Merge branch 'master' of https://github.com/worklist/hifi into pointy

This commit is contained in:
Andrzej Kapolka 2013-07-29 10:14:39 -07:00
commit b02c5f103d
32 changed files with 1888 additions and 391 deletions

View file

@ -8,6 +8,7 @@
#include <cstring>
#include <Node.h>
#include <PacketHeaders.h>
#include "PositionalAudioRingBuffer.h"
@ -16,19 +17,75 @@ PositionalAudioRingBuffer::PositionalAudioRingBuffer() :
AudioRingBuffer(false),
_position(0.0f, 0.0f, 0.0f),
_orientation(0.0f, 0.0f, 0.0f, 0.0f),
_willBeAddedToMix(false)
_willBeAddedToMix(false),
_listenMode(AudioRingBuffer::NORMAL),
_listenRadius(0.0f)
{
}
PositionalAudioRingBuffer::~PositionalAudioRingBuffer() {
}
bool PositionalAudioRingBuffer::isListeningToNode(Node& other) const {
switch (_listenMode) {
default:
case AudioRingBuffer::NORMAL:
return true;
break;
case AudioRingBuffer::OMNI_DIRECTIONAL_POINT: {
PositionalAudioRingBuffer* otherNodeBuffer = (PositionalAudioRingBuffer*) other.getLinkedData();
float distance = glm::distance(_position, otherNodeBuffer->_position);
return distance <= _listenRadius;
break;
}
case AudioRingBuffer::SELECTED_SOURCES:
for (int i = 0; i < _listenSources.size(); i++) {
if (other.getNodeID() == _listenSources[i]) {
return true;
}
}
return false;
break;
}
}
int PositionalAudioRingBuffer::parseData(unsigned char* sourceBuffer, int numBytes) {
unsigned char* currentBuffer = sourceBuffer + numBytesForPacketHeader(sourceBuffer);
currentBuffer += sizeof(uint16_t); // the source ID
currentBuffer += parseListenModeData(currentBuffer, numBytes - (currentBuffer - sourceBuffer));
currentBuffer += parsePositionalData(currentBuffer, numBytes - (currentBuffer - sourceBuffer));
currentBuffer += parseAudioSamples(currentBuffer, numBytes - (currentBuffer - sourceBuffer));
return currentBuffer - sourceBuffer;
}
int PositionalAudioRingBuffer::parseListenModeData(unsigned char* sourceBuffer, int numBytes) {
unsigned char* currentBuffer = sourceBuffer;
memcpy(&_listenMode, currentBuffer, sizeof(_listenMode));
currentBuffer += sizeof(_listenMode);
if (_listenMode == AudioRingBuffer::OMNI_DIRECTIONAL_POINT) {
memcpy(&_listenRadius, currentBuffer, sizeof(_listenRadius));
currentBuffer += sizeof(_listenRadius);
} else if (_listenMode == AudioRingBuffer::SELECTED_SOURCES) {
int listenSourcesCount;
memcpy(&listenSourcesCount, currentBuffer, sizeof(listenSourcesCount));
currentBuffer += sizeof(listenSourcesCount);
for (int i = 0; i < listenSourcesCount; i++) {
int sourceID;
memcpy(&sourceID, currentBuffer, sizeof(sourceID));
currentBuffer += sizeof(sourceID);
_listenSources.push_back(sourceID);
}
}
return currentBuffer - sourceBuffer;
}
int PositionalAudioRingBuffer::parsePositionalData(unsigned char* sourceBuffer, int numBytes) {
unsigned char* currentBuffer = sourceBuffer;
@ -63,6 +120,6 @@ bool PositionalAudioRingBuffer::shouldBeAddedToMix(int numJitterBufferSamples) {
return true;
}
}
printf("packet mismatch...\n");
return false;
}

View file

@ -9,6 +9,7 @@
#ifndef __hifi__PositionalAudioRingBuffer__
#define __hifi__PositionalAudioRingBuffer__
#include <vector>
#include <glm/gtx/quaternion.hpp>
#include <AudioRingBuffer.h>
@ -16,9 +17,11 @@
class PositionalAudioRingBuffer : public AudioRingBuffer {
public:
PositionalAudioRingBuffer();
~PositionalAudioRingBuffer();
int parseData(unsigned char* sourceBuffer, int numBytes);
int parsePositionalData(unsigned char* sourceBuffer, int numBytes);
int parseListenModeData(unsigned char* sourceBuffer, int numBytes);
bool shouldBeAddedToMix(int numJitterBufferSamples);
@ -28,6 +31,9 @@ public:
const glm::vec3& getPosition() const { return _position; }
const glm::quat& getOrientation() const { return _orientation; }
bool isListeningToNode(Node& other) const;
ListenMode getListeningMode() const { return _listenMode; }
protected:
// disallow copying of PositionalAudioRingBuffer objects
PositionalAudioRingBuffer(const PositionalAudioRingBuffer&);
@ -36,6 +42,10 @@ protected:
glm::vec3 _position;
glm::quat _orientation;
bool _willBeAddedToMix;
ListenMode _listenMode;
float _listenRadius;
std::vector<int> _listenSources;
};
#endif /* defined(__hifi__PositionalAudioRingBuffer__) */

View file

@ -141,7 +141,6 @@ int main(int argc, const char* argv[]) {
for (NodeList::iterator node = nodeList->begin(); node != nodeList->end(); node++) {
PositionalAudioRingBuffer* positionalRingBuffer = (PositionalAudioRingBuffer*) node->getLinkedData();
if (positionalRingBuffer && positionalRingBuffer->shouldBeAddedToMix(JITTER_BUFFER_SAMPLES)) {
// this is a ring buffer that is ready to go
// set its flag so we know to push its buffer when all is said and done
@ -159,168 +158,171 @@ int main(int argc, const char* argv[]) {
// zero out the client mix for this node
memset(clientSamples, 0, sizeof(clientSamples));
// loop through all other nodes that have sufficient audio to mix
for (NodeList::iterator otherNode = nodeList->begin(); otherNode != nodeList->end(); otherNode++) {
if (((PositionalAudioRingBuffer*) otherNode->getLinkedData())->willBeAddedToMix()
&& (otherNode != node || (otherNode == node && nodeRingBuffer->shouldLoopbackForNode()))) {
PositionalAudioRingBuffer* otherNodeBuffer = (PositionalAudioRingBuffer*) otherNode->getLinkedData();
// based on our listen mode we will do this mixing...
if (nodeRingBuffer->isListeningToNode(*otherNode)) {
float bearingRelativeAngleToSource = 0.0f;
float attenuationCoefficient = 1.0f;
int numSamplesDelay = 0;
float weakChannelAmplitudeRatio = 1.0f;
float bearingRelativeAngleToSource = 0.0f;
float attenuationCoefficient = 1.0f;
int numSamplesDelay = 0;
float weakChannelAmplitudeRatio = 1.0f;
stk::TwoPole* otherNodeTwoPole = NULL;
stk::TwoPole* otherNodeTwoPole = NULL;
// only do axis/distance attenuation when in normal mode
if (otherNode != node && nodeRingBuffer->getListeningMode() == AudioRingBuffer::NORMAL) {
if (otherNode != node) {
glm::vec3 listenerPosition = nodeRingBuffer->getPosition();
glm::vec3 relativePosition = otherNodeBuffer->getPosition() - nodeRingBuffer->getPosition();
glm::quat inverseOrientation = glm::inverse(nodeRingBuffer->getOrientation());
glm::vec3 listenerPosition = nodeRingBuffer->getPosition();
glm::vec3 relativePosition = otherNodeBuffer->getPosition() - nodeRingBuffer->getPosition();
glm::quat inverseOrientation = glm::inverse(nodeRingBuffer->getOrientation());
float distanceSquareToSource = glm::dot(relativePosition, relativePosition);
float radius = 0.0f;
float distanceSquareToSource = glm::dot(relativePosition, relativePosition);
float radius = 0.0f;
if (otherNode->getType() == NODE_TYPE_AUDIO_INJECTOR) {
InjectedAudioRingBuffer* injectedBuffer = (InjectedAudioRingBuffer*) otherNodeBuffer;
radius = injectedBuffer->getRadius();
attenuationCoefficient *= injectedBuffer->getAttenuationRatio();
}
if (radius == 0 || (distanceSquareToSource > radius * radius)) {
// this is either not a spherical source, or the listener is outside the sphere
if (radius > 0) {
// this is a spherical source - the distance used for the coefficient
// needs to be the closest point on the boundary to the source
// ovveride the distance to the node with the distance to the point on the
// boundary of the sphere
distanceSquareToSource -= (radius * radius);
} else {
// calculate the angle delivery for off-axis attenuation
glm::vec3 rotatedListenerPosition = glm::inverse(otherNodeBuffer->getOrientation())
* relativePosition;
float angleOfDelivery = glm::angle(glm::vec3(0.0f, 0.0f, -1.0f),
glm::normalize(rotatedListenerPosition));
const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
const float OFF_AXIS_ATTENUATION_FORMULA_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;
float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION +
(OFF_AXIS_ATTENUATION_FORMULA_STEP * (angleOfDelivery / 90.0f));
// multiply the current attenuation coefficient by the calculated off axis coefficient
attenuationCoefficient *= offAxisCoefficient;
if (otherNode->getType() == NODE_TYPE_AUDIO_INJECTOR) {
InjectedAudioRingBuffer* injectedBuffer = (InjectedAudioRingBuffer*) otherNodeBuffer;
radius = injectedBuffer->getRadius();
attenuationCoefficient *= injectedBuffer->getAttenuationRatio();
}
glm::vec3 rotatedSourcePosition = inverseOrientation * relativePosition;
if (radius == 0 || (distanceSquareToSource > radius * radius)) {
// this is either not a spherical source, or the listener is outside the sphere
const float DISTANCE_SCALE = 2.5f;
const float GEOMETRIC_AMPLITUDE_SCALAR = 0.3f;
const float DISTANCE_LOG_BASE = 2.5f;
const float DISTANCE_SCALE_LOG = logf(DISTANCE_SCALE) / logf(DISTANCE_LOG_BASE);
if (radius > 0) {
// this is a spherical source - the distance used for the coefficient
// needs to be the closest point on the boundary to the source
// calculate the distance coefficient using the distance to this node
float distanceCoefficient = powf(GEOMETRIC_AMPLITUDE_SCALAR,
DISTANCE_SCALE_LOG +
(0.5f * logf(distanceSquareToSource) / logf(DISTANCE_LOG_BASE)) - 1);
distanceCoefficient = std::min(1.0f, distanceCoefficient);
// ovveride the distance to the node with the distance to the point on the
// boundary of the sphere
distanceSquareToSource -= (radius * radius);
// multiply the current attenuation coefficient by the distance coefficient
attenuationCoefficient *= distanceCoefficient;
} else {
// calculate the angle delivery for off-axis attenuation
glm::vec3 rotatedListenerPosition = glm::inverse(otherNodeBuffer->getOrientation())
* relativePosition;
// project the rotated source position vector onto the XZ plane
rotatedSourcePosition.y = 0.0f;
float angleOfDelivery = glm::angle(glm::vec3(0.0f, 0.0f, -1.0f),
glm::normalize(rotatedListenerPosition));
// produce an oriented angle about the y-axis
bearingRelativeAngleToSource = glm::orientedAngle(glm::vec3(0.0f, 0.0f, -1.0f),
glm::normalize(rotatedSourcePosition),
glm::vec3(0.0f, 1.0f, 0.0f));
const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
const float OFF_AXIS_ATTENUATION_FORMULA_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;
const float PHASE_AMPLITUDE_RATIO_AT_90 = 0.5;
float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION +
(OFF_AXIS_ATTENUATION_FORMULA_STEP * (angleOfDelivery / 90.0f));
// figure out the number of samples of delay and the ratio of the amplitude
// in the weak channel for audio spatialization
float sinRatio = fabsf(sinf(glm::radians(bearingRelativeAngleToSource)));
numSamplesDelay = PHASE_DELAY_AT_90 * sinRatio;
weakChannelAmplitudeRatio = 1 - (PHASE_AMPLITUDE_RATIO_AT_90 * sinRatio);
// multiply the current attenuation coefficient by the calculated off axis coefficient
attenuationCoefficient *= offAxisCoefficient;
}
// grab the TwoPole object for this source, add it if it doesn't exist
TwoPoleNodeMap& nodeTwoPoles = nodeRingBuffer->getTwoPoles();
TwoPoleNodeMap::iterator twoPoleIterator = nodeTwoPoles.find(otherNode->getNodeID());
glm::vec3 rotatedSourcePosition = inverseOrientation * relativePosition;
if (twoPoleIterator == nodeTwoPoles.end()) {
// setup the freeVerb effect for this source for this client
otherNodeTwoPole = nodeTwoPoles[otherNode->getNodeID()] = new stk::TwoPole;
} else {
otherNodeTwoPole = twoPoleIterator->second;
const float DISTANCE_SCALE = 2.5f;
const float GEOMETRIC_AMPLITUDE_SCALAR = 0.3f;
const float DISTANCE_LOG_BASE = 2.5f;
const float DISTANCE_SCALE_LOG = logf(DISTANCE_SCALE) / logf(DISTANCE_LOG_BASE);
// calculate the distance coefficient using the distance to this node
float distanceCoefficient = powf(GEOMETRIC_AMPLITUDE_SCALAR,
DISTANCE_SCALE_LOG +
(0.5f * logf(distanceSquareToSource) / logf(DISTANCE_LOG_BASE)) - 1);
distanceCoefficient = std::min(1.0f, distanceCoefficient);
// multiply the current attenuation coefficient by the distance coefficient
attenuationCoefficient *= distanceCoefficient;
// project the rotated source position vector onto the XZ plane
rotatedSourcePosition.y = 0.0f;
// produce an oriented angle about the y-axis
bearingRelativeAngleToSource = glm::orientedAngle(glm::vec3(0.0f, 0.0f, -1.0f),
glm::normalize(rotatedSourcePosition),
glm::vec3(0.0f, 1.0f, 0.0f));
const float PHASE_AMPLITUDE_RATIO_AT_90 = 0.5;
// figure out the number of samples of delay and the ratio of the amplitude
// in the weak channel for audio spatialization
float sinRatio = fabsf(sinf(glm::radians(bearingRelativeAngleToSource)));
numSamplesDelay = PHASE_DELAY_AT_90 * sinRatio;
weakChannelAmplitudeRatio = 1 - (PHASE_AMPLITUDE_RATIO_AT_90 * sinRatio);
// grab the TwoPole object for this source, add it if it doesn't exist
TwoPoleNodeMap& nodeTwoPoles = nodeRingBuffer->getTwoPoles();
TwoPoleNodeMap::iterator twoPoleIterator = nodeTwoPoles.find(otherNode->getNodeID());
if (twoPoleIterator == nodeTwoPoles.end()) {
// setup the freeVerb effect for this source for this client
otherNodeTwoPole = nodeTwoPoles[otherNode->getNodeID()] = new stk::TwoPole;
} else {
otherNodeTwoPole = twoPoleIterator->second;
}
// calculate the reasonance for this TwoPole based on angle to source
float TWO_POLE_CUT_OFF_FREQUENCY = 800.0f;
float TWO_POLE_MAX_FILTER_STRENGTH = 0.4f;
otherNodeTwoPole->setResonance(TWO_POLE_CUT_OFF_FREQUENCY,
TWO_POLE_MAX_FILTER_STRENGTH
* fabsf(bearingRelativeAngleToSource) / 180.0f,
true);
}
}
int16_t* sourceBuffer = otherNodeBuffer->getNextOutput();
int16_t* goodChannel = (bearingRelativeAngleToSource > 0.0f)
? clientSamples
: clientSamples + BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
int16_t* delayedChannel = (bearingRelativeAngleToSource > 0.0f)
? clientSamples + BUFFER_LENGTH_SAMPLES_PER_CHANNEL
: clientSamples;
int16_t* delaySamplePointer = otherNodeBuffer->getNextOutput() == otherNodeBuffer->getBuffer()
? otherNodeBuffer->getBuffer() + RING_BUFFER_LENGTH_SAMPLES - numSamplesDelay
: otherNodeBuffer->getNextOutput() - numSamplesDelay;
for (int s = 0; s < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; s++) {
// load up the stkFrameBuffer with this source's samples
stkFrameBuffer[s] = (stk::StkFloat) sourceBuffer[s];
}
// perform the TwoPole effect on the stkFrameBuffer
if (otherNodeTwoPole) {
otherNodeTwoPole->tick(stkFrameBuffer);
}
for (int s = 0; s < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; s++) {
if (s < numSamplesDelay) {
// pull the earlier sample for the delayed channel
int earlierSample = delaySamplePointer[s] * attenuationCoefficient * weakChannelAmplitudeRatio;
delayedChannel[s] = glm::clamp(delayedChannel[s] + earlierSample,
MIN_SAMPLE_VALUE,
MAX_SAMPLE_VALUE);
}
// calculate the reasonance for this TwoPole based on angle to source
float TWO_POLE_CUT_OFF_FREQUENCY = 800.0f;
float TWO_POLE_MAX_FILTER_STRENGTH = 0.4f;
int16_t currentSample = stkFrameBuffer[s] * attenuationCoefficient;
otherNodeTwoPole->setResonance(TWO_POLE_CUT_OFF_FREQUENCY,
TWO_POLE_MAX_FILTER_STRENGTH
* fabsf(bearingRelativeAngleToSource) / 180.0f,
true);
}
}
goodChannel[s] = glm::clamp(goodChannel[s] + currentSample,
MIN_SAMPLE_VALUE,
MAX_SAMPLE_VALUE);
int16_t* sourceBuffer = otherNodeBuffer->getNextOutput();
if (s + numSamplesDelay < BUFFER_LENGTH_SAMPLES_PER_CHANNEL) {
int sumSample = delayedChannel[s + numSamplesDelay]
+ (currentSample * weakChannelAmplitudeRatio);
delayedChannel[s + numSamplesDelay] = glm::clamp(sumSample,
MIN_SAMPLE_VALUE,
MAX_SAMPLE_VALUE);
}
int16_t* goodChannel = (bearingRelativeAngleToSource > 0.0f)
? clientSamples
: clientSamples + BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
int16_t* delayedChannel = (bearingRelativeAngleToSource > 0.0f)
? clientSamples + BUFFER_LENGTH_SAMPLES_PER_CHANNEL
: clientSamples;
int16_t* delaySamplePointer = otherNodeBuffer->getNextOutput() == otherNodeBuffer->getBuffer()
? otherNodeBuffer->getBuffer() + RING_BUFFER_LENGTH_SAMPLES - numSamplesDelay
: otherNodeBuffer->getNextOutput() - numSamplesDelay;
for (int s = 0; s < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; s++) {
// load up the stkFrameBuffer with this source's samples
stkFrameBuffer[s] = (stk::StkFloat) sourceBuffer[s];
}
// perform the TwoPole effect on the stkFrameBuffer
if (otherNodeTwoPole) {
otherNodeTwoPole->tick(stkFrameBuffer);
}
for (int s = 0; s < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; s++) {
if (s < numSamplesDelay) {
// pull the earlier sample for the delayed channel
int earlierSample = delaySamplePointer[s] * attenuationCoefficient * weakChannelAmplitudeRatio;
delayedChannel[s] = glm::clamp(delayedChannel[s] + earlierSample,
MIN_SAMPLE_VALUE,
MAX_SAMPLE_VALUE);
}
int16_t currentSample = stkFrameBuffer[s] * attenuationCoefficient;
goodChannel[s] = glm::clamp(goodChannel[s] + currentSample,
MIN_SAMPLE_VALUE,
MAX_SAMPLE_VALUE);
if (s + numSamplesDelay < BUFFER_LENGTH_SAMPLES_PER_CHANNEL) {
int sumSample = delayedChannel[s + numSamplesDelay]
+ (currentSample * weakChannelAmplitudeRatio);
delayedChannel[s + numSamplesDelay] = glm::clamp(sumSample,
MIN_SAMPLE_VALUE,
MAX_SAMPLE_VALUE);
}
if (s >= BUFFER_LENGTH_SAMPLES_PER_CHANNEL - PHASE_DELAY_AT_90) {
// this could be a delayed sample on the next pass
// so store the affected back in the ARB
otherNodeBuffer->getNextOutput()[s] = (int16_t) stkFrameBuffer[s];
if (s >= BUFFER_LENGTH_SAMPLES_PER_CHANNEL - PHASE_DELAY_AT_90) {
// this could be a delayed sample on the next pass
// so store the affected back in the ARB
otherNodeBuffer->getNextOutput()[s] = (int16_t) stkFrameBuffer[s];
}
}
}
}
@ -340,7 +342,6 @@ int main(int argc, const char* argv[]) {
if (nodeBuffer->getNextOutput() >= nodeBuffer->getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
nodeBuffer->setNextOutput(nodeBuffer->getBuffer());
}
nodeBuffer->setWillBeAddedToMix(false);
}
}
@ -350,14 +351,15 @@ int main(int argc, const char* argv[]) {
packetVersionMatch(packetData)) {
if (packetData[0] == PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO ||
packetData[0] == PACKET_TYPE_MICROPHONE_AUDIO_WITH_ECHO) {
unsigned char* currentBuffer = packetData + numBytesForPacketHeader(packetData);
uint16_t sourceID;
memcpy(&sourceID, currentBuffer, sizeof(sourceID));
Node* avatarNode = nodeList->addOrUpdateNode(nodeAddress,
nodeAddress,
NODE_TYPE_AGENT,
nodeList->getLastNodeID());
if (avatarNode->getNodeID() == nodeList->getLastNodeID()) {
nodeList->increaseNodeID();
}
sourceID);
nodeList->updateNodeWithData(nodeAddress, packetData, receivedBytes);

View file

@ -36,7 +36,7 @@
const int AVATAR_LISTEN_PORT = 55444;
unsigned char *addNodeToBroadcastPacket(unsigned char *currentPosition, Node *nodeToAdd) {
unsigned char* addNodeToBroadcastPacket(unsigned char *currentPosition, Node *nodeToAdd) {
currentPosition += packNodeId(currentPosition, nodeToAdd->getNodeID());
AvatarData *nodeData = (AvatarData *)nodeToAdd->getLinkedData();
@ -51,6 +51,53 @@ void attachAvatarDataToNode(Node* newNode) {
}
}
// NOTE: some additional optimizations to consider.
// 1) use the view frustum to cull those avatars that are out of view. Since avatar data doesn't need to be present
// if the avatar is not in view or in the keyhole.
// 2) after culling for view frustum, sort order the avatars by distance, send the closest ones first.
// 3) if we need to rate limit the amount of data we send, we can use a distance weighted "semi-random" function to
// determine which avatars are included in the packet stream
// 4) we should optimize the avatar data format to be more compact (100 bytes is pretty wasteful).
void broadcastAvatarData(NodeList* nodeList, sockaddr* nodeAddress) {
static unsigned char broadcastPacketBuffer[MAX_PACKET_SIZE];
static unsigned char avatarDataBuffer[MAX_PACKET_SIZE];
unsigned char* broadcastPacket = (unsigned char*)&broadcastPacketBuffer[0];
int numHeaderBytes = populateTypeAndVersion(broadcastPacket, PACKET_TYPE_BULK_AVATAR_DATA);
unsigned char* currentBufferPosition = broadcastPacket + numHeaderBytes;
int packetLength = currentBufferPosition - broadcastPacket;
int packetsSent = 0;
// send back a packet with other active node data to this node
for (NodeList::iterator node = nodeList->begin(); node != nodeList->end(); node++) {
if (node->getLinkedData() && !socketMatch(nodeAddress, node->getActiveSocket())) {
unsigned char* avatarDataEndpoint = addNodeToBroadcastPacket((unsigned char*)&avatarDataBuffer[0], &*node);
int avatarDataLength = avatarDataEndpoint - (unsigned char*)&avatarDataBuffer;
if (avatarDataLength + packetLength <= MAX_PACKET_SIZE) {
memcpy(currentBufferPosition, &avatarDataBuffer[0], avatarDataLength);
packetLength += avatarDataLength;
currentBufferPosition += avatarDataLength;
} else {
packetsSent++;
//printf("packetsSent=%d packetLength=%d\n", packetsSent, packetLength);
nodeList->getNodeSocket()->send(nodeAddress, broadcastPacket, currentBufferPosition - broadcastPacket);
// reset the packet
currentBufferPosition = broadcastPacket + numHeaderBytes;
packetLength = currentBufferPosition - broadcastPacket;
// copy the avatar that didn't fit into the next packet
memcpy(currentBufferPosition, &avatarDataBuffer[0], avatarDataLength);
packetLength += avatarDataLength;
currentBufferPosition += avatarDataLength;
}
}
}
packetsSent++;
//printf("packetsSent=%d packetLength=%d\n", packetsSent, packetLength);
nodeList->getNodeSocket()->send(nodeAddress, broadcastPacket, currentBufferPosition - broadcastPacket);
}
int main(int argc, const char* argv[]) {
NodeList* nodeList = NodeList::createInstance(NODE_TYPE_AVATAR_MIXER, AVATAR_LISTEN_PORT);
@ -67,14 +114,11 @@ int main(int argc, const char* argv[]) {
nodeList->startSilentNodeRemovalThread();
sockaddr *nodeAddress = new sockaddr;
unsigned char *packetData = new unsigned char[MAX_PACKET_SIZE];
sockaddr* nodeAddress = new sockaddr;
ssize_t receivedBytes = 0;
unsigned char *broadcastPacket = new unsigned char[MAX_PACKET_SIZE];
int numHeaderBytes = populateTypeAndVersion(broadcastPacket, PACKET_TYPE_BULK_AVATAR_DATA);
unsigned char* packetData = new unsigned char[MAX_PACKET_SIZE];
unsigned char* currentBufferPosition = NULL;
uint16_t nodeID = 0;
Node* avatarNode = NULL;
@ -104,17 +148,7 @@ int main(int argc, const char* argv[]) {
// parse positional data from an node
nodeList->updateNodeWithData(avatarNode, packetData, receivedBytes);
case PACKET_TYPE_INJECT_AUDIO:
currentBufferPosition = broadcastPacket + numHeaderBytes;
// send back a packet with other active node data to this node
for (NodeList::iterator node = nodeList->begin(); node != nodeList->end(); node++) {
if (node->getLinkedData() && !socketMatch(nodeAddress, node->getActiveSocket())) {
currentBufferPosition = addNodeToBroadcastPacket(currentBufferPosition, &*node);
}
}
nodeList->getNodeSocket()->send(nodeAddress, broadcastPacket, currentBufferPosition - broadcastPacket);
broadcastAvatarData(nodeList, nodeAddress);
break;
case PACKET_TYPE_AVATAR_VOXEL_URL:
case PACKET_TYPE_AVATAR_FACE_VIDEO:

View file

@ -40,11 +40,13 @@ bool hasInjectedAudioOnce = false;
float sleepIntervalMin = 1.00;
float sleepIntervalMax = 2.00;
char *sourceAudioFile = NULL;
const char *allowedParameters = ":sc::a::f::t::r:";
const char *allowedParameters = ":sc::a::f::t::r:l";
float floatArguments[4] = {0.0f, 0.0f, 0.0f, 0.0f};
unsigned char volume = DEFAULT_INJECTOR_VOLUME;
float triggerDistance = 0.0f;
float radius = 0.0f;
bool wantsLocalDomain = false;
void usage(void) {
std::cout << "High Fidelity - Interface audio injector" << std::endl;
@ -54,6 +56,7 @@ void usage(void) {
std::cout << " -f FILENAME Name of audio source file. Required - RAW format, 22050hz 16bit signed mono" << std::endl;
std::cout << " -t FLOAT Trigger distance for injection. If not specified will loop constantly" << std::endl;
std::cout << " -r FLOAT Radius for spherical source. If not specified injected audio is point source" << std::endl;
std::cout << " -l Local domain mode." << std::endl;
}
bool processParameters(int parameterCount, char* parameterData[]) {
@ -96,6 +99,9 @@ bool processParameters(int parameterCount, char* parameterData[]) {
::radius = atof(optarg);
std::cout << "[DEBUG] Injector radius: " << optarg << std::endl;
break;
case 'l':
::wantsLocalDomain = true;
break;
default:
usage();
return false;
@ -111,6 +117,7 @@ void createAvatarDataForNode(Node* node) {
}
int main(int argc, char* argv[]) {
// new seed for random audio sleep times
srand(time(0));
@ -126,6 +133,11 @@ int main(int argc, char* argv[]) {
// create an NodeList instance to handle communication with other nodes
NodeList* nodeList = NodeList::createInstance(NODE_TYPE_AUDIO_INJECTOR, AUDIO_UDP_SEND_PORT);
if (::wantsLocalDomain) {
printf("Local Domain MODE!\n");
nodeList->setDomainIPToLocalhost();
}
// start the node list thread that will kill off nodes when they stop talking
nodeList->startSilentNodeRemovalThread();

View file

@ -77,7 +77,7 @@ include_directories(external/fervor/)
# run qt moc on qt-enabled headers
qt4_wrap_cpp(INTERFACE_SRCS src/Application.h src/Webcam.h src/avatar/AvatarVoxelSystem.h
src/avatar/Face.h src/ui/BandwidthDialog.h)
src/avatar/Face.h src/ui/BandwidthDialog.h src/ui/VoxelStatsDialog.h)
# create the executable, make it a bundle on OS X
add_executable(${TARGET_NAME} MACOSX_BUNDLE ${INTERFACE_SRCS})

View file

@ -56,6 +56,8 @@
#include <PairingHandler.h>
#include <PerfStat.h>
#include <VoxelSceneStats.h>
#include "Application.h"
#include "InterfaceConfig.h"
#include "LogDisplay.h"
@ -174,6 +176,7 @@ Application::Application(int& argc, char** argv, timeval &startup_time) :
_window(new QMainWindow(desktop())),
_glWidget(new GLCanvas()),
_bandwidthDialog(NULL),
_voxelStatsDialog(NULL),
_displayLevels(false),
_frameCount(0),
_fps(120.0f),
@ -200,6 +203,7 @@ Application::Application(int& argc, char** argv, timeval &startup_time) :
_mouseVoxelScale(1.0f / 1024.0f),
_justEditedVoxel(false),
_isLookingAtOtherAvatar(false),
_lookatIndicatorScale(1.0f),
_paintOn(false),
_dominantColor(0),
_perfStatsOn(false),
@ -1147,6 +1151,21 @@ void Application::bandwidthDetailsClosed() {
delete dlg;
}
void Application::voxelStatsDetails() {
if (!_voxelStatsDialog) {
_voxelStatsDialog = new VoxelStatsDialog(_glWidget, &_voxelSceneStats);
connect(_voxelStatsDialog, SIGNAL(closed()), SLOT(voxelStatsDetailsClosed()));
_voxelStatsDialog->show();
}
_voxelStatsDialog->raise();
}
void Application::voxelStatsDetailsClosed() {
QDialog* dlg = _voxelStatsDialog;
_voxelStatsDialog = NULL;
delete dlg;
}
void Application::editPreferences() {
QDialog dialog(_glWidget);
dialog.setWindowTitle("Interface Preferences");
@ -1751,6 +1770,7 @@ void Application::initMenu() {
(_bandwidthDisplayOn = toolsMenu->addAction("Bandwidth Display"))->setCheckable(true);
_bandwidthDisplayOn->setChecked(true);
toolsMenu->addAction("Bandwidth Details", this, SLOT(bandwidthDetails()));
toolsMenu->addAction("Voxel Stats Details", this, SLOT(voxelStatsDetails()));
QMenu* voxelMenu = menuBar->addMenu("Voxels");
@ -1835,6 +1855,11 @@ void Application::initMenu() {
(_simulateLeapHand = debugMenu->addAction("Simulate Leap Hand"))->setCheckable(true);
(_testRaveGlove = debugMenu->addAction("Test RaveGlove"))->setCheckable(true);
QMenu* audioDebugMenu = debugMenu->addMenu("Audio Debugging Tools");
audioDebugMenu->addAction("Listen Mode Normal", this, SLOT(setListenModeNormal()), Qt::CTRL | Qt::Key_1);
audioDebugMenu->addAction("Listen Mode Point/Radius", this, SLOT(setListenModePoint()), Qt::CTRL | Qt::Key_2);
audioDebugMenu->addAction("Listen Mode Single Source", this, SLOT(setListenModeSingleSource()), Qt::CTRL | Qt::Key_3);
QMenu* settingsMenu = menuBar->addMenu("Settings");
(_settingsAutosave = settingsMenu->addAction("Autosave"))->setCheckable(true);
_settingsAutosave->setChecked(true);
@ -1846,6 +1871,30 @@ void Application::initMenu() {
_networkAccessManager = new QNetworkAccessManager(this);
}
void Application::setListenModeNormal() {
_audio.setListenMode(AudioRingBuffer::NORMAL);
}
void Application::setListenModePoint() {
_audio.setListenMode(AudioRingBuffer::OMNI_DIRECTIONAL_POINT);
_audio.setListenRadius(1.0);
}
void Application::setListenModeSingleSource() {
_audio.setListenMode(AudioRingBuffer::SELECTED_SOURCES);
_audio.clearListenSources();
glm::vec3 mouseRayOrigin = _myAvatar.getMouseRayOrigin();
glm::vec3 mouseRayDirection = _myAvatar.getMouseRayDirection();
glm::vec3 eyePositionIgnored;
uint16_t nodeID;
if (isLookingAtOtherAvatar(mouseRayOrigin, mouseRayDirection, eyePositionIgnored, nodeID)) {
_audio.addListenSource(nodeID);
}
}
void Application::updateFrustumRenderModeAction() {
switch (_frustumDrawingMode) {
default:
@ -1934,7 +1983,10 @@ const float MAX_AVATAR_EDIT_VELOCITY = 1.0f;
const float MAX_VOXEL_EDIT_DISTANCE = 20.0f;
const float HEAD_SPHERE_RADIUS = 0.07;
bool Application::isLookingAtOtherAvatar(glm::vec3& mouseRayOrigin, glm::vec3& mouseRayDirection, glm::vec3& eyePosition) {
bool Application::isLookingAtOtherAvatar(glm::vec3& mouseRayOrigin, glm::vec3& mouseRayDirection,
glm::vec3& eyePosition, uint16_t& nodeID) {
NodeList* nodeList = NodeList::getInstance();
for (NodeList::iterator node = nodeList->begin(); node != nodeList->end(); node++) {
if (node->getLinkedData() != NULL && node->getType() == NODE_TYPE_AGENT) {
@ -1942,7 +1994,9 @@ bool Application::isLookingAtOtherAvatar(glm::vec3& mouseRayOrigin, glm::vec3& m
glm::vec3 headPosition = avatar->getHead().getPosition();
if (rayIntersectsSphere(mouseRayOrigin, mouseRayDirection, headPosition, HEAD_SPHERE_RADIUS)) {
eyePosition = avatar->getHead().getEyeLevelPosition();
_lookatIndicatorScale = avatar->getScale();
_lookatOtherPosition = headPosition;
nodeID = avatar->getOwningNode()->getNodeID();
return true;
}
}
@ -1952,11 +2006,13 @@ bool Application::isLookingAtOtherAvatar(glm::vec3& mouseRayOrigin, glm::vec3& m
void Application::renderLookatIndicator(glm::vec3 pointOfInterest, Camera& whichCamera) {
const float DISTANCE_FROM_HEAD_SPHERE = 0.1f;
const float DISTANCE_FROM_HEAD_SPHERE = 0.1f * _lookatIndicatorScale;
const float INDICATOR_RADIUS = 0.1f * _lookatIndicatorScale;
const float YELLOW[] = { 1.0f, 1.0f, 0.0f };
const int NUM_SEGMENTS = 30;
glm::vec3 haloOrigin(pointOfInterest.x, pointOfInterest.y + DISTANCE_FROM_HEAD_SPHERE, pointOfInterest.z);
glColor3f(YELLOW[0], YELLOW[1], YELLOW[2]);
renderCircle(haloOrigin, 0.1f, glm::vec3(0.0f, 1.0f, 0.0f), 30);
renderCircle(haloOrigin, INDICATOR_RADIUS, IDENTITY_UP, NUM_SEGMENTS);
}
void Application::update(float deltaTime) {
@ -1986,7 +2042,9 @@ void Application::update(float deltaTime) {
// Set where I am looking based on my mouse ray (so that other people can see)
glm::vec3 eyePosition;
if (_isLookingAtOtherAvatar = isLookingAtOtherAvatar(mouseRayOrigin, mouseRayDirection, eyePosition)) {
uint16_t ignored;
_isLookingAtOtherAvatar = isLookingAtOtherAvatar(mouseRayOrigin, mouseRayDirection, eyePosition, ignored);
if (_isLookingAtOtherAvatar) {
// If the mouse is over another avatar's head...
glm::vec3 myLookAtFromMouse(eyePosition);
_myAvatar.getHead().setLookAtPosition(myLookAtFromMouse);
@ -2003,7 +2061,7 @@ void Application::update(float deltaTime) {
glm::vec3 front = orientation * IDENTITY_FRONT;
glm::vec3 up = orientation * IDENTITY_UP;
glm::vec3 towardVoxel = getMouseVoxelWorldCoordinates(_mouseVoxelDragging)
- _myAvatar.getCameraPosition(); // is this an error? getCameraPosition dne
- _myAvatar.getCameraPosition();
towardVoxel = front * glm::length(towardVoxel);
glm::vec3 lateralToVoxel = glm::cross(up, glm::normalize(towardVoxel)) * glm::length(towardVoxel);
_voxelThrust = glm::vec3(0, 0, 0);
@ -2103,10 +2161,8 @@ void Application::update(float deltaTime) {
// Leap finger-sensing device
LeapManager::enableFakeFingers(_simulateLeapHand->isChecked() || _testRaveGlove->isChecked());
LeapManager::nextFrame();
_myAvatar.getHand().setRaveGloveActive(_testRaveGlove->isChecked());
_myAvatar.getHand().setLeapFingers(LeapManager::getFingerTips(), LeapManager::getFingerRoots());
_myAvatar.getHand().setLeapHands(LeapManager::getHandPositions(), LeapManager::getHandNormals());
LeapManager::nextFrame(_myAvatar);
// Read serial port interface devices
if (_serialHeadSensor.isActive()) {
@ -2193,6 +2249,9 @@ void Application::update(float deltaTime) {
if (_bandwidthDialog) {
_bandwidthDialog->update();
}
if (_voxelStatsDialog) {
_voxelStatsDialog->update();
}
// Update audio stats for procedural sounds
#ifndef _WIN32
@ -2250,7 +2309,9 @@ void Application::updateAvatar(float deltaTime) {
_viewFrustum.computePickRay(MIDPOINT_OF_SCREEN, MIDPOINT_OF_SCREEN, screenCenterRayOrigin, screenCenterRayDirection);
glm::vec3 eyePosition;
if (_isLookingAtOtherAvatar = isLookingAtOtherAvatar(screenCenterRayOrigin, screenCenterRayDirection, eyePosition)) {
uint16_t ignored;
_isLookingAtOtherAvatar = isLookingAtOtherAvatar(screenCenterRayOrigin, screenCenterRayDirection, eyePosition, ignored);
if (_isLookingAtOtherAvatar) {
glm::vec3 myLookAtFromMouse(eyePosition);
_myAvatar.getHead().setLookAtPosition(myLookAtFromMouse);
}
@ -2278,7 +2339,7 @@ void Application::updateAvatar(float deltaTime) {
// actually need to calculate the view frustum planes to send these details
// to the server.
loadViewFrustum(_myCamera, _viewFrustum);
_myAvatar.setCameraPosition(_viewFrustum.getPosition()); // setCameraPosition() dne
_myAvatar.setCameraPosition(_viewFrustum.getPosition());
_myAvatar.setCameraOrientation(_viewFrustum.getOrientation());
_myAvatar.setCameraFov(_viewFrustum.getFieldOfView());
_myAvatar.setCameraAspectRatio(_viewFrustum.getAspectRatio());
@ -2845,27 +2906,19 @@ void Application::displayStats() {
drawtext(10, statsVerticalOffset + 230, 0.10f, 0, 1.0, 0, (char *)voxelStats.str().c_str());
voxelStats.str("");
voxelStats << "Voxels Created: " << _voxels.getVoxelsCreated() / 1000.f << "K (" << _voxels.getVoxelsCreatedPerSecondAverage() / 1000.f
<< "Kps) ";
char* voxelDetails = _voxelSceneStats.getItemValue(VoxelSceneStats::ITEM_VOXELS);
voxelStats << "Voxels Sent from Server: " << voxelDetails;
drawtext(10, statsVerticalOffset + 250, 0.10f, 0, 1.0, 0, (char *)voxelStats.str().c_str());
voxelStats.str("");
voxelStats << "Voxels Colored: " << _voxels.getVoxelsColored() / 1000.f << "K (" << _voxels.getVoxelsColoredPerSecondAverage() / 1000.f
<< "Kps) ";
voxelDetails = _voxelSceneStats.getItemValue(VoxelSceneStats::ITEM_ELAPSED);
voxelStats << "Scene Send Time from Server: " << voxelDetails;
drawtext(10, statsVerticalOffset + 270, 0.10f, 0, 1.0, 0, (char *)voxelStats.str().c_str());
voxelStats.str("");
voxelStats << "Voxel Bits Read: " << _voxels.getVoxelsBytesRead() * 8.f / 1000000.f
<< "M (" << _voxels.getVoxelsBytesReadPerSecondAverage() * 8.f / 1000000.f << " Mbps)";
drawtext(10, statsVerticalOffset + 290,0.10f, 0, 1.0, 0, (char *)voxelStats.str().c_str());
voxelStats.str("");
float voxelsBytesPerColored = _voxels.getVoxelsColored()
? ((float) _voxels.getVoxelsBytesRead() / _voxels.getVoxelsColored())
: 0;
voxelStats << "Voxels Bits per Colored: " << voxelsBytesPerColored * 8;
drawtext(10, statsVerticalOffset + 310, 0.10f, 0, 1.0, 0, (char *)voxelStats.str().c_str());
voxelDetails = _voxelSceneStats.getItemValue(VoxelSceneStats::ITEM_ENCODE);
voxelStats << "Encode Time on Server: " << voxelDetails;
drawtext(10, statsVerticalOffset + 290, 0.10f, 0, 1.0, 0, (char *)voxelStats.str().c_str());
Node *avatarMixer = NodeList::getInstance()->soloNodeOfType(NODE_TYPE_AVATAR_MIXER);
char avatarMixerStats[200];
@ -3420,16 +3473,37 @@ void* Application::networkReceive(void* args) {
case PACKET_TYPE_VOXEL_DATA_MONOCHROME:
case PACKET_TYPE_Z_COMMAND:
case PACKET_TYPE_ERASE_VOXEL:
case PACKET_TYPE_VOXEL_STATS:
case PACKET_TYPE_ENVIRONMENT_DATA: {
unsigned char* messageData = app->_incomingPacket;
ssize_t messageLength = bytesReceived;
// note: PACKET_TYPE_VOXEL_STATS can have PACKET_TYPE_VOXEL_DATA or PACKET_TYPE_VOXEL_DATA_MONOCHROME
// immediately following them inside the same packet. So, we process the PACKET_TYPE_VOXEL_STATS first
// then process any remaining bytes as if it was another packet
if (messageData[0] == PACKET_TYPE_VOXEL_STATS) {
int statsMessageLength = app->_voxelSceneStats.unpackFromMessage(messageData, messageLength);
if (messageLength > statsMessageLength) {
messageData += statsMessageLength;
messageLength -= statsMessageLength;
if (!packetVersionMatch(messageData)) {
break; // bail since piggyback data doesn't match our versioning
}
} else {
break; // bail since no piggyback data
}
} // fall through to piggyback message
if (app->_renderVoxels->isChecked()) {
Node* voxelServer = NodeList::getInstance()->soloNodeOfType(NODE_TYPE_VOXEL_SERVER);
if (voxelServer && socketMatch(voxelServer->getActiveSocket(), &senderAddress)) {
voxelServer->lock();
if (app->_incomingPacket[0] == PACKET_TYPE_ENVIRONMENT_DATA) {
app->_environment.parseData(&senderAddress, app->_incomingPacket, bytesReceived);
if (messageData[0] == PACKET_TYPE_ENVIRONMENT_DATA) {
app->_environment.parseData(&senderAddress, messageData, messageLength);
} else {
app->_voxels.parseData(app->_incomingPacket, bytesReceived);
app->_voxels.parseData(messageData, messageLength);
}
voxelServer->unlock();

View file

@ -43,6 +43,7 @@
#include "avatar/HandControl.h"
#include "ui/BandwidthDialog.h"
#include "ui/ChatEntry.h"
#include "ui/VoxelStatsDialog.h"
class QAction;
class QActionGroup;
@ -121,6 +122,9 @@ private slots:
void editPreferences();
void bandwidthDetailsClosed();
void voxelStatsDetails();
void voxelStatsDetailsClosed();
void pair();
void setRenderMirrored(bool mirrored);
@ -170,6 +174,10 @@ private slots:
void copyVoxels();
void pasteVoxels();
void runTests();
void setListenModeNormal();
void setListenModePoint();
void setListenModeSingleSource();
void renderCoverageMap();
void renderCoverageMapsRecursively(CoverageMap* map);
@ -199,7 +207,9 @@ private:
void init();
void update(float deltaTime);
bool isLookingAtOtherAvatar(glm::vec3& mouseRayOrigin, glm::vec3& mouseRayDirection, glm::vec3& eyePosition);
bool isLookingAtOtherAvatar(glm::vec3& mouseRayOrigin, glm::vec3& mouseRayDirection,
glm::vec3& eyePosition, uint16_t& nodeID);
void renderLookatIndicator(glm::vec3 pointOfInterest, Camera& whichCamera);
void updateAvatar(float deltaTime);
void loadViewFrustum(Camera& camera, ViewFrustum& viewFrustum);
@ -284,6 +294,7 @@ private:
BandwidthMeter _bandwidthMeter;
BandwidthDialog* _bandwidthDialog;
VoxelStatsDialog* _voxelStatsDialog;
SerialInterface _serialHeadSensor;
QNetworkAccessManager* _networkAccessManager;
@ -373,6 +384,7 @@ private:
bool _isLookingAtOtherAvatar;
glm::vec3 _lookatOtherPosition;
float _lookatIndicatorScale;
bool _paintOn; // Whether to paint voxels as you fly around
unsigned char _dominantColor; // The dominant color of the voxel we're painting
@ -416,6 +428,8 @@ private:
ToolsPalette _palette;
Swatch _swatch;
VoxelSceneStats _voxelSceneStats;
};
#endif /* defined(__interface__Application__) */

View file

@ -112,7 +112,7 @@ inline void Audio::performIO(int16_t* inputLeft, int16_t* outputLeft, int16_t* o
// we need the amount of bytes in the buffer + 1 for type
// + 12 for 3 floats for position + float for bearing + 1 attenuation byte
unsigned char dataPacket[BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes];
unsigned char dataPacket[MAX_PACKET_SIZE];
PACKET_TYPE packetType = (Application::getInstance()->shouldEchoAudio())
? PACKET_TYPE_MICROPHONE_AUDIO_WITH_ECHO
@ -120,6 +120,33 @@ inline void Audio::performIO(int16_t* inputLeft, int16_t* outputLeft, int16_t* o
unsigned char* currentPacketPtr = dataPacket + populateTypeAndVersion(dataPacket, packetType);
// pack Source Data
uint16_t ownerID = NodeList::getInstance()->getOwnerID();
memcpy(currentPacketPtr, &ownerID, sizeof(ownerID));
currentPacketPtr += (sizeof(ownerID));
leadingBytes += (sizeof(ownerID));
// pack Listen Mode Data
memcpy(currentPacketPtr, &_listenMode, sizeof(_listenMode));
currentPacketPtr += (sizeof(_listenMode));
leadingBytes += (sizeof(_listenMode));
if (_listenMode == AudioRingBuffer::OMNI_DIRECTIONAL_POINT) {
memcpy(currentPacketPtr, &_listenRadius, sizeof(_listenRadius));
currentPacketPtr += (sizeof(_listenRadius));
leadingBytes += (sizeof(_listenRadius));
} else if (_listenMode == AudioRingBuffer::SELECTED_SOURCES) {
int listenSourceCount = _listenSources.size();
memcpy(currentPacketPtr, &listenSourceCount, sizeof(listenSourceCount));
currentPacketPtr += (sizeof(listenSourceCount));
leadingBytes += (sizeof(listenSourceCount));
for (int i = 0; i < listenSourceCount; i++) {
memcpy(currentPacketPtr, &_listenSources[i], sizeof(_listenSources[i]));
currentPacketPtr += sizeof(_listenSources[i]);
leadingBytes += sizeof(_listenSources[i]);
}
}
// memcpy the three float positions
memcpy(currentPacketPtr, &headPosition, sizeof(headPosition));
currentPacketPtr += (sizeof(headPosition));
@ -309,6 +336,24 @@ void Audio::reset() {
_ringBuffer.reset();
}
void Audio::addListenSource(int sourceID) {
_listenSources.push_back(sourceID);
}
void Audio::clearListenSources() {
_listenSources.clear();
}
void Audio::removeListenSource(int sourceID) {
for (int i = 0; i < _listenSources.size(); i++) {
if (_listenSources[i] == sourceID) {
_listenSources.erase(_listenSources.begin() + i);
return;
}
}
}
Audio::Audio(Oscilloscope* scope, int16_t initialJitterBufferSamples) :
_stream(NULL),
_ringBuffer(true),
@ -338,7 +383,9 @@ Audio::Audio(Oscilloscope* scope, int16_t initialJitterBufferSamples) :
_collisionSoundNoise(0.0f),
_collisionSoundDuration(0.0f),
_proceduralEffectSample(0),
_heartbeatMagnitude(0.0f)
_heartbeatMagnitude(0.0f),
_listenMode(AudioRingBuffer::NORMAL),
_listenRadius(0.0f)
{
outputPortAudioError(Pa_Initialize());

View file

@ -9,6 +9,7 @@
#ifndef __interface__Audio__
#define __interface__Audio__
#include <vector>
#include <portaudio.h>
#include <AudioRingBuffer.h>
#include <StdDev.h>
@ -54,6 +55,11 @@ public:
// The results of the analysis are written to the log.
bool eventuallyAnalyzePing();
void setListenMode(AudioRingBuffer::ListenMode mode) { _listenMode = mode; };
void setListenRadius(float radius) { _listenRadius = radius; };
void addListenSource(int sourceID);
void removeListenSource(int sourceID);
void clearListenSources();
private:
PaStream* _stream;
@ -91,6 +97,10 @@ private:
int _proceduralEffectSample;
float _heartbeatMagnitude;
AudioRingBuffer::ListenMode _listenMode;
float _listenRadius;
std::vector<int> _listenSources;
// Audio callback in class context.
inline void performIO(int16_t* inputLeft, int16_t* outputLeft, int16_t* outputRight);

View file

@ -7,57 +7,28 @@
//
#include "LeapManager.h"
#include "avatar/Avatar.h"
#include <Leap.h>
#include <dlfcn.h> // needed for RTLD_LAZY
#include <sstream>
// Uncomment the next line to use Leap-smoothed stabilized (slower) data.
//#define USE_STABILIZED_DATA
bool LeapManager::_libraryExists = false;
bool LeapManager::_doFakeFingers = false;
Leap::Controller* LeapManager::_controller = NULL;
HifiLeapListener* LeapManager::_listener = NULL;
namespace {
glm::vec3 fakeHandOffset(0.0f, 50.0f, 50.0f);
} // end anonymous namespace
class HifiLeapListener : public Leap::Listener {
public:
HifiLeapListener() {}
virtual ~HifiLeapListener() {}
Leap::Frame lastFrame;
std::vector<glm::vec3> fingerTips;
std::vector<glm::vec3> fingerRoots;
std::vector<glm::vec3> handPositions;
std::vector<glm::vec3> handNormals;
virtual void onFrame(const Leap::Controller& controller) {
#ifndef LEAP_STUBS
Leap::Frame frame = controller.frame();
int numFingers = frame.fingers().count();
fingerTips.resize(numFingers);
fingerRoots.resize(numFingers);
for (int i = 0; i < numFingers; ++i) {
const Leap::Finger& thisFinger = frame.fingers()[i];
const Leap::Vector pos = thisFinger.stabilizedTipPosition();
fingerTips[i] = glm::vec3(pos.x, pos.y, pos.z);
const Leap::Vector root = pos - thisFinger.direction() * thisFinger.length();
fingerRoots[i] = glm::vec3(root.x, root.y, root.z);
}
int numHands = frame.hands().count();
handPositions.resize(numHands);
handNormals.resize(numHands);
for (int i = 0; i < numHands; ++i) {
const Leap::Hand& thisHand = frame.hands()[i];
const Leap::Vector pos = thisHand.palmPosition();
handPositions[i] = glm::vec3(pos.x, pos.y, pos.z);
const Leap::Vector norm = thisHand.palmNormal();
handNormals[i] = glm::vec3(norm.x, norm.y, norm.z);
}
lastFrame = frame;
lastFrame = controller.frame();
#endif
}
@ -80,10 +51,199 @@ void LeapManager::terminate() {
_controller = NULL;
}
void LeapManager::nextFrame() {
void LeapManager::nextFrame(Avatar& avatar) {
// Apply the frame data directly to the avatar.
Hand& hand = avatar.getHand();
// If we actually get valid Leap data, this will be set to true;
bool gotRealData = false;
if (controllersExist()) {
_listener->onFrame(*_controller);
}
#ifndef LEAP_STUBS
if (controllersExist()) {
gotRealData = true;
// First, see which palms and fingers are still valid.
Leap::Frame& frame = _listener->lastFrame;
// Note that this is O(n^2) at worst, but n is very small.
// After this many frames of no data, assume the digit is lost.
const int assumeLostAfterFrameCount = 10;
// Increment our frame data counters
for (size_t i = 0; i < hand.getNumPalms(); ++i) {
PalmData& palm = hand.getPalms()[i];
palm.incrementFramesWithoutData();
if (palm.getFramesWithoutData() > assumeLostAfterFrameCount) {
palm.setActive(false);
}
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
finger.incrementFramesWithoutData();
if (finger.getFramesWithoutData() > assumeLostAfterFrameCount) {
finger.setActive(false);
}
}
}
size_t numLeapHands = frame.hands().count();
std::vector<PalmData*> palmAssignment(numLeapHands);
// Look for matches
for (size_t index = 0; index < numLeapHands; ++index) {
PalmData* takeoverCandidate = NULL;
palmAssignment[index] = NULL;
Leap::Hand leapHand = frame.hands()[index];
int id = leapHand.id();
if (leapHand.isValid()) {
for (size_t i = 0; i < hand.getNumPalms() && palmAssignment[index] == NULL; ++i) {
PalmData& palm = hand.getPalms()[i];
if (palm.getLeapID() == id) {
// Found hand with the same ID. We're set!
palmAssignment[index] = &palm;
palm.resetFramesWithoutData();
}
else if (palm.getFramesWithoutData() > assumeLostAfterFrameCount) {
takeoverCandidate = &palm;
}
}
if (palmAssignment[index] == NULL) {
palmAssignment[index] = takeoverCandidate;
}
if (palmAssignment[index] == NULL) {
palmAssignment[index] = &hand.addNewPalm();
}
}
}
// Apply the assignments
for (size_t index = 0; index < numLeapHands; ++index) {
if (palmAssignment[index]) {
Leap::Hand leapHand = frame.hands()[index];
PalmData& palm = *(palmAssignment[index]);
palm.resetFramesWithoutData();
palm.setLeapID(leapHand.id());
palm.setActive(true);
const Leap::Vector pos = leapHand.palmPosition();
const Leap::Vector normal = leapHand.palmNormal();
palm.setRawPosition(glm::vec3(pos.x, pos.y, pos.z));
palm.setRawNormal(glm::vec3(normal.x, normal.y, normal.z));
}
}
// Look for fingers per palm
for (size_t i = 0; i < hand.getNumPalms(); ++i) {
PalmData& palm = hand.getPalms()[i];
if (palm.isActive()) {
Leap::Hand leapHand = frame.hand(palm.getLeapID());
if (leapHand.isValid()) {
int numLeapFingers = leapHand.fingers().count();
std::vector<FingerData*> fingerAssignment(numLeapFingers);
// Look for matches
for (size_t index = 0; index < numLeapFingers; ++index) {
FingerData* takeoverCandidate = NULL;
fingerAssignment[index] = NULL;
Leap::Finger leapFinger = leapHand.fingers()[index];
int id = leapFinger.id();
if (leapFinger.isValid()) {
for (size_t f = 0; f < palm.getNumFingers() && fingerAssignment[index] == NULL; ++f) {
FingerData& finger = palm.getFingers()[f];
if (finger.getLeapID() == id) {
// Found hand with the same ID. We're set!
fingerAssignment[index] = &finger;
}
else if (finger.getFramesWithoutData() > assumeLostAfterFrameCount) {
takeoverCandidate = &finger;
}
}
// If we didn't find a match, but we found an unused finger, us it.
if (fingerAssignment[index] == NULL) {
fingerAssignment[index] = takeoverCandidate;
}
}
}
// Apply the assignments
for (size_t index = 0; index < numLeapFingers; ++index) {
if (fingerAssignment[index]) {
Leap::Finger leapFinger = leapHand.fingers()[index];
FingerData& finger = *(fingerAssignment[index]);
finger.resetFramesWithoutData();
finger.setLeapID(leapFinger.id());
finger.setActive(true);
#ifdef USE_STABILIZED_DATA
const Leap::Vector tip = leapFinger.stabilizedTipPosition();
#else
const Leap::Vector tip = leapFinger.tipPosition();
#endif
const Leap::Vector root = tip - leapFinger.direction() * leapFinger.length();
finger.setRawTipPosition(glm::vec3(tip.x, tip.y, tip.z));
finger.setRawRootPosition(glm::vec3(root.x, root.y, root.z));
}
}
}
}
}
}
#endif
if (!gotRealData) {
if (_doFakeFingers) {
// There's no real Leap data and we need to fake it.
for (size_t i = 0; i < hand.getNumPalms(); ++i) {
static const glm::vec3 fakeHandOffsets[] = {
glm::vec3( -500.0f, 50.0f, 50.0f),
glm::vec3( 0.0f, 50.0f, 50.0f)
};
static const glm::vec3 fakeHandFingerMirrors[] = {
glm::vec3( -1.0f, 1.0f, 1.0f),
glm::vec3( 1.0f, 1.0f, 1.0f)
};
static const glm::vec3 fakeFingerPositions[] = {
glm::vec3( -60.0f, 0.0f, -40.0f),
glm::vec3( -20.0f, 0.0f, -60.0f),
glm::vec3( 20.0f, 0.0f, -60.0f),
glm::vec3( 60.0f, 0.0f, -40.0f),
glm::vec3( -50.0f, 0.0f, 30.0f)
};
PalmData& palm = hand.getPalms()[i];
palm.setActive(true);
// Simulated data
palm.setRawPosition(glm::vec3( 0.0f, 0.0f, 0.0f) + fakeHandOffsets[i]);
palm.setRawNormal(glm::vec3(0.0f, 1.0f, 0.0f));
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
finger.setActive(true);
const float tipScale = 1.5f;
const float rootScale = 0.75f;
glm::vec3 fingerPos = fakeFingerPositions[f] * fakeHandFingerMirrors[i];
finger.setRawTipPosition(fingerPos * tipScale + fakeHandOffsets[i]);
finger.setRawRootPosition(fingerPos * rootScale + fakeHandOffsets[i]);
}
}
}
else {
// Just deactivate everything.
for (size_t i = 0; i < hand.getNumPalms(); ++i) {
PalmData& palm = hand.getPalms()[i];
palm.setActive(false);
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
finger.setActive(false);
}
}
}
}
hand.updateFingerTrails();
}
void LeapManager::enableFakeFingers(bool enable) {
@ -98,77 +258,6 @@ bool LeapManager::controllersExist() {
#endif
}
const std::vector<glm::vec3>& LeapManager::getFingerTips() {
if (controllersExist()) {
return _listener->fingerTips;
}
else {
static std::vector<glm::vec3> stubData;
stubData.clear();
if (_doFakeFingers) {
// Simulated data
float scale = 1.5f;
stubData.push_back(glm::vec3( -60.0f, 0.0f, -40.0f) * scale + fakeHandOffset);
stubData.push_back(glm::vec3( -20.0f, 0.0f, -60.0f) * scale + fakeHandOffset);
stubData.push_back(glm::vec3( 20.0f, 0.0f, -60.0f) * scale + fakeHandOffset);
stubData.push_back(glm::vec3( 60.0f, 0.0f, -40.0f) * scale + fakeHandOffset);
stubData.push_back(glm::vec3( -50.0f, 0.0f, 30.0f) * scale + fakeHandOffset);
}
return stubData;
}
}
const std::vector<glm::vec3>& LeapManager::getFingerRoots() {
if (controllersExist()) {
return _listener->fingerRoots;
}
else {
static std::vector<glm::vec3> stubData;
stubData.clear();
if (_doFakeFingers) {
// Simulated data
float scale = 0.75f;
stubData.push_back(glm::vec3( -60.0f, 0.0f, -40.0f) * scale + fakeHandOffset);
stubData.push_back(glm::vec3( -20.0f, 0.0f, -60.0f) * scale + fakeHandOffset);
stubData.push_back(glm::vec3( 20.0f, 0.0f, -60.0f) * scale + fakeHandOffset);
stubData.push_back(glm::vec3( 60.0f, 0.0f, -40.0f) * scale + fakeHandOffset);
stubData.push_back(glm::vec3( -50.0f, 0.0f, 30.0f) * scale + fakeHandOffset);
}
return stubData;
}
}
const std::vector<glm::vec3>& LeapManager::getHandPositions() {
if (controllersExist()) {
return _listener->handPositions;
}
else {
static std::vector<glm::vec3> stubData;
stubData.clear();
if (_doFakeFingers) {
// Simulated data
glm::vec3 handOffset(0.0f, 50.0f, 50.0f);
stubData.push_back(glm::vec3( 0.0f, 0.0f, 0.0f) + fakeHandOffset);
}
return stubData;
}
}
const std::vector<glm::vec3>& LeapManager::getHandNormals() {
if (controllersExist()) {
return _listener->handNormals;
}
else {
static std::vector<glm::vec3> stubData;
stubData.clear();
if (_doFakeFingers) {
// Simulated data
stubData.push_back(glm::vec3(0.0f, 1.0f, 0.0f));
}
return stubData;
}
}
std::string LeapManager::statusString() {
std::stringstream leapString;
#ifndef LEAP_STUBS

View file

@ -13,6 +13,7 @@
#include <glm/glm.hpp>
#include <string>
class Avatar;
class HifiLeapListener;
namespace Leap {
class Controller;
@ -20,7 +21,7 @@ namespace Leap {
class LeapManager {
public:
static void nextFrame(); // called once per frame to get new Leap data
static void nextFrame(Avatar& avatar); // called once per frame to get new Leap data
static bool controllersExist(); // Returns true if there's at least one active Leap plugged in
static void enableFakeFingers(bool enable); // put fake data in if there's no Leap plugged in
static const std::vector<glm::vec3>& getFingerTips();

View file

@ -830,13 +830,14 @@ void Avatar::updateHandMovementAndTouching(float deltaTime, bool enableHandMovem
}
// If there's a leap-interaction hand visible, use that as the endpoint
for (size_t i = 0; i < getHand().getPalms().size(); ++i) {
PalmData& palm = getHand().getPalms()[i];
if (palm.isActive()) {
_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = palm.getPosition();
if (!getHand().isRaveGloveActive()) {
for (size_t i = 0; i < getHand().getPalms().size(); ++i) {
PalmData& palm = getHand().getPalms()[i];
if (palm.isActive()) {
_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = palm.getPosition();
}
}
}
}//if (_isMine)
//constrain right arm length and re-adjust elbow position as it bends

View file

@ -164,6 +164,10 @@ public:
glm::quat getOrientation () const;
glm::quat getWorldAlignedOrientation() const;
const glm::vec3& getMouseRayOrigin() const { return _mouseRayOrigin; }
const glm::vec3& getMouseRayDirection() const { return _mouseRayDirection; }
glm::vec3 getGravity () const { return _gravity; }
glm::vec3 getUprightHeadPosition() const;

View file

@ -95,6 +95,7 @@ void Hand::render(bool lookingInMirror) {
glEnable(GL_DEPTH_TEST);
glEnable(GL_RESCALE_NORMAL);
renderFingerTrails();
renderHandSpheres();
}
@ -173,44 +174,35 @@ void Hand::renderHandSpheres() {
glPopMatrix();
}
void Hand::setLeapFingers(const std::vector<glm::vec3>& fingerTips,
const std::vector<glm::vec3>& fingerRoots) {
// TODO: add id-checking here to increase finger stability
size_t fingerIndex = 0;
void Hand::renderFingerTrails() {
// Draw the finger root cones
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
if (fingerIndex < fingerTips.size()) {
finger.setActive(true);
finger.setRawTipPosition(fingerTips[fingerIndex]);
finger.setRawRootPosition(fingerRoots[fingerIndex]);
fingerIndex++;
}
else {
finger.setActive(false);
if (palm.isActive()) {
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
int numPositions = finger.getTrailNumPositions();
if (numPositions > 0) {
glBegin(GL_TRIANGLE_STRIP);
for (int t = 0; t < numPositions; ++t)
{
const glm::vec3& center = finger.getTrailPosition(t);
const float halfWidth = 0.001f;
const glm::vec3 edgeDirection(1.0f, 0.0f, 0.0f);
glm::vec3 edge0 = center + edgeDirection * halfWidth;
glm::vec3 edge1 = center - edgeDirection * halfWidth;
float alpha = 1.0f - ((float)t / (float)(numPositions - 1));
glColor4f(1.0f, 0.0f, 0.0f, alpha);
glVertex3fv((float*)&edge0);
glVertex3fv((float*)&edge1);
}
glEnd();
}
}
}
}
}
void Hand::setLeapHands(const std::vector<glm::vec3>& handPositions,
const std::vector<glm::vec3>& handNormals) {
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
if (i < handPositions.size()) {
palm.setActive(true);
palm.setRawPosition(handPositions[i]);
palm.setRawNormal(handNormals[i]);
}
else {
palm.setActive(false);
}
}
}
void Hand::updateFingerParticles(float deltaTime) {
if (!_particleSystemInitialized) {

View file

@ -42,10 +42,6 @@ public:
void render(bool lookingInMirror);
void setBallColor (glm::vec3 ballColor ) { _ballColor = ballColor; }
void setLeapFingers (const std::vector<glm::vec3>& fingerTips,
const std::vector<glm::vec3>& fingerRoots);
void setLeapHands (const std::vector<glm::vec3>& handPositions,
const std::vector<glm::vec3>& handNormals);
void updateFingerParticles(float deltaTime);
void setRaveGloveActive(bool active) { _isRaveGloveActive = active; }
@ -74,6 +70,7 @@ private:
// private methods
void renderRaveGloveStage();
void renderHandSpheres();
void renderFingerTrails();
void calculateGeometry();
};

View file

@ -272,7 +272,7 @@ void Head::calculateGeometry() {
+ up * _scale * BODY_BALL_RADIUS_HEAD_BASE * EYE_UP_OFFSET
+ front * _scale * BODY_BALL_RADIUS_HEAD_BASE * EYE_FRONT_OFFSET;
_eyeLevelPosition = _position + up * _scale * BODY_BALL_RADIUS_HEAD_BASE * EYE_UP_OFFSET;
_eyeLevelPosition = _rightEyePosition - right * _scale * BODY_BALL_RADIUS_HEAD_BASE * EYE_RIGHT_OFFSET;
//calculate the eyebrow positions
_leftEyeBrowPosition = _leftEyePosition;

View file

@ -0,0 +1,79 @@
//
// VoxelStatsDialog.cpp
// interface
//
// Created by Brad Hefta-Gaub on 7/19/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#include <QFormLayout>
#include <QDialogButtonBox>
#include <QPalette>
#include <QColor>
#include <VoxelSceneStats.h>
#include "ui/VoxelStatsDialog.h"
VoxelStatsDialog::VoxelStatsDialog(QWidget* parent, VoxelSceneStats* model) :
QDialog(parent, Qt::Window | Qt::WindowCloseButtonHint | Qt::WindowStaysOnTopHint),
_model(model) {
char strBuf[64];
this->setWindowTitle("Voxel Statistics");
// Create layouter
QFormLayout* form = new QFormLayout();
this->QDialog::setLayout(form);
// Setup labels
for (int i = 0; i < VoxelSceneStats::ITEM_COUNT; ++i) {
VoxelSceneStats::ItemInfo& itemInfo = _model->getItemInfo(i);
QLabel* label = _labels[i] = new QLabel();
label->setAlignment(Qt::AlignRight);
// Set foreground color to 62.5% brightness of the meter (otherwise will be hard to read on the bright background)
QPalette palette = label->palette();
unsigned rgb = itemInfo.colorRGBA >> 8;
const unsigned colorpart1 = 0xfefefeu;
const unsigned colorpart2 = 0xf8f8f8;
rgb = ((rgb & colorpart1) >> 1) + ((rgb & colorpart2) >> 3);
palette.setColor(QPalette::WindowText, QColor::fromRgb(rgb));
label->setPalette(palette);
// This is my hackery attempt at making QDialog auto-size to a width that will hold our info. It kinda works.
label->setText("123456789012345678901234567890123456789012345678901234567890");
snprintf(strBuf, sizeof(strBuf), " %s:", itemInfo.caption);
form->addRow(strBuf, label);
}
}
void VoxelStatsDialog::paintEvent(QPaintEvent* event) {
// Update labels
char strBuf[256];
for (int i = 0; i < VoxelSceneStats::ITEM_COUNT; ++i) {
QLabel* label = _labels[i];
snprintf(strBuf, sizeof(strBuf), "%s", _model->getItemValue(i));
label->setText(strBuf);
}
this->QDialog::paintEvent(event);
this->setFixedSize(this->width(), this->height());
}
void VoxelStatsDialog::reject() {
// Just regularly close upon ESC
this->QDialog::close();
}
void VoxelStatsDialog::closeEvent(QCloseEvent* event) {
this->QDialog::closeEvent(event);
emit closed();
}

View file

@ -0,0 +1,42 @@
//
// VoxelStatsDialog.h
// interface
//
// Created by Brad Hefta-Gaub on 7/19/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef __hifi__VoxelStatsDialog__
#define __hifi__VoxelStatsDialog__
#include <QDialog>
#include <QLabel>
#include <VoxelSceneStats.h>
class VoxelStatsDialog : public QDialog {
Q_OBJECT
public:
// Sets up the UI
VoxelStatsDialog(QWidget* parent, VoxelSceneStats* model);
signals:
void closed();
public slots:
void reject();
protected:
// State <- data model held by BandwidthMeter
void paintEvent(QPaintEvent*);
// Emits a 'closed' signal when this dialog is closed.
void closeEvent(QCloseEvent*);
private:
QLabel* _labels[VoxelSceneStats::ITEM_COUNT];
VoxelSceneStats* _model;
};
#endif /* defined(__interface__VoxelStatsDialog__) */

View file

@ -27,6 +27,14 @@ const short RING_BUFFER_LENGTH_SAMPLES = RING_BUFFER_LENGTH_FRAMES * BUFFER_LENG
class AudioRingBuffer : public NodeData {
public:
static int const DEFAULT_LISTEN_LIST_SIZE = 100;
typedef enum {
NORMAL,
OMNI_DIRECTIONAL_POINT,
SELECTED_SOURCES
} ListenMode;
AudioRingBuffer(bool isStereo);
~AudioRingBuffer();

View file

@ -13,15 +13,22 @@ HandData::HandData(AvatarData* owningAvatar) :
_baseOrientation(0.0f, 0.0f, 0.0f, 1.0f),
_owningAvatarData(owningAvatar)
{
for (int i = 0; i < 2; ++i) {
_palms.push_back(PalmData(this));
}
// Start with two palms
addNewPalm();
addNewPalm();
}
PalmData& HandData::addNewPalm() {
_palms.push_back(PalmData(this));
return _palms.back();
}
PalmData::PalmData(HandData* owningHandData) :
_rawPosition(0, 0, 0),
_rawNormal(0, 1, 0),
_isActive(false),
_leapID(LEAPID_INVALID),
_numFramesWithoutData(0),
_owningHandData(owningHandData)
{
for (int i = 0; i < NUM_FINGERS_PER_HAND; ++i) {
@ -33,9 +40,13 @@ FingerData::FingerData(PalmData* owningPalmData, HandData* owningHandData) :
_tipRawPosition(0, 0, 0),
_rootRawPosition(0, 0, 0),
_isActive(false),
_leapID(LEAPID_INVALID),
_numFramesWithoutData(0),
_owningPalmData(owningPalmData),
_owningHandData(owningHandData)
{
const int standardTrailLength = 30;
setTrailLength(standardTrailLength);
}
void HandData::encodeRemoteData(std::vector<glm::vec3>& fingerVectors) {
@ -80,3 +91,66 @@ void HandData::decodeRemoteData(const std::vector<glm::vec3>& fingerVectors) {
}
}
void HandData::setFingerTrailLength(unsigned int length) {
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
finger.setTrailLength(length);
}
}
}
void HandData::updateFingerTrails() {
for (size_t i = 0; i < getNumPalms(); ++i) {
PalmData& palm = getPalms()[i];
for (size_t f = 0; f < palm.getNumFingers(); ++f) {
FingerData& finger = palm.getFingers()[f];
finger.updateTrail();
}
}
}
void FingerData::setTrailLength(unsigned int length) {
_tipTrailPositions.resize(length);
_tipTrailCurrentStartIndex = 0;
_tipTrailCurrentValidLength = 0;
}
void FingerData::updateTrail() {
if (_tipTrailPositions.size() == 0)
return;
if (_isActive) {
// Add the next point in the trail.
_tipTrailCurrentStartIndex--;
if (_tipTrailCurrentStartIndex < 0)
_tipTrailCurrentStartIndex = _tipTrailPositions.size() - 1;
_tipTrailPositions[_tipTrailCurrentStartIndex] = getTipPosition();
if (_tipTrailCurrentValidLength < _tipTrailPositions.size())
_tipTrailCurrentValidLength++;
}
else {
// It's not active, so just shorten the trail.
if (_tipTrailCurrentValidLength > 0)
_tipTrailCurrentValidLength--;
}
}
int FingerData::getTrailNumPositions() {
return _tipTrailCurrentValidLength;
}
const glm::vec3& FingerData::getTrailPosition(int index) {
if (index >= _tipTrailCurrentValidLength) {
static glm::vec3 zero(0,0,0);
return zero;
}
int posIndex = (index + _tipTrailCurrentStartIndex) % _tipTrailCurrentValidLength;
return _tipTrailPositions[posIndex];
}

View file

@ -20,6 +20,7 @@ class FingerData;
class PalmData;
const int NUM_FINGERS_PER_HAND = 5;
const int LEAPID_INVALID = -1;
class HandData {
public:
@ -39,6 +40,10 @@ public:
std::vector<PalmData>& getPalms() { return _palms; }
size_t getNumPalms() { return _palms.size(); }
PalmData& addNewPalm();
void setFingerTrailLength(unsigned int length);
void updateFingerTrails();
// Use these for sending and receiving hand data
void encodeRemoteData(std::vector<glm::vec3>& fingerVectors);
@ -65,15 +70,31 @@ public:
const glm::vec3& getTipRawPosition() const { return _tipRawPosition; }
const glm::vec3& getRootRawPosition() const { return _rootRawPosition; }
bool isActive() const { return _isActive; }
int getLeapID() const { return _leapID; }
void setActive(bool active) { _isActive = active; }
void setLeapID(int id) { _leapID = id; }
void setRawTipPosition(const glm::vec3& pos) { _tipRawPosition = pos; }
void setRawRootPosition(const glm::vec3& pos) { _rootRawPosition = pos; }
void setTrailLength(unsigned int length);
void updateTrail();
int getTrailNumPositions();
const glm::vec3& getTrailPosition(int index);
void incrementFramesWithoutData() { _numFramesWithoutData++; }
void resetFramesWithoutData() { _numFramesWithoutData = 0; }
int getFramesWithoutData() const { return _numFramesWithoutData; }
private:
glm::vec3 _tipRawPosition;
glm::vec3 _rootRawPosition;
bool _isActive; // This has current valid data
bool _isActive; // This has current valid data
int _leapID; // the Leap's serial id for this tracked object
int _numFramesWithoutData; // after too many frames without data, this tracked object assumed lost.
std::vector<glm::vec3> _tipTrailPositions;
int _tipTrailCurrentStartIndex;
int _tipTrailCurrentValidLength;
PalmData* _owningPalmData;
HandData* _owningHandData;
};
@ -86,19 +107,27 @@ public:
const glm::vec3& getRawPosition() const { return _rawPosition; }
const glm::vec3& getRawNormal() const { return _rawNormal; }
bool isActive() const { return _isActive; }
int getLeapID() const { return _leapID; }
std::vector<FingerData>& getFingers() { return _fingers; }
size_t getNumFingers() { return _fingers.size(); }
void setActive(bool active) { _isActive = active; }
void setLeapID(int id) { _leapID = id; }
void setRawPosition(const glm::vec3& pos) { _rawPosition = pos; }
void setRawNormal(const glm::vec3& normal) { _rawNormal = normal; }
void incrementFramesWithoutData() { _numFramesWithoutData++; }
void resetFramesWithoutData() { _numFramesWithoutData = 0; }
int getFramesWithoutData() const { return _numFramesWithoutData; }
private:
std::vector<FingerData> _fingers;
glm::vec3 _rawPosition;
glm::vec3 _rawNormal;
bool _isActive; // This has current valid data
bool _isActive; // This has current valid data
int _leapID; // the Leap's serial id for this tracked object
int _numFramesWithoutData; // after too many frames without data, this tracked object assumed lost.
HandData* _owningHandData;
};

View file

@ -14,6 +14,12 @@
PACKET_VERSION versionForPacketType(PACKET_TYPE type) {
switch (type) {
case PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO:
case PACKET_TYPE_MICROPHONE_AUDIO_WITH_ECHO:
return 1;
break;
case PACKET_TYPE_HEAD_DATA:
return 2;
break;

View file

@ -34,6 +34,7 @@ const PACKET_TYPE PACKET_TYPE_TRANSMITTER_DATA_V2 = 'T';
const PACKET_TYPE PACKET_TYPE_ENVIRONMENT_DATA = 'e';
const PACKET_TYPE PACKET_TYPE_DOMAIN_LIST_REQUEST = 'L';
const PACKET_TYPE PACKET_TYPE_DOMAIN_REPORT_FOR_DUTY = 'C';
const PACKET_TYPE PACKET_TYPE_VOXEL_STATS = '#';
typedef char PACKET_VERSION;

View file

@ -44,6 +44,8 @@ void VoxelNode::init(unsigned char * octalCode) {
_children[i] = NULL;
}
_childCount = 0;
_subtreeNodeCount = 1; // that's me
_subtreeLeafNodeCount = 0; // that's me
_glBufferIndex = GLBUFFER_INDEX_UNKNOWN;
_isDirty = true;
@ -79,6 +81,24 @@ void VoxelNode::handleSubtreeChanged(VoxelTree* myTree) {
if (myTree->getShouldReaverage()) {
setColorFromAverageOfChildren();
}
recalculateSubTreeNodeCount();
}
void VoxelNode::recalculateSubTreeNodeCount() {
// Assuming the tree below me as changed, I need to recalculate my node count
_subtreeNodeCount = 1; // that's me
if (isLeaf()) {
_subtreeLeafNodeCount = 1;
} else {
_subtreeLeafNodeCount = 0;
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
if (_children[i]) {
_subtreeNodeCount += _children[i]->_subtreeNodeCount;
_subtreeLeafNodeCount += _children[i]->_subtreeLeafNodeCount;
}
}
}
}

View file

@ -107,6 +107,12 @@ public:
static int addDeleteHook(VoxelNodeDeleteHook hook, void* extraData = NULL);
static void removeDeleteHook(int hookID);
void recalculateSubTreeNodeCount();
unsigned long getSubTreeNodeCount() const { return _subtreeNodeCount; };
unsigned long getSubTreeInternalNodeCount() const { return _subtreeNodeCount - _subtreeLeafNodeCount; };
unsigned long getSubTreeLeafNodeCount() const { return _subtreeLeafNodeCount; };
private:
void calculateAABox();
void init(unsigned char * octalCode);
@ -126,6 +132,8 @@ private:
unsigned char* _octalCode;
VoxelNode* _children[8];
int _childCount;
unsigned long _subtreeNodeCount;
unsigned long _subtreeLeafNodeCount;
float _density; // If leaf: density = 1, if internal node: 0-1 density of voxels inside
static VoxelNodeDeleteHook _hooks[VOXEL_NODE_MAX_DELETE_HOOKS];

View file

@ -0,0 +1,556 @@
//
// VoxelSceneStats.cpp
// hifi
//
// Created by Brad Hefta-Gaub on 7/18/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
//
#include <PacketHeaders.h>
#include <SharedUtil.h>
#include "VoxelNode.h"
#include "VoxelSceneStats.h"
const int samples = 100;
VoxelSceneStats::VoxelSceneStats() :
_elapsedAverage(samples),
_bitsPerVoxelAverage(samples)
{
reset();
_isReadyToSend = false;
_isStarted = false;
}
void VoxelSceneStats::sceneStarted(bool isFullScene, bool isMoving, VoxelNode* root) {
reset(); // resets packet and voxel stats
_isStarted = true;
_start = usecTimestampNow();
_totalVoxels = root->getSubTreeNodeCount();
_totalInternal = root->getSubTreeInternalNodeCount();
_totalLeaves = root->getSubTreeLeafNodeCount();
_isFullScene = isFullScene;
_isMoving = isMoving;
}
void VoxelSceneStats::sceneCompleted() {
if (_isStarted) {
_end = usecTimestampNow();
_elapsed = _end - _start;
_elapsedAverage.updateAverage((float)_elapsed);
_statsMessageLength = packIntoMessage(_statsMessage, sizeof(_statsMessage));
_isReadyToSend = true;
_isStarted = false;
}
}
void VoxelSceneStats::encodeStarted() {
_encodeStart = usecTimestampNow();
}
void VoxelSceneStats::encodeStopped() {
_totalEncodeTime += (usecTimestampNow() - _encodeStart);
}
void VoxelSceneStats::reset() {
_totalEncodeTime = 0;
_encodeStart = 0;
_packets = 0;
_bytes = 0;
_passes = 0;
_totalVoxels = 0;
_totalInternal = 0;
_totalLeaves = 0;
_traversed = 0;
_internal = 0;
_leaves = 0;
_skippedDistance = 0;
_internalSkippedDistance = 0;
_leavesSkippedDistance = 0;
_skippedOutOfView = 0;
_internalSkippedOutOfView = 0;
_leavesSkippedOutOfView = 0;
_skippedWasInView = 0;
_internalSkippedWasInView = 0;
_leavesSkippedWasInView = 0;
_skippedNoChange = 0;
_internalSkippedNoChange = 0;
_leavesSkippedNoChange = 0;
_skippedOccluded = 0;
_internalSkippedOccluded = 0;
_leavesSkippedOccluded = 0;
_colorSent = 0;
_internalColorSent = 0;
_leavesColorSent = 0;
_didntFit = 0;
_internalDidntFit = 0;
_leavesDidntFit = 0;
_colorBitsWritten = 0;
_existsBitsWritten = 0;
_existsInPacketBitsWritten = 0;
_treesRemoved = 0;
}
void VoxelSceneStats::packetSent(int bytes) {
_packets++;
_bytes += bytes;
}
void VoxelSceneStats::traversed(const VoxelNode* node) {
_traversed++;
if (node->isLeaf()) {
_leaves++;
} else {
_internal++;
}
}
void VoxelSceneStats::skippedDistance(const VoxelNode* node) {
_skippedDistance++;
if (node->isLeaf()) {
_leavesSkippedDistance++;
} else {
_internalSkippedDistance++;
}
}
void VoxelSceneStats::skippedOutOfView(const VoxelNode* node) {
_skippedOutOfView++;
if (node->isLeaf()) {
_leavesSkippedOutOfView++;
} else {
_internalSkippedOutOfView++;
}
}
void VoxelSceneStats::skippedWasInView(const VoxelNode* node) {
_skippedWasInView++;
if (node->isLeaf()) {
_leavesSkippedWasInView++;
} else {
_internalSkippedWasInView++;
}
}
void VoxelSceneStats::skippedNoChange(const VoxelNode* node) {
_skippedNoChange++;
if (node->isLeaf()) {
_leavesSkippedNoChange++;
} else {
_internalSkippedNoChange++;
}
}
void VoxelSceneStats::skippedOccluded(const VoxelNode* node) {
_skippedOccluded++;
if (node->isLeaf()) {
_leavesSkippedOccluded++;
} else {
_internalSkippedOccluded++;
}
}
void VoxelSceneStats::colorSent(const VoxelNode* node) {
_colorSent++;
if (node->isLeaf()) {
_leavesColorSent++;
} else {
_internalColorSent++;
}
}
void VoxelSceneStats::didntFit(const VoxelNode* node) {
_didntFit++;
if (node->isLeaf()) {
_leavesDidntFit++;
} else {
_internalDidntFit++;
}
}
void VoxelSceneStats::colorBitsWritten() {
_colorBitsWritten++;
}
void VoxelSceneStats::existsBitsWritten() {
_existsBitsWritten++;
}
void VoxelSceneStats::existsInPacketBitsWritten() {
_existsInPacketBitsWritten++;
}
void VoxelSceneStats::childBitsRemoved(bool includesExistsBits, bool includesColors) {
_existsInPacketBitsWritten--;
if (includesExistsBits) {
_existsBitsWritten--;
}
if (includesColors) {
_colorBitsWritten--;
}
_treesRemoved++;
}
int VoxelSceneStats::packIntoMessage(unsigned char* destinationBuffer, int availableBytes) {
unsigned char* bufferStart = destinationBuffer;
int headerLength = populateTypeAndVersion(destinationBuffer, PACKET_TYPE_VOXEL_STATS);
destinationBuffer += headerLength;
memcpy(destinationBuffer, &_start, sizeof(_start));
destinationBuffer += sizeof(_start);
memcpy(destinationBuffer, &_end, sizeof(_end));
destinationBuffer += sizeof(_end);
memcpy(destinationBuffer, &_elapsed, sizeof(_elapsed));
destinationBuffer += sizeof(_elapsed);
memcpy(destinationBuffer, &_totalEncodeTime, sizeof(_totalEncodeTime));
destinationBuffer += sizeof(_totalEncodeTime);
memcpy(destinationBuffer, &_isFullScene, sizeof(_isFullScene));
destinationBuffer += sizeof(_isFullScene);
memcpy(destinationBuffer, &_isMoving, sizeof(_isMoving));
destinationBuffer += sizeof(_isMoving);
memcpy(destinationBuffer, &_packets, sizeof(_packets));
destinationBuffer += sizeof(_packets);
memcpy(destinationBuffer, &_bytes, sizeof(_bytes));
destinationBuffer += sizeof(_bytes);
memcpy(destinationBuffer, &_totalInternal, sizeof(_totalInternal));
destinationBuffer += sizeof(_totalInternal);
memcpy(destinationBuffer, &_totalLeaves, sizeof(_totalLeaves));
destinationBuffer += sizeof(_totalLeaves);
memcpy(destinationBuffer, &_internal, sizeof(_internal));
destinationBuffer += sizeof(_internal);
memcpy(destinationBuffer, &_leaves, sizeof(_leaves));
destinationBuffer += sizeof(_leaves);
memcpy(destinationBuffer, &_internalSkippedDistance, sizeof(_internalSkippedDistance));
destinationBuffer += sizeof(_internalSkippedDistance);
memcpy(destinationBuffer, &_leavesSkippedDistance, sizeof(_leavesSkippedDistance));
destinationBuffer += sizeof(_leavesSkippedDistance);
memcpy(destinationBuffer, &_internalSkippedOutOfView, sizeof(_internalSkippedOutOfView));
destinationBuffer += sizeof(_internalSkippedOutOfView);
memcpy(destinationBuffer, &_leavesSkippedOutOfView, sizeof(_leavesSkippedOutOfView));
destinationBuffer += sizeof(_leavesSkippedOutOfView);
memcpy(destinationBuffer, &_internalSkippedWasInView, sizeof(_internalSkippedWasInView));
destinationBuffer += sizeof(_internalSkippedWasInView);
memcpy(destinationBuffer, &_leavesSkippedWasInView, sizeof(_leavesSkippedWasInView));
destinationBuffer += sizeof(_leavesSkippedWasInView);
memcpy(destinationBuffer, &_internalSkippedNoChange, sizeof(_internalSkippedNoChange));
destinationBuffer += sizeof(_internalSkippedNoChange);
memcpy(destinationBuffer, &_leavesSkippedNoChange, sizeof(_leavesSkippedNoChange));
destinationBuffer += sizeof(_leavesSkippedNoChange);
memcpy(destinationBuffer, &_internalSkippedOccluded, sizeof(_internalSkippedOccluded));
destinationBuffer += sizeof(_internalSkippedOccluded);
memcpy(destinationBuffer, &_leavesSkippedOccluded, sizeof(_leavesSkippedOccluded));
destinationBuffer += sizeof(_leavesSkippedOccluded);
memcpy(destinationBuffer, &_internalColorSent, sizeof(_internalColorSent));
destinationBuffer += sizeof(_internalColorSent);
memcpy(destinationBuffer, &_leavesColorSent, sizeof(_leavesColorSent));
destinationBuffer += sizeof(_leavesColorSent);
memcpy(destinationBuffer, &_internalDidntFit, sizeof(_internalDidntFit));
destinationBuffer += sizeof(_internalDidntFit);
memcpy(destinationBuffer, &_leavesDidntFit, sizeof(_leavesDidntFit));
destinationBuffer += sizeof(_leavesDidntFit);
memcpy(destinationBuffer, &_colorBitsWritten, sizeof(_colorBitsWritten));
destinationBuffer += sizeof(_colorBitsWritten);
memcpy(destinationBuffer, &_existsBitsWritten, sizeof(_existsBitsWritten));
destinationBuffer += sizeof(_existsBitsWritten);
memcpy(destinationBuffer, &_existsInPacketBitsWritten, sizeof(_existsInPacketBitsWritten));
destinationBuffer += sizeof(_existsInPacketBitsWritten);
memcpy(destinationBuffer, &_treesRemoved, sizeof(_treesRemoved));
destinationBuffer += sizeof(_treesRemoved);
return destinationBuffer - bufferStart; // includes header!
}
int VoxelSceneStats::unpackFromMessage(unsigned char* sourceBuffer, int availableBytes) {
unsigned char* startPosition = sourceBuffer;
// increment to push past the packet header
int numBytesPacketHeader = numBytesForPacketHeader(sourceBuffer);
sourceBuffer += numBytesPacketHeader;
memcpy(&_start, sourceBuffer, sizeof(_start));
sourceBuffer += sizeof(_start);
memcpy(&_end, sourceBuffer, sizeof(_end));
sourceBuffer += sizeof(_end);
memcpy(&_elapsed, sourceBuffer, sizeof(_elapsed));
sourceBuffer += sizeof(_elapsed);
memcpy(&_totalEncodeTime, sourceBuffer, sizeof(_totalEncodeTime));
sourceBuffer += sizeof(_totalEncodeTime);
memcpy(&_isFullScene, sourceBuffer, sizeof(_isFullScene));
sourceBuffer += sizeof(_isFullScene);
memcpy(&_isMoving, sourceBuffer, sizeof(_isMoving));
sourceBuffer += sizeof(_isMoving);
memcpy(&_packets, sourceBuffer, sizeof(_packets));
sourceBuffer += sizeof(_packets);
memcpy(&_bytes, sourceBuffer, sizeof(_bytes));
sourceBuffer += sizeof(_bytes);
memcpy(&_totalInternal, sourceBuffer, sizeof(_totalInternal));
sourceBuffer += sizeof(_totalInternal);
memcpy(&_totalLeaves, sourceBuffer, sizeof(_totalLeaves));
sourceBuffer += sizeof(_totalLeaves);
_totalVoxels = _totalInternal + _totalLeaves;
memcpy(&_internal, sourceBuffer, sizeof(_internal));
sourceBuffer += sizeof(_internal);
memcpy(&_leaves, sourceBuffer, sizeof(_leaves));
sourceBuffer += sizeof(_leaves);
_traversed = _internal + _leaves;
memcpy(&_internalSkippedDistance, sourceBuffer, sizeof(_internalSkippedDistance));
sourceBuffer += sizeof(_internalSkippedDistance);
memcpy(&_leavesSkippedDistance, sourceBuffer, sizeof(_leavesSkippedDistance));
sourceBuffer += sizeof(_leavesSkippedDistance);
_skippedDistance = _internalSkippedDistance + _leavesSkippedDistance;
memcpy(&_internalSkippedOutOfView, sourceBuffer, sizeof(_internalSkippedOutOfView));
sourceBuffer += sizeof(_internalSkippedOutOfView);
memcpy(&_leavesSkippedOutOfView, sourceBuffer, sizeof(_leavesSkippedOutOfView));
sourceBuffer += sizeof(_leavesSkippedOutOfView);
_skippedOutOfView = _internalSkippedOutOfView + _leavesSkippedOutOfView;
memcpy(&_internalSkippedWasInView, sourceBuffer, sizeof(_internalSkippedWasInView));
sourceBuffer += sizeof(_internalSkippedWasInView);
memcpy(&_leavesSkippedWasInView, sourceBuffer, sizeof(_leavesSkippedWasInView));
sourceBuffer += sizeof(_leavesSkippedWasInView);
_skippedWasInView = _internalSkippedWasInView + _leavesSkippedWasInView;
memcpy(&_internalSkippedNoChange, sourceBuffer, sizeof(_internalSkippedNoChange));
sourceBuffer += sizeof(_internalSkippedNoChange);
memcpy(&_leavesSkippedNoChange, sourceBuffer, sizeof(_leavesSkippedNoChange));
sourceBuffer += sizeof(_leavesSkippedNoChange);
_skippedNoChange = _internalSkippedNoChange + _leavesSkippedNoChange;
memcpy(&_internalSkippedOccluded, sourceBuffer, sizeof(_internalSkippedOccluded));
sourceBuffer += sizeof(_internalSkippedOccluded);
memcpy(&_leavesSkippedOccluded, sourceBuffer, sizeof(_leavesSkippedOccluded));
sourceBuffer += sizeof(_leavesSkippedOccluded);
_skippedOccluded = _internalSkippedOccluded + _leavesSkippedOccluded;
memcpy(&_internalColorSent, sourceBuffer, sizeof(_internalColorSent));
sourceBuffer += sizeof(_internalColorSent);
memcpy(&_leavesColorSent, sourceBuffer, sizeof(_leavesColorSent));
sourceBuffer += sizeof(_leavesColorSent);
_colorSent = _internalColorSent + _leavesColorSent;
memcpy(&_internalDidntFit, sourceBuffer, sizeof(_internalDidntFit));
sourceBuffer += sizeof(_internalDidntFit);
memcpy(&_leavesDidntFit, sourceBuffer, sizeof(_leavesDidntFit));
sourceBuffer += sizeof(_leavesDidntFit);
_didntFit = _internalDidntFit + _leavesDidntFit;
memcpy(&_colorBitsWritten, sourceBuffer, sizeof(_colorBitsWritten));
sourceBuffer += sizeof(_colorBitsWritten);
memcpy(&_existsBitsWritten, sourceBuffer, sizeof(_existsBitsWritten));
sourceBuffer += sizeof(_existsBitsWritten);
memcpy(&_existsInPacketBitsWritten, sourceBuffer, sizeof(_existsInPacketBitsWritten));
sourceBuffer += sizeof(_existsInPacketBitsWritten);
memcpy(&_treesRemoved, sourceBuffer, sizeof(_treesRemoved));
sourceBuffer += sizeof(_treesRemoved);
// running averages
_elapsedAverage.updateAverage((float)_elapsed);
unsigned long total = _existsInPacketBitsWritten + _colorSent;
float calculatedBPV = total == 0 ? 0 : (_bytes * 8) / total;
_bitsPerVoxelAverage.updateAverage(calculatedBPV);
return sourceBuffer - startPosition; // includes header!
}
void VoxelSceneStats::printDebugDetails() {
qDebug("\n------------------------------\n");
qDebug("VoxelSceneStats:\n");
qDebug(" start : %llu \n", _start);
qDebug(" end : %llu \n", _end);
qDebug(" elapsed : %llu \n", _elapsed);
qDebug(" encoding : %llu \n", _totalEncodeTime);
qDebug("\n");
qDebug(" full scene: %s\n", debug::valueOf(_isFullScene));
qDebug(" moving: %s\n", debug::valueOf(_isMoving));
qDebug("\n");
qDebug(" packets: %d\n", _packets);
qDebug(" bytes : %ld\n", _bytes);
qDebug("\n");
qDebug(" total voxels : %lu\n", _totalVoxels );
qDebug(" internal : %lu\n", _totalInternal );
qDebug(" leaves : %lu\n", _totalLeaves );
qDebug(" traversed : %lu\n", _traversed );
qDebug(" internal : %lu\n", _internal );
qDebug(" leaves : %lu\n", _leaves );
qDebug(" skipped distance : %lu\n", _skippedDistance );
qDebug(" internal : %lu\n", _internalSkippedDistance );
qDebug(" leaves : %lu\n", _leavesSkippedDistance );
qDebug(" skipped out of view : %lu\n", _skippedOutOfView );
qDebug(" internal : %lu\n", _internalSkippedOutOfView );
qDebug(" leaves : %lu\n", _leavesSkippedOutOfView );
qDebug(" skipped was in view : %lu\n", _skippedWasInView );
qDebug(" internal : %lu\n", _internalSkippedWasInView );
qDebug(" leaves : %lu\n", _leavesSkippedWasInView );
qDebug(" skipped no change : %lu\n", _skippedNoChange );
qDebug(" internal : %lu\n", _internalSkippedNoChange );
qDebug(" leaves : %lu\n", _leavesSkippedNoChange );
qDebug(" skipped occluded : %lu\n", _skippedOccluded );
qDebug(" internal : %lu\n", _internalSkippedOccluded );
qDebug(" leaves : %lu\n", _leavesSkippedOccluded );
qDebug("\n");
qDebug(" color sent : %lu\n", _colorSent );
qDebug(" internal : %lu\n", _internalColorSent );
qDebug(" leaves : %lu\n", _leavesColorSent );
qDebug(" Didn't Fit : %lu\n", _didntFit );
qDebug(" internal : %lu\n", _internalDidntFit );
qDebug(" leaves : %lu\n", _leavesDidntFit );
qDebug(" color bits : %lu\n", _colorBitsWritten );
qDebug(" exists bits : %lu\n", _existsBitsWritten );
qDebug(" in packet bit : %lu\n", _existsInPacketBitsWritten);
qDebug(" trees removed : %lu\n", _treesRemoved );
}
const unsigned greenish = 0x40ff40d0;
const unsigned yellowish = 0xffef40c0;
const unsigned greyish = 0xd0d0d0a0;
VoxelSceneStats::ItemInfo VoxelSceneStats::_ITEMS[] = {
{ "Elapsed" , greenish },
{ "Encode" , yellowish },
{ "Network" , greyish },
{ "Voxels on Server" , greenish },
{ "Voxels Sent" , yellowish },
{ "Colors Sent" , greyish },
{ "Bitmasks Sent" , greenish },
{ "Traversed" , yellowish },
{ "Skipped - Total" , greyish },
{ "Skipped - Distance" , greenish },
{ "Skipped - Out of View", yellowish },
{ "Skipped - Was in View", greyish },
{ "Skipped - No Change" , greenish },
{ "Skipped - Occluded" , yellowish },
{ "Didn't fit in packet" , greyish },
{ "Mode" , greenish },
};
char* VoxelSceneStats::getItemValue(int item) {
const uint64_t USECS_PER_SECOND = 1000 * 1000;
int calcFPS, calcAverageFPS, calculatedKBPS;
switch(item) {
case ITEM_ELAPSED: {
calcFPS = (float)USECS_PER_SECOND / (float)_elapsed;
float elapsedAverage = _elapsedAverage.getAverage();
calcAverageFPS = (float)USECS_PER_SECOND / (float)elapsedAverage;
sprintf(_itemValueBuffer, "%llu usecs (%d fps) Average: %.0f usecs (%d fps)",
_elapsed, calcFPS, elapsedAverage, calcAverageFPS);
break;
}
case ITEM_ENCODE:
calcFPS = (float)USECS_PER_SECOND / (float)_totalEncodeTime;
sprintf(_itemValueBuffer, "%llu usecs (%d fps)", _totalEncodeTime, calcFPS);
break;
case ITEM_PACKETS: {
float elapsedSecs = ((float)_elapsed / (float)USECS_PER_SECOND);
calculatedKBPS = elapsedSecs == 0 ? 0 : ((_bytes * 8) / elapsedSecs) / 1000;
sprintf(_itemValueBuffer, "%d packets %lu bytes (%d kbps)", _packets, _bytes, calculatedKBPS);
break;
}
case ITEM_VOXELS_SERVER: {
sprintf(_itemValueBuffer, "%lu total %lu internal %lu leaves",
_totalVoxels, _totalInternal, _totalLeaves);
break;
}
case ITEM_VOXELS: {
unsigned long total = _existsInPacketBitsWritten + _colorSent;
float calculatedBPV = total == 0 ? 0 : (_bytes * 8) / total;
float averageBPV = _bitsPerVoxelAverage.getAverage();
sprintf(_itemValueBuffer, "%lu (%.2f bits/voxel Average: %.2f bits/voxel) %lu internal %lu leaves",
total, calculatedBPV, averageBPV, _existsInPacketBitsWritten, _colorSent);
break;
}
case ITEM_TRAVERSED: {
sprintf(_itemValueBuffer, "%lu total %lu internal %lu leaves",
_traversed, _internal, _leaves);
break;
}
case ITEM_SKIPPED: {
unsigned long total = _skippedDistance + _skippedOutOfView +
_skippedWasInView + _skippedNoChange + _skippedOccluded;
unsigned long internal = _internalSkippedDistance + _internalSkippedOutOfView +
_internalSkippedWasInView + _internalSkippedNoChange + _internalSkippedOccluded;
unsigned long leaves = _leavesSkippedDistance + _leavesSkippedOutOfView +
_leavesSkippedWasInView + _leavesSkippedNoChange + _leavesSkippedOccluded;
sprintf(_itemValueBuffer, "%lu total %lu internal %lu leaves",
total, internal, leaves);
break;
}
case ITEM_SKIPPED_DISTANCE: {
sprintf(_itemValueBuffer, "%lu total %lu internal %lu leaves",
_skippedDistance, _internalSkippedDistance, _leavesSkippedDistance);
break;
}
case ITEM_SKIPPED_OUT_OF_VIEW: {
sprintf(_itemValueBuffer, "%lu total %lu internal %lu leaves",
_skippedOutOfView, _internalSkippedOutOfView, _leavesSkippedOutOfView);
break;
}
case ITEM_SKIPPED_WAS_IN_VIEW: {
sprintf(_itemValueBuffer, "%lu total %lu internal %lu leaves",
_skippedWasInView, _internalSkippedWasInView, _leavesSkippedWasInView);
break;
}
case ITEM_SKIPPED_NO_CHANGE: {
sprintf(_itemValueBuffer, "%lu total %lu internal %lu leaves",
_skippedNoChange, _internalSkippedNoChange, _leavesSkippedNoChange);
break;
}
case ITEM_SKIPPED_OCCLUDED: {
sprintf(_itemValueBuffer, "%lu total %lu internal %lu leaves",
_skippedOccluded, _internalSkippedOccluded, _leavesSkippedOccluded);
break;
}
case ITEM_COLORS: {
sprintf(_itemValueBuffer, "%lu total %lu internal %lu leaves",
_colorSent, _internalColorSent, _leavesColorSent);
break;
}
case ITEM_DIDNT_FIT: {
sprintf(_itemValueBuffer, "%lu total %lu internal %lu leaves (removed: %lu)",
_didntFit, _internalDidntFit, _leavesDidntFit, _treesRemoved);
break;
}
case ITEM_BITS: {
sprintf(_itemValueBuffer, "colors: %lu, exists: %lu, in packets: %lu",
_colorBitsWritten, _existsBitsWritten, _existsInPacketBitsWritten);
break;
}
case ITEM_MODE: {
sprintf(_itemValueBuffer, "%s - %s", (_isFullScene ? "Full Scene" : "Partial Scene"),
(_isMoving ? "Moving" : "Stationary"));
break;
}
default:
sprintf(_itemValueBuffer, "");
break;
}
return _itemValueBuffer;
}

View file

@ -0,0 +1,170 @@
//
// VoxelSceneStats.h
// hifi
//
// Created by Brad Hefta-Gaub on 7/18/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
//
#ifndef __hifi__VoxelSceneStats__
#define __hifi__VoxelSceneStats__
#include <stdint.h>
#include <NodeList.h>
class VoxelNode;
class VoxelSceneStats {
public:
VoxelSceneStats();
void reset();
void sceneStarted(bool fullScene, bool moving, VoxelNode* root);
void sceneCompleted();
void printDebugDetails();
void packetSent(int bytes);
void encodeStarted();
void encodeStopped();
void traversed(const VoxelNode* node);
void skippedDistance(const VoxelNode* node);
void skippedOutOfView(const VoxelNode* node);
void skippedWasInView(const VoxelNode* node);
void skippedNoChange(const VoxelNode* node);
void skippedOccluded(const VoxelNode* node);
void colorSent(const VoxelNode* node);
void didntFit(const VoxelNode* node);
void colorBitsWritten();
void existsBitsWritten();
void existsInPacketBitsWritten();
void childBitsRemoved(bool includesExistsBits, bool includesColors);
int packIntoMessage(unsigned char* destinationBuffer, int availableBytes);
int unpackFromMessage(unsigned char* sourceBuffer, int availableBytes);
bool isReadyToSend() const { return _isReadyToSend; }
void markAsSent() { _isReadyToSend = false; }
unsigned char* getStatsMessage() { return &_statsMessage[0]; }
int getStatsMessageLength() const { return _statsMessageLength; }
enum {
ITEM_ELAPSED,
ITEM_ENCODE,
ITEM_PACKETS,
ITEM_VOXELS_SERVER,
ITEM_VOXELS,
ITEM_COLORS,
ITEM_BITS,
ITEM_TRAVERSED,
ITEM_SKIPPED,
ITEM_SKIPPED_DISTANCE,
ITEM_SKIPPED_OUT_OF_VIEW,
ITEM_SKIPPED_WAS_IN_VIEW,
ITEM_SKIPPED_NO_CHANGE,
ITEM_SKIPPED_OCCLUDED,
ITEM_DIDNT_FIT,
ITEM_MODE,
ITEM_COUNT
};
// Meta information about each stats item
struct ItemInfo {
char const* const caption;
unsigned colorRGBA;
};
ItemInfo& getItemInfo(int item) { return _ITEMS[item]; };
char* getItemValue(int item);
private:
bool _isReadyToSend;
unsigned char _statsMessage[MAX_PACKET_SIZE];
int _statsMessageLength;
// scene timing data in usecs
bool _isStarted;
uint64_t _start;
uint64_t _end;
uint64_t _elapsed;
SimpleMovingAverage _elapsedAverage;
SimpleMovingAverage _bitsPerVoxelAverage;
uint64_t _totalEncodeTime;
uint64_t _encodeStart;
// scene voxel related data
unsigned long _totalVoxels;
unsigned long _totalInternal;
unsigned long _totalLeaves;
unsigned long _traversed;
unsigned long _internal;
unsigned long _leaves;
unsigned long _skippedDistance;
unsigned long _internalSkippedDistance;
unsigned long _leavesSkippedDistance;
unsigned long _skippedOutOfView;
unsigned long _internalSkippedOutOfView;
unsigned long _leavesSkippedOutOfView;
unsigned long _skippedWasInView;
unsigned long _internalSkippedWasInView;
unsigned long _leavesSkippedWasInView;
unsigned long _skippedNoChange;
unsigned long _internalSkippedNoChange;
unsigned long _leavesSkippedNoChange;
unsigned long _skippedOccluded;
unsigned long _internalSkippedOccluded;
unsigned long _leavesSkippedOccluded;
unsigned long _colorSent;
unsigned long _internalColorSent;
unsigned long _leavesColorSent;
unsigned long _didntFit;
unsigned long _internalDidntFit;
unsigned long _leavesDidntFit;
unsigned long _colorBitsWritten;
unsigned long _existsBitsWritten;
unsigned long _existsInPacketBitsWritten;
unsigned long _treesRemoved;
// Accounting Notes:
//
// 1) number of voxels sent can be calculated as _colorSent + _colorBitsWritten. This works because each internal
// node in a packet will have a _colorBitsWritten included for it and each "leaf" in the packet will have a
// _colorSent written for it. Note that these "leaf" nodes in the packets may not be actual leaves in the full
// tree, because LOD may cause us to send an average color for an internal node instead of recursing deeper to
// the leaves.
//
// 2) the stats balance if: (working assumption)
// if _colorSent > 0
// _traversed = all skipped + _colorSent + _colorBitsWritten
// else
// _traversed = all skipped + _colorSent + _colorBitsWritten + _treesRemoved
//
// scene network related data
unsigned int _packets;
unsigned long _bytes;
unsigned int _passes;
// features related items
bool _isMoving;
bool _isFullScene;
static ItemInfo _ITEMS[];
static int const MAX_ITEM_VALUE_LENGTH = 128;
char _itemValueBuffer[MAX_ITEM_VALUE_LENGTH];
};
#endif /* defined(__hifi__VoxelSceneStats__) */

View file

@ -673,6 +673,9 @@ void VoxelTree::reaverageVoxelColors(VoxelNode *startNode) {
if (hasChildren && !startNode->collapseIdenticalLeaves()) {
startNode->setColorFromAverageOfChildren();
}
// this is also a good time to recalculateSubTreeNodeCount()
startNode->recalculateSubTreeNodeCount();
}
}
@ -1037,6 +1040,13 @@ int VoxelTree::encodeTreeBitstream(VoxelNode* node, unsigned char* outputBuffer,
availableBytes -= codeLength; // keep track or remaining space
int currentEncodeLevel = 0;
// record some stats, this is the one node that we won't record below in the recursion function, so we need to
// track it here
if (params.stats) {
params.stats->traversed(node);
}
int childBytesWritten = encodeTreeBitstreamRecursion(node, outputBuffer, availableBytes, bag, params, currentEncodeLevel);
// if childBytesWritten == 1 then something went wrong... that's not possible
@ -1061,6 +1071,9 @@ int VoxelTree::encodeTreeBitstream(VoxelNode* node, unsigned char* outputBuffer,
int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outputBuffer, int availableBytes, VoxelNodeBag& bag,
EncodeBitstreamParams& params, int& currentEncodeLevel) const {
// you can't call this without a valid node
assert(node);
// How many bytes have we written so far at this level;
int bytesAtThisLevel = 0;
@ -1081,6 +1094,9 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
// If we're too far away for our render level, then just return
if (distance >= boundaryDistance) {
if (params.stats) {
params.stats->skippedDistance(node);
}
return bytesAtThisLevel;
}
@ -1088,6 +1104,9 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
// although technically, we really shouldn't ever be here, because our callers shouldn't be calling us if
// we're out of view
if (!node->isInView(*params.viewFrustum)) {
if (params.stats) {
params.stats->skippedOutOfView(node);
}
return bytesAtThisLevel;
}
@ -1110,6 +1129,9 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
// if we're in deltaViewFrustum mode, and this node has changed since it was last sent, then we do
// need to send it.
if (wasInView && !(params.deltaViewFrustum && node->hasChangedSince(params.lastViewFrustumSent - CHANGE_FUDGE))) {
if (params.stats) {
params.stats->skippedWasInView(node);
}
return bytesAtThisLevel;
}
@ -1117,6 +1139,9 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
// then we can also bail early and save bits
if (!params.forceSendScene && !params.deltaViewFrustum &&
!node->hasChangedSince(params.lastViewFrustumSent - CHANGE_FUDGE)) {
if (params.stats) {
params.stats->skippedNoChange(node);
}
return bytesAtThisLevel;
}
@ -1136,6 +1161,9 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
CoverageMapStorageResult result = params.map->checkMap(voxelPolygon, false);
delete voxelPolygon; // cleanup
if (result == OCCLUDED) {
if (params.stats) {
params.stats->skippedOccluded(node);
}
return bytesAtThisLevel;
}
} else {
@ -1201,6 +1229,13 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
distancesToChildren[i] = 0.0f;
currentCount++;
}
// track stats
// must check childNode here, because it could be we got here with no childNode
if (params.stats && childNode) {
params.stats->traversed(childNode);
}
}
// for each child node in Distance sorted order..., check to see if they exist, are colored, and in view, and if so
@ -1211,13 +1246,23 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
bool childIsInView = (childNode && (!params.viewFrustum || childNode->isInView(*params.viewFrustum)));
if (childIsInView) {
if (!childIsInView) {
// must check childNode here, because it could be we got here because there was no childNode
if (params.stats && childNode) {
params.stats->skippedOutOfView(childNode);
}
} else {
// Before we determine consider this further, let's see if it's in our LOD scope...
float distance = distancesToChildren[i]; // params.viewFrustum ? childNode->distanceToCamera(*params.viewFrustum) : 0;
float boundaryDistance = !params.viewFrustum ? 1 :
boundaryDistanceForRenderLevel(childNode->getLevel() + params.boundaryLevelAdjust);
if (distance < boundaryDistance) {
if (!(distance < boundaryDistance)) {
// don't need to check childNode here, because we can't get here with no childNode
if (params.stats) {
params.stats->skippedDistance(childNode);
}
} else {
inViewCount++;
// track children in view as existing and not a leaf, if they're a leaf,
@ -1261,7 +1306,21 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
} // wants occlusion culling & isLeaf()
bool shouldRender = !params.viewFrustum ? true : childNode->calculateShouldRender(params.viewFrustum, params.boundaryLevelAdjust);
bool shouldRender = !params.viewFrustum
? true
: childNode->calculateShouldRender(params.viewFrustum, params.boundaryLevelAdjust);
// track some stats
if (params.stats) {
// don't need to check childNode here, because we can't get here with no childNode
if (!shouldRender && childNode->isLeaf()) {
params.stats->skippedDistance(childNode);
}
// don't need to check childNode here, because we can't get here with no childNode
if (childIsOccluded) {
params.stats->skippedOccluded(childNode);
}
}
// track children with actual color, only if the child wasn't previously in view!
if (shouldRender && !childIsOccluded) {
@ -1288,7 +1347,15 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
inViewWithColorCount++;
} else {
// otherwise just track stats of the items we discarded
params.childWasInViewDiscarded++;
// don't need to check childNode here, because we can't get here with no childNode
if (params.stats) {
if (childWasInView) {
params.stats->skippedWasInView(childNode);
} else {
params.stats->skippedNoChange(childNode);
}
}
}
}
}
@ -1297,14 +1364,24 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
*writeToThisLevelBuffer = childrenColoredBits;
writeToThisLevelBuffer += sizeof(childrenColoredBits); // move the pointer
bytesAtThisLevel += sizeof(childrenColoredBits); // keep track of byte count
if (params.stats) {
params.stats->colorBitsWritten();
}
// write the color data...
if (params.includeColor) {
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
if (oneAtBit(childrenColoredBits, i)) {
memcpy(writeToThisLevelBuffer, &node->getChildAtIndex(i)->getColor(), BYTES_PER_COLOR);
VoxelNode* childNode = node->getChildAtIndex(i);
memcpy(writeToThisLevelBuffer, &childNode->getColor(), BYTES_PER_COLOR);
writeToThisLevelBuffer += BYTES_PER_COLOR; // move the pointer for color
bytesAtThisLevel += BYTES_PER_COLOR; // keep track of byte count for color
// don't need to check childNode here, because we can't get here with no childNode
if (params.stats) {
params.stats->colorSent(childNode);
}
}
}
}
@ -1315,12 +1392,18 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
*writeToThisLevelBuffer = childrenExistInTreeBits;
writeToThisLevelBuffer += sizeof(childrenExistInTreeBits); // move the pointer
bytesAtThisLevel += sizeof(childrenExistInTreeBits); // keep track of byte count
if (params.stats) {
params.stats->existsBitsWritten();
}
}
// write the child exist bits
*writeToThisLevelBuffer = childrenExistInPacketBits;
writeToThisLevelBuffer += sizeof(childrenExistInPacketBits); // move the pointer
bytesAtThisLevel += sizeof(childrenExistInPacketBits); // keep track of byte count
if (params.stats) {
params.stats->existsInPacketBitsWritten();
}
// We only need to keep digging, if there is at least one child that is inView, and not a leaf.
keepDiggingDeeper = (inViewNotLeafCount > 0);
@ -1333,6 +1416,12 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
availableBytes -= bytesAtThisLevel;
} else {
bag.insert(node);
// don't need to check node here, because we can't get here with no node
if (params.stats) {
params.stats->didntFit(node);
}
return 0;
}
@ -1393,7 +1482,12 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
// so, if the child returns 2 bytes out, we can actually consider that an empty tree also!!
//
// we can make this act like no bytes out, by just resetting the bytes out in this case
if (params.includeColor && childTreeBytesOut == 2) {
if (params.includeColor && !params.includeExistsBits && childTreeBytesOut == 2) {
childTreeBytesOut = 0; // this is the degenerate case of a tree with no colors and no child trees
}
// If we've asked for existBits, this is also true, except that the tree will output 3 bytes
// NOTE: does this introduce a problem with detecting deletion??
if (params.includeColor && params.includeExistsBits && childTreeBytesOut == 3) {
childTreeBytesOut = 0; // this is the degenerate case of a tree with no colors and no child trees
}
@ -1408,6 +1502,12 @@ int VoxelTree::encodeTreeBitstreamRecursion(VoxelNode* node, unsigned char* outp
childrenExistInPacketBits -= (1 << (7 - originalIndex));
// repair the child exists mask
*childExistsPlaceHolder = childrenExistInPacketBits;
// If this is the last of the child exists bits, then we're actually be rolling out the entire tree
if (params.stats && childrenExistInPacketBits == 0) {
params.stats->childBitsRemoved(params.includeExistsBits, params.includeColor);
}
// Note: no need to move the pointer, cause we already stored this
} // end if (childTreeBytesOut == 0)
} // end if (oneAtBit(childrenExistInPacketBits, originalIndex))

View file

@ -9,12 +9,14 @@
#ifndef __hifi__VoxelTree__
#define __hifi__VoxelTree__
#include "SimpleMovingAverage.h"
#include <PointerStack.h>
#include <SimpleMovingAverage.h>
#include "CoverageMap.h"
#include "ViewFrustum.h"
#include "VoxelNode.h"
#include "VoxelNodeBag.h"
#include "CoverageMap.h"
#include "PointerStack.h"
#include "VoxelSceneStats.h"
// Callback function, for recuseTreeWithOperation
typedef bool (*RecurseVoxelTreeOperation)(VoxelNode* node, void* extraData);
@ -36,6 +38,7 @@ typedef enum {GRADIENT, RANDOM, NATURAL} creationMode;
#define NO_BOUNDARY_ADJUST 0
#define LOW_RES_MOVING_ADJUST 1
#define IGNORE_LAST_SENT 0
#define IGNORE_SCENE_STATS NULL
class EncodeBitstreamParams {
public:
@ -48,10 +51,10 @@ public:
bool deltaViewFrustum;
const ViewFrustum* lastViewFrustum;
bool wantOcclusionCulling;
long childWasInViewDiscarded;
int boundaryLevelAdjust;
uint64_t lastViewFrustumSent;
bool forceSendScene;
VoxelSceneStats* stats;
CoverageMap* map;
EncodeBitstreamParams(
@ -66,7 +69,8 @@ public:
CoverageMap* map = IGNORE_COVERAGE_MAP,
int boundaryLevelAdjust = NO_BOUNDARY_ADJUST,
uint64_t lastViewFrustumSent = IGNORE_LAST_SENT,
bool forceSendScene = true) :
bool forceSendScene = true,
VoxelSceneStats* stats = IGNORE_SCENE_STATS) :
maxEncodeLevel (maxEncodeLevel),
maxLevelReached (0),
viewFrustum (viewFrustum),
@ -76,10 +80,10 @@ public:
deltaViewFrustum (deltaViewFrustum),
lastViewFrustum (lastViewFrustum),
wantOcclusionCulling (wantOcclusionCulling),
childWasInViewDiscarded (0),
boundaryLevelAdjust (boundaryLevelAdjust),
lastViewFrustumSent (lastViewFrustumSent),
forceSendScene (forceSendScene),
stats (stats),
map (map)
{}
};

View file

@ -12,9 +12,11 @@
#include <iostream>
#include <NodeData.h>
#include <AvatarData.h>
#include "VoxelNodeBag.h"
#include "VoxelConstants.h"
#include "CoverageMap.h"
#include <CoverageMap.h>
#include <VoxelConstants.h>
#include <VoxelNodeBag.h>
#include <VoxelSceneStats.h>
class VoxelNodeData : public AvatarData {
public:
@ -58,6 +60,9 @@ public:
void setLastTimeBagEmpty(uint64_t lastTimeBagEmpty) { _lastTimeBagEmpty = lastTimeBagEmpty; };
bool getCurrentPacketIsColor() const { return _currentPacketIsColor; };
VoxelSceneStats stats;
private:
VoxelNodeData(const VoxelNodeData &);
VoxelNodeData& operator= (const VoxelNodeData&);

View file

@ -60,6 +60,7 @@ bool wantLocalDomain = false;
bool wantColorRandomizer = false;
bool debugVoxelSending = false;
bool shouldShowAnimationDebug = false;
bool displayVoxelStats = false;
EnvironmentData environmentData[3];
@ -111,6 +112,44 @@ void eraseVoxelTreeAndCleanupNodeVisitData() {
pthread_mutex_t treeLock;
void handlePacketSend(NodeList* nodeList,
NodeList::iterator& node,
VoxelNodeData* nodeData,
int& trueBytesSent, int& truePacketsSent) {
// If we've got a stats message ready to send, then see if we can piggyback them together
if (nodeData->stats.isReadyToSend()) {
// Send the stats message to the client
unsigned char* statsMessage = nodeData->stats.getStatsMessage();
int statsMessageLength = nodeData->stats.getStatsMessageLength();
// If the size of the stats message and the voxel message will fit in a packet, then piggyback them
if (nodeData->getPacketLength() + statsMessageLength < MAX_PACKET_SIZE) {
// copy voxel message to back of stats message
memcpy(statsMessage + statsMessageLength, nodeData->getPacket(), nodeData->getPacketLength());
statsMessageLength += nodeData->getPacketLength();
// actually send it
nodeList->getNodeSocket()->send(node->getActiveSocket(), statsMessage, statsMessageLength);
} else {
// not enough room in the packet, send two packets
nodeList->getNodeSocket()->send(node->getActiveSocket(), statsMessage, statsMessageLength);
nodeList->getNodeSocket()->send(node->getActiveSocket(),
nodeData->getPacket(), nodeData->getPacketLength());
}
} else {
// just send the voxel packet
nodeList->getNodeSocket()->send(node->getActiveSocket(),
nodeData->getPacket(), nodeData->getPacketLength());
}
// remember to track our stats
nodeData->stats.packetSent(nodeData->getPacketLength());
trueBytesSent += nodeData->getPacketLength();
truePacketsSent++;
nodeData->resetVoxelPacket();
}
// Version of voxel distributor that sends the deepest LOD level at once
void deepestLevelVoxelDistributor(NodeList* nodeList,
NodeList::iterator& node,
@ -141,11 +180,9 @@ void deepestLevelVoxelDistributor(NodeList* nodeList,
printf("wantColor=%s --- SENDING PARTIAL PACKET! nodeData->getCurrentPacketIsColor()=%s\n",
debug::valueOf(wantColor), debug::valueOf(nodeData->getCurrentPacketIsColor()));
}
nodeList->getNodeSocket()->send(node->getActiveSocket(),
nodeData->getPacket(), nodeData->getPacketLength());
trueBytesSent += nodeData->getPacketLength();
truePacketsSent++;
nodeData->resetVoxelPacket();
handlePacketSend(nodeList, node, nodeData, trueBytesSent, truePacketsSent);
} else {
if (::debugVoxelSending) {
printf("wantColor=%s --- FIXING HEADER! nodeData->getCurrentPacketIsColor()=%s\n",
@ -200,13 +237,20 @@ void deepestLevelVoxelDistributor(NodeList* nodeList,
// only set our last sent time if we weren't resetting due to frustum change
uint64_t now = usecTimestampNow();
nodeData->setLastTimeBagEmpty(now);
if (::debugVoxelSending) {
printf("ENTIRE SCENE SENT! nodeData->setLastTimeBagEmpty(now=[%lld])\n", now);
}
}
nodeData->stats.sceneCompleted();
if (::displayVoxelStats) {
nodeData->stats.printDebugDetails();
}
// This is the start of "resending" the scene.
nodeData->nodeBag.insert(serverTree.rootNode);
// start tracking our stats
bool isFullScene = (!viewFrustumChanged || !nodeData->getWantDelta()) && nodeData->getViewFrustumJustStoppedChanging();
nodeData->stats.sceneStarted(isFullScene, viewFrustumChanged, ::serverTree.rootNode);
}
// If we have something in our nodeBag, then turn them into packets and send them out...
@ -240,32 +284,31 @@ void deepestLevelVoxelDistributor(NodeList* nodeList,
int boundaryLevelAdjust = viewFrustumChanged && nodeData->getWantLowResMoving()
? LOW_RES_MOVING_ADJUST : NO_BOUNDARY_ADJUST;
bool isFullScene = (!viewFrustumChanged || !nodeData->getWantDelta()) &&
nodeData->getViewFrustumJustStoppedChanging();
EncodeBitstreamParams params(INT_MAX, &nodeData->getCurrentViewFrustum(), wantColor,
WANT_EXISTS_BITS, DONT_CHOP, wantDelta, lastViewFrustum,
wantOcclusionCulling, coverageMap, boundaryLevelAdjust,
nodeData->getLastTimeBagEmpty(),
nodeData->getViewFrustumJustStoppedChanging());
isFullScene, &nodeData->stats);
nodeData->stats.encodeStarted();
bytesWritten = serverTree.encodeTreeBitstream(subTree, &tempOutputBuffer[0], MAX_VOXEL_PACKET_SIZE - 1,
nodeData->nodeBag, params);
nodeData->stats.encodeStopped();
if (nodeData->getAvailable() >= bytesWritten) {
nodeData->writeToPacket(&tempOutputBuffer[0], bytesWritten);
} else {
nodeList->getNodeSocket()->send(node->getActiveSocket(),
nodeData->getPacket(), nodeData->getPacketLength());
trueBytesSent += nodeData->getPacketLength();
truePacketsSent++;
handlePacketSend(nodeList, node, nodeData, trueBytesSent, truePacketsSent);
packetsSentThisInterval++;
nodeData->resetVoxelPacket();
nodeData->writeToPacket(&tempOutputBuffer[0], bytesWritten);
}
} else {
if (nodeData->isPacketWaiting()) {
nodeList->getNodeSocket()->send(node->getActiveSocket(),
nodeData->getPacket(), nodeData->getPacketLength());
trueBytesSent += nodeData->getPacketLength();
truePacketsSent++;
handlePacketSend(nodeList, node, nodeData, trueBytesSent, truePacketsSent);
nodeData->resetVoxelPacket();
}
packetsSentThisInterval = PACKETS_PER_CLIENT_PER_INTERVAL; // done for now, no nodes left
@ -368,7 +411,9 @@ void *distributeVoxelsToListeners(void *args) {
if (usecToSleep > 0) {
usleep(usecToSleep);
} else {
std::cout << "Last send took too much time, not sleeping!\n";
if (::debugVoxelSending) {
std::cout << "Last send took too much time, not sleeping!\n";
}
}
}
@ -402,6 +447,10 @@ int main(int argc, const char * argv[]) {
srand((unsigned)time(0));
const char* DISPLAY_VOXEL_STATS = "--displayVoxelStats";
::displayVoxelStats = cmdOptionExists(argc, argv, DISPLAY_VOXEL_STATS);
printf("displayVoxelStats=%s\n", debug::valueOf(::displayVoxelStats));
const char* DEBUG_VOXEL_SENDING = "--debugVoxelSending";
::debugVoxelSending = cmdOptionExists(argc, argv, DEBUG_VOXEL_SENDING);
printf("debugVoxelSending=%s\n", debug::valueOf(::debugVoxelSending));
@ -437,8 +486,10 @@ int main(int argc, const char * argv[]) {
::serverTree.clearDirtyBit(); // the tree is clean since we just loaded it
printf("DONE loading voxels from file... fileRead=%s\n", debug::valueOf(persistantFileRead));
unsigned long nodeCount = ::serverTree.getVoxelCount();
printf("Nodes after loading scene %ld nodes\n", nodeCount);
unsigned long nodeCount = ::serverTree.rootNode->getSubTreeNodeCount();
unsigned long internalNodeCount = ::serverTree.rootNode->getSubTreeInternalNodeCount();
unsigned long leafNodeCount = ::serverTree.rootNode->getSubTreeLeafNodeCount();
printf("Nodes after loading scene %lu nodes %lu internal %lu leaves\n", nodeCount, internalNodeCount, leafNodeCount);
}
// Check to see if the user passed in a command line option for loading an old style local