even if there was no intersection.
*/
// TODO: Add this to the CollisionPickResult jsdoc once model collision picks are working
//* @property {boolean} loaded If the CollisionRegion was successfully loaded (may be false if a model was used)
/**jsdoc
* Information about the Collision Pick's intersection with an object
*
* @typedef {object} IntersectingObject
* @property {QUuid} id The ID of the object.
* @property {number} type The type of the object, either Picks.INTERSECTED_ENTITY() or Picks.INTERSECTED_AVATAR()
* @property {CollisionContact[]} collisionContacts Pairs of points representing penetration information between the pick and the object
*/
/**jsdoc
* A pair of points that represents part of an overlap between a Collision Pick and an object in the physics engine. Points which are further apart represent deeper overlap
*
* @typedef {object} CollisionContact
* @property {Vec3} pointOnPick A point representing a penetration of the object's surface into the volume of the pick, in world space.
* @property {Vec3} pointOnObject A point representing a penetration of the pick's surface into the volume of the found object, in world space.
*/
/**jsdoc
* Get the most recent pick result from this Pick. This will be updated as long as the Pick is enabled.
* @function Picks.getPrevPickResult
* @param {number} uid The ID of the Pick, as returned by {@link Picks.createPick}.
* @returns {RayPickResult|StylusPickResult} The most recent intersection result. This will be different for different PickTypes.
* @returns {RayPickResult|StylusPickResult|ParabolaPickResult|CollisionPickResult} The most recent intersection result. This will be different for different PickTypes.
*/
Q_INVOKABLE QVariantMap getPrevPickResult(unsigned int uid);

View file

@ -863,3 +863,90 @@ void PhysicsEngine::setShowBulletConstraintLimits(bool value) {
}
}
struct AllContactsCallback : public btCollisionWorld::ContactResultCallback {
AllContactsCallback(MotionStateType desiredObjectType, const ShapeInfo& shapeInfo, const Transform& transform, btCollisionObject* myAvatarCollisionObject) :
btCollisionWorld::ContactResultCallback(),
desiredObjectType(desiredObjectType),
collisionObject(),
contacts(),
myAvatarCollisionObject(myAvatarCollisionObject) {
const btCollisionShape* collisionShape = ObjectMotionState::getShapeManager()->getShape(shapeInfo);
collisionObject.setCollisionShape(const_cast<btCollisionShape*>(collisionShape));
btTransform bulletTransform;
bulletTransform.setOrigin(glmToBullet(transform.getTranslation()));
bulletTransform.setRotation(glmToBullet(transform.getRotation()));
collisionObject.setWorldTransform(bulletTransform);
}
~AllContactsCallback() {
ObjectMotionState::getShapeManager()->releaseShape(collisionObject.getCollisionShape());
}
MotionStateType desiredObjectType;
btCollisionObject collisionObject;
std::vector<ContactTestResult> contacts;
btCollisionObject* myAvatarCollisionObject;
bool needsCollision(btBroadphaseProxy* proxy) const override {
return true;
}
btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0, int partId0, int index0, const btCollisionObjectWrapper* colObj1, int partId1, int index1) override {
const btCollisionObject* otherBody;
btVector3 penetrationPoint;
btVector3 otherPenetrationPoint;
if (colObj0->m_collisionObject == &collisionObject) {
otherBody = colObj1->m_collisionObject;
penetrationPoint = getWorldPoint(cp.m_localPointB, colObj1->getWorldTransform());
otherPenetrationPoint = getWorldPoint(cp.m_localPointA, colObj0->getWorldTransform());
} else {
otherBody = colObj0->m_collisionObject;
penetrationPoint = getWorldPoint(cp.m_localPointA, colObj0->getWorldTransform());
otherPenetrationPoint = getWorldPoint(cp.m_localPointB, colObj1->getWorldTransform());
}
// TODO: Give MyAvatar a motion state so we don't have to do this
if (desiredObjectType == MOTIONSTATE_TYPE_AVATAR && myAvatarCollisionObject && myAvatarCollisionObject == otherBody) {
contacts.emplace_back(Physics::getSessionUUID(), bulletToGLM(penetrationPoint), bulletToGLM(otherPenetrationPoint));
return 0;
}
if (!(otherBody->getInternalType() & btCollisionObject::CO_RIGID_BODY)) {
return 0;
}
const btRigidBody* collisionCandidate = static_cast<const btRigidBody*>(otherBody);
const btMotionState* motionStateCandidate = collisionCandidate->getMotionState();
const ObjectMotionState* candidate = dynamic_cast<const ObjectMotionState*>(motionStateCandidate);
if (!candidate || candidate->getType() != desiredObjectType) {
return 0;
}
// This is the correct object type. Add it to the list.
contacts.emplace_back(candidate->getObjectID(), bulletToGLM(penetrationPoint), bulletToGLM(otherPenetrationPoint));
return 0;
}
protected:
static btVector3 getWorldPoint(const btVector3& localPoint, const btTransform& transform) {
return quatRotate(transform.getRotation(), localPoint) + transform.getOrigin();
}
};
const std::vector<ContactTestResult> PhysicsEngine::getCollidingInRegion(MotionStateType desiredObjectType, const ShapeInfo& regionShapeInfo, const Transform& regionTransform) const {
// TODO: Give MyAvatar a motion state so we don't have to do this
btCollisionObject* myAvatarCollisionObject = nullptr;
if (desiredObjectType == MOTIONSTATE_TYPE_AVATAR && _myAvatarController) {
myAvatarCollisionObject = _myAvatarController->getCollisionObject();
}
auto contactCallback = AllContactsCallback(desiredObjectType, regionShapeInfo, regionTransform, myAvatarCollisionObject);
_dynamicsWorld->contactTest(&contactCallback.collisionObject, contactCallback);
return contactCallback.contacts;
}

View file

@ -43,6 +43,28 @@ public:
void* _b; // ObjectMotionState pointer
};
struct ContactTestResult {
ContactTestResult() = delete;
ContactTestResult(const ContactTestResult& contactTestResult) :
foundID(contactTestResult.foundID),
testCollisionPoint(contactTestResult.testCollisionPoint),
foundCollisionPoint(contactTestResult.foundCollisionPoint) {
}
ContactTestResult(QUuid foundID, glm::vec3 testCollisionPoint, glm::vec3 otherCollisionPoint) :
foundID(foundID),
testCollisionPoint(testCollisionPoint),
foundCollisionPoint(otherCollisionPoint) {
}
QUuid foundID;
// The deepest point of an intersection within the volume of the test shape, in world space.
glm::vec3 testCollisionPoint;
// The deepest point of an intersection within the volume of the found object, in world space.
glm::vec3 foundCollisionPoint;
};
using ContactMap = std::map<ContactKey, ContactInfo>;
using CollisionEvents = std::vector<Collision>;
@ -103,6 +125,9 @@ public:
void setShowBulletConstraints(bool value);
void setShowBulletConstraintLimits(bool value);
// Function for getting colliding ObjectMotionStates in the world of specified type
const std::vector<ContactTestResult> getCollidingInRegion(MotionStateType desiredObjectType, const ShapeInfo& regionShapeInfo, const Transform& regionTransform) const;
private:
QList<EntityDynamicPointer> removeDynamicsForBody(btRigidBody* body);
void addObjectToDynamicsWorld(ObjectMotionState* motionState);

View file

@ -164,7 +164,7 @@ public:
Ray = 0,
Stylus,
Parabola,
Collision,
NUM_PICK_TYPES
};
Q_ENUM(PickType)

View file

@ -101,6 +101,7 @@ void PickManager::update() {
_stylusPickCacheOptimizer.update(cachedPicks[PickQuery::Stylus], _nextPickToUpdate[PickQuery::Stylus], expiry, false);
_rayPickCacheOptimizer.update(cachedPicks[PickQuery::Ray], _nextPickToUpdate[PickQuery::Ray], expiry, shouldPickHUD);
_parabolaPickCacheOptimizer.update(cachedPicks[PickQuery::Parabola], _nextPickToUpdate[PickQuery::Parabola], expiry, shouldPickHUD);
_collisionPickCacheOptimizer.update(cachedPicks[PickQuery::Collision], _nextPickToUpdate[PickQuery::Collision], expiry, false);
}
bool PickManager::isLeftHand(unsigned int uid) {

View file

@ -59,13 +59,14 @@ protected:
std::shared_ptr<PickQuery> findPick(unsigned int uid) const;
std::unordered_map<PickQuery::PickType, std::unordered_map<unsigned int, std::shared_ptr<PickQuery>>> _picks;
unsigned int _nextPickToUpdate[PickQuery::NUM_PICK_TYPES] { 0, 0, 0 };
unsigned int _nextPickToUpdate[PickQuery::NUM_PICK_TYPES] { 0, 0, 0, 0 };
std::unordered_map<unsigned int, PickQuery::PickType> _typeMap;
unsigned int _nextPickID { INVALID_PICK_ID + 1 };
PickCacheOptimizer<PickRay> _rayPickCacheOptimizer;
PickCacheOptimizer<StylusTip> _stylusPickCacheOptimizer;
PickCacheOptimizer<PickParabola> _parabolaPickCacheOptimizer;
PickCacheOptimizer<CollisionRegion> _collisionPickCacheOptimizer;
static const unsigned int DEFAULT_PER_FRAME_TIME_BUDGET = 3 * USECS_PER_MSEC;
unsigned int _perFrameTimeBudget { DEFAULT_PER_FRAME_TIME_BUDGET };

View file

@ -20,8 +20,10 @@
#include <glm/gtc/quaternion.hpp>
#include "AACube.h"
#include "ShapeInfo.h"
#include "SharedUtil.h"
#include "shared/Bilateral.h"
#include "Transform.h"
class QColor;
class QUrl;
@ -251,6 +253,97 @@ public:
}
};
/**jsdoc
* A CollisionPick defines a volume for checking collisions in the physics simulation.
* @typedef {object} CollisionPick
* @property {Shape} shape - The information about the collision region's size and shape.
* @property {Vec3} position - The position of the collision region.
* @property {Quat} orientation - The orientation of the collision region.
*/
class CollisionRegion : public MathPick {
public:
CollisionRegion() { }
CollisionRegion(const QVariantMap& pickVariant) {
if (pickVariant["shape"].isValid()) {
auto shape = pickVariant["shape"].toMap();
if (!shape.empty()) {
ShapeType shapeType = SHAPE_TYPE_NONE;
if (shape["shapeType"].isValid()) {
shapeType = ShapeInfo::getShapeTypeForName(shape["shapeType"].toString());
}
if (shapeType >= SHAPE_TYPE_COMPOUND && shapeType <= SHAPE_TYPE_STATIC_MESH && shape["modelURL"].isValid()) {
QString newURL = shape["modelURL"].toString();
modelURL.setUrl(newURL);
} else {
modelURL.setUrl("");
}
if (shape["dimensions"].isValid()) {
transform.setScale(vec3FromVariant(shape["dimensions"]));
}
shapeInfo->setParams(shapeType, transform.getScale() / 2.0f, modelURL.toString());
}
}
if (pickVariant["position"].isValid()) {
transform.setTranslation(vec3FromVariant(pickVariant["position"]));
}
if (pickVariant["orientation"].isValid()) {
transform.setRotation(quatFromVariant(pickVariant["orientation"]));
}
}
QVariantMap toVariantMap() const override {
QVariantMap collisionRegion;
QVariantMap shape;
shape["shapeType"] = ShapeInfo::getNameForShapeType(shapeInfo->getType());
shape["modelURL"] = modelURL.toString();
shape["dimensions"] = vec3toVariant(transform.getScale());
collisionRegion["shape"] = shape;
collisionRegion["position"] = vec3toVariant(transform.getTranslation());
collisionRegion["orientation"] = quatToVariant(transform.getRotation());
return collisionRegion;
}
operator bool() const override {
return !(glm::any(glm::isnan(transform.getTranslation())) ||
glm::any(glm::isnan(transform.getRotation())) ||
shapeInfo->getType() == SHAPE_TYPE_NONE);
}
bool operator==(const CollisionRegion& other) const {
return glm::all(glm::equal(transform.getTranslation(), other.transform.getTranslation())) &&
glm::all(glm::equal(transform.getRotation(), other.transform.getRotation())) &&
glm::all(glm::equal(transform.getScale(), other.transform.getScale())) &&
shapeInfo->getType() == other.shapeInfo->getType() &&
modelURL == other.modelURL;
}
bool shouldComputeShapeInfo() const {
if (!(shapeInfo->getType() == SHAPE_TYPE_HULL ||
(shapeInfo->getType() >= SHAPE_TYPE_COMPOUND &&
shapeInfo->getType() <= SHAPE_TYPE_STATIC_MESH)
)) {
return false;
}
return !shapeInfo->getPointCollection().size();
}
// We can't load the model here because it would create a circular dependency, so we delegate that responsibility to the owning CollisionPick
QUrl modelURL;
// We can't compute the shapeInfo here without loading the model first, so we delegate that responsibility to the owning CollisionPick
std::shared_ptr<ShapeInfo> shapeInfo = std::make_shared<ShapeInfo>();
Transform transform;
};
namespace std {
inline void hash_combine(std::size_t& seed) { }
@ -286,6 +379,15 @@ namespace std {
}
};
template <>
struct hash<Transform> {
size_t operator()(const Transform& a) const {
size_t result = 0;
hash_combine(result, a.getTranslation(), a.getRotation(), a.getScale());
return result;
}
};
template <>
struct hash<PickRay> {
size_t operator()(const PickRay& a) const {
@ -313,6 +415,15 @@ namespace std {
}
};
template <>
struct hash<CollisionRegion> {
size_t operator()(const CollisionRegion& a) const {
size_t result = 0;
hash_combine(result, a.transform, (int)a.shapeInfo->getType(), qHash(a.modelURL));
return result;
}
};
template <>
struct hash<QString> {
size_t operator()(const QString& a) const {

View file

@ -68,12 +68,23 @@ const float MIN_HALF_EXTENT = 0.005f; // 0.5 cm
QString ShapeInfo::getNameForShapeType(ShapeType type) {
if (((int)type <= 0) || ((int)type >= (int)SHAPETYPE_NAME_COUNT)) {
type = (ShapeType)0;
type = SHAPE_TYPE_NONE;
}
return shapeTypeNames[(int)type];
}
ShapeType ShapeInfo::getShapeTypeForName(QString string) {
for (int i = 0; i < (int)SHAPETYPE_NAME_COUNT; i++) {
auto name = shapeTypeNames[i];
if (name == string) {
return (ShapeType)i;
}
}
return SHAPE_TYPE_NONE;
}
void ShapeInfo::clear() {
_url.clear();
_pointCollection.clear();

View file

@ -59,6 +59,7 @@ public:
using TriangleIndices = QVector<int32_t>;
static QString getNameForShapeType(ShapeType type);
static ShapeType getShapeTypeForName(QString string);
void clear();