Shape::get/setCenter() instead of get/setPosition()

This commit is contained in:
Andrew Meadows 2014-06-16 08:43:27 -07:00
parent d7a28e1441
commit 92159a7ed5
10 changed files with 72 additions and 68 deletions

View file

@ -1245,7 +1245,7 @@ void MyAvatar::updateCollisionWithVoxels(float deltaTime, float radius) {
float capsuleHalfHeight = boundingShape.getHalfHeight(); float capsuleHalfHeight = boundingShape.getHalfHeight();
const float MAX_STEP_HEIGHT = capsuleRadius + capsuleHalfHeight; const float MAX_STEP_HEIGHT = capsuleRadius + capsuleHalfHeight;
const float MIN_STEP_HEIGHT = 0.0f; const float MIN_STEP_HEIGHT = 0.0f;
glm::vec3 footBase = boundingShape.getPosition() - (capsuleRadius + capsuleHalfHeight) * _worldUpDirection; glm::vec3 footBase = boundingShape.getCenter() - (capsuleRadius + capsuleHalfHeight) * _worldUpDirection;
float highestStep = 0.0f; float highestStep = 0.0f;
float lowestStep = MAX_STEP_HEIGHT; float lowestStep = MAX_STEP_HEIGHT;
glm::vec3 floorPoint; glm::vec3 floorPoint;
@ -1262,7 +1262,7 @@ void MyAvatar::updateCollisionWithVoxels(float deltaTime, float radius) {
if (horizontalDepth > capsuleRadius || fabsf(verticalDepth) > MAX_STEP_HEIGHT) { if (horizontalDepth > capsuleRadius || fabsf(verticalDepth) > MAX_STEP_HEIGHT) {
isTrapped = true; isTrapped = true;
if (_trapDuration > MAX_TRAP_PERIOD) { if (_trapDuration > MAX_TRAP_PERIOD) {
float distance = glm::dot(boundingShape.getPosition() - cubeCenter, _worldUpDirection); float distance = glm::dot(boundingShape.getCenter() - cubeCenter, _worldUpDirection);
if (distance < 0.0f) { if (distance < 0.0f) {
distance = fabsf(distance) + 0.5f * cubeSide; distance = fabsf(distance) + 0.5f * cubeSide;
} }

View file

@ -924,7 +924,7 @@ void Model::computeBoundingShape(const FBXGeometry& geometry) {
const FBXJoint& joint = geometry.joints[i]; const FBXJoint& joint = geometry.joints[i];
glm::vec3 jointToShapeOffset = uniformScale * (finalRotations[i] * joint.shapePosition); glm::vec3 jointToShapeOffset = uniformScale * (finalRotations[i] * joint.shapePosition);
glm::vec3 localPosition = extractTranslation(transforms[i]) + jointToShapeOffset; glm::vec3 localPosition = extractTranslation(transforms[i]) + jointToShapeOffset;
shape->setPosition(localPosition); shape->setCenter(localPosition);
shape->setRotation(finalRotations[i] * joint.shapeRotation); shape->setRotation(finalRotations[i] * joint.shapeRotation);
float distance = glm::length(localPosition) + shape->getBoundingRadius(); float distance = glm::length(localPosition) + shape->getBoundingRadius();
if (distance > _boundingRadius) { if (distance > _boundingRadius) {
@ -943,7 +943,7 @@ void Model::computeBoundingShape(const FBXGeometry& geometry) {
} }
Extents shapeExtents; Extents shapeExtents;
shapeExtents.reset(); shapeExtents.reset();
glm::vec3 localPosition = shape->getPosition(); glm::vec3 localPosition = shape->getCenter();
int type = shape->getType(); int type = shape->getType();
if (type == Shape::CAPSULE_SHAPE) { if (type == Shape::CAPSULE_SHAPE) {
// add the two furthest surface points of the capsule // add the two furthest surface points of the capsule
@ -998,11 +998,11 @@ void Model::resetShapePositions() {
for (int i = 0; i < _jointShapes.size(); i++) { for (int i = 0; i < _jointShapes.size(); i++) {
Shape* shape = _jointShapes[i]; Shape* shape = _jointShapes[i];
if (shape) { if (shape) {
shape->setPosition(_translation + _rotation * shape->getPosition()); shape->setCenter(_translation + _rotation * shape->getCenter());
shape->setRotation(_rotation * shape->getRotation()); shape->setRotation(_rotation * shape->getRotation());
} }
} }
_boundingShape.setPosition(_translation + _rotation * _boundingShapeLocalOffset); _boundingShape.setCenter(_translation + _rotation * _boundingShapeLocalOffset);
_boundingShape.setRotation(_rotation); _boundingShape.setRotation(_rotation);
} }
@ -1020,7 +1020,7 @@ void Model::updateShapePositions() {
glm::vec3 worldPosition = _translation + _rotation * (state.getPosition() + shapeOffset); glm::vec3 worldPosition = _translation + _rotation * (state.getPosition() + shapeOffset);
Shape* shape = _jointShapes[i]; Shape* shape = _jointShapes[i];
if (shape) { if (shape) {
shape->setPosition(worldPosition); shape->setCenter(worldPosition);
shape->setRotation(_rotation * stateRotation * joint.shapeRotation); shape->setRotation(_rotation * stateRotation * joint.shapeRotation);
float distance = glm::distance(worldPosition, _translation) + shape->getBoundingRadius(); float distance = glm::distance(worldPosition, _translation) + shape->getBoundingRadius();
if (distance > _boundingRadius) { if (distance > _boundingRadius) {
@ -1032,7 +1032,7 @@ void Model::updateShapePositions() {
} }
} }
_shapesAreDirty = false; _shapesAreDirty = false;
_boundingShape.setPosition(rootPosition + _rotation * _boundingShapeLocalOffset); _boundingShape.setCenter(rootPosition + _rotation * _boundingShapeLocalOffset);
_boundingShape.setRotation(_rotation); _boundingShape.setRotation(_rotation);
} }
} }
@ -1436,7 +1436,7 @@ void Model::renderJointCollisionShapes(float alpha) {
glPushMatrix(); glPushMatrix();
if (shape->getType() == Shape::SPHERE_SHAPE) { if (shape->getType() == Shape::SPHERE_SHAPE) {
// shapes are stored in world-frame, so we have to transform into model frame // shapes are stored in world-frame, so we have to transform into model frame
glm::vec3 position = shape->getPosition() - _translation; glm::vec3 position = shape->getCenter() - _translation;
glTranslatef(position.x, position.y, position.z); glTranslatef(position.x, position.y, position.z);
const glm::quat& rotation = shape->getRotation(); const glm::quat& rotation = shape->getRotation();
glm::vec3 axis = glm::axis(rotation); glm::vec3 axis = glm::axis(rotation);

View file

@ -757,7 +757,7 @@ bool findShapeCollisionsOp(OctreeElement* element, void* extraData) {
// coarse check against bounds // coarse check against bounds
AACube cube = element->getAACube(); AACube cube = element->getAACube();
cube.scale(TREE_SCALE); cube.scale(TREE_SCALE);
if (!cube.expandedContains(args->shape->getPosition(), args->shape->getBoundingRadius())) { if (!cube.expandedContains(args->shape->getCenter(), args->shape->getBoundingRadius())) {
return false; return false;
} }
if (!element->isLeaf()) { if (!element->isLeaf()) {

View file

@ -14,7 +14,7 @@
// ListShapeEntry // ListShapeEntry
void ListShapeEntry::updateTransform(const glm::vec3& rootPosition, const glm::quat& rootRotation) { void ListShapeEntry::updateTransform(const glm::vec3& rootPosition, const glm::quat& rootRotation) {
_shape->setPosition(rootPosition + rootRotation * _localPosition); _shape->setCenter(rootPosition + rootRotation * _localPosition);
_shape->setRotation(_localRotation * rootRotation); _shape->setRotation(_localRotation * rootRotation);
} }
@ -26,7 +26,7 @@ ListShape::~ListShape() {
void ListShape::setPosition(const glm::vec3& position) { void ListShape::setPosition(const glm::vec3& position) {
_subShapeTransformsAreDirty = true; _subShapeTransformsAreDirty = true;
Shape::setPosition(position); Shape::setCenter(position);
} }
void ListShape::setRotation(const glm::quat& rotation) { void ListShape::setRotation(const glm::quat& rotation) {

View file

@ -43,6 +43,7 @@ public:
~ListShape(); ~ListShape();
void setPosition(const glm::vec3& position); void setPosition(const glm::vec3& position);
glm::vec3 getPosition() const { return _position; }
void setRotation(const glm::quat& rotation); void setRotation(const glm::quat& rotation);
const Shape* getSubShape(int index) const; const Shape* getSubShape(int index) const;

View file

@ -76,7 +76,7 @@ void DistanceConstraint::updateProxyShape(Shape* shape, const glm::quat& rotatio
case Shape::SPHERE_SHAPE: { case Shape::SPHERE_SHAPE: {
// sphere collides at endPoint // sphere collides at endPoint
SphereShape* sphere = static_cast<SphereShape*>(shape); SphereShape* sphere = static_cast<SphereShape*>(shape);
sphere->setPosition(translation + rotation * (*_points[1])); sphere->setCenter(translation + rotation * (*_points[1]));
} }
break; break;
case Shape::CAPSULE_SHAPE: { case Shape::CAPSULE_SHAPE: {

View file

@ -32,15 +32,18 @@ public:
int getType() const { return _type; } int getType() const { return _type; }
float getBoundingRadius() const { return _boundingRadius; } float getBoundingRadius() const { return _boundingRadius; }
const glm::vec3& getPosition() const { return _position; } // const glm::vec3& getPosition() const { return _position; }
const glm::quat& getRotation() const { return _rotation; } const glm::quat& getRotation() const { return _rotation; }
virtual void setPosition(const glm::vec3& position) { _position = position; } // virtual void setPosition(const glm::vec3& position) { _position = position; }
virtual void setRotation(const glm::quat& rotation) { _rotation = rotation; } virtual void setRotation(const glm::quat& rotation) { _rotation = rotation; }
void setEntity(PhysicalEntity* entity) { _owningEntity = entity; } void setEntity(PhysicalEntity* entity) { _owningEntity = entity; }
PhysicalEntity* getEntity() const { return _owningEntity; } PhysicalEntity* getEntity() const { return _owningEntity; }
virtual void setCenter(const glm::vec3& center) { _position = center; }
virtual glm::vec3 getCenter() const { return _position; }
protected: protected:
// these ctors are protected (used by derived classes only) // these ctors are protected (used by derived classes only)
Shape(Type type) : _type(type), _owningEntity(NULL), _boundingRadius(0.f), _position(0.f), _rotation() {} Shape(Type type) : _type(type), _owningEntity(NULL), _boundingRadius(0.f), _position(0.f), _rotation() {}

View file

@ -157,7 +157,7 @@ bool collideShapeWithAACube(const Shape* shapeA, const glm::vec3& cubeCenter, fl
} }
bool sphereSphere(const SphereShape* sphereA, const SphereShape* sphereB, CollisionList& collisions) { bool sphereSphere(const SphereShape* sphereA, const SphereShape* sphereB, CollisionList& collisions) {
glm::vec3 BA = sphereB->getPosition() - sphereA->getPosition(); glm::vec3 BA = sphereB->getCenter() - sphereA->getCenter();
float distanceSquared = glm::dot(BA, BA); float distanceSquared = glm::dot(BA, BA);
float totalRadius = sphereA->getRadius() + sphereB->getRadius(); float totalRadius = sphereA->getRadius() + sphereB->getRadius();
if (distanceSquared < totalRadius * totalRadius) { if (distanceSquared < totalRadius * totalRadius) {
@ -175,7 +175,7 @@ bool sphereSphere(const SphereShape* sphereA, const SphereShape* sphereB, Collis
if (collision) { if (collision) {
collision->_penetration = BA * (totalRadius - distance); collision->_penetration = BA * (totalRadius - distance);
// contactPoint is on surface of A // contactPoint is on surface of A
collision->_contactPoint = sphereA->getPosition() + sphereA->getRadius() * BA; collision->_contactPoint = sphereA->getCenter() + sphereA->getRadius() * BA;
collision->_shapeA = sphereA; collision->_shapeA = sphereA;
collision->_shapeB = sphereB; collision->_shapeB = sphereB;
return true; return true;
@ -186,7 +186,7 @@ bool sphereSphere(const SphereShape* sphereA, const SphereShape* sphereB, Collis
bool sphereCapsule(const SphereShape* sphereA, const CapsuleShape* capsuleB, CollisionList& collisions) { bool sphereCapsule(const SphereShape* sphereA, const CapsuleShape* capsuleB, CollisionList& collisions) {
// find sphereA's closest approach to axis of capsuleB // find sphereA's closest approach to axis of capsuleB
glm::vec3 BA = capsuleB->getPosition() - sphereA->getPosition(); glm::vec3 BA = capsuleB->getCenter() - sphereA->getCenter();
glm::vec3 capsuleAxis; glm::vec3 capsuleAxis;
capsuleB->computeNormalizedAxis(capsuleAxis); capsuleB->computeNormalizedAxis(capsuleAxis);
float axialDistance = - glm::dot(BA, capsuleAxis); float axialDistance = - glm::dot(BA, capsuleAxis);
@ -221,7 +221,7 @@ bool sphereCapsule(const SphereShape* sphereA, const CapsuleShape* capsuleB, Col
// penetration points from A into B // penetration points from A into B
collision->_penetration = (totalRadius - radialDistance) * radialAxis; // points from A into B collision->_penetration = (totalRadius - radialDistance) * radialAxis; // points from A into B
// contactPoint is on surface of sphereA // contactPoint is on surface of sphereA
collision->_contactPoint = sphereA->getPosition() + sphereA->getRadius() * radialAxis; collision->_contactPoint = sphereA->getCenter() + sphereA->getRadius() * radialAxis;
collision->_shapeA = sphereA; collision->_shapeA = sphereA;
collision->_shapeB = capsuleB; collision->_shapeB = capsuleB;
} else { } else {
@ -244,7 +244,7 @@ bool sphereCapsule(const SphereShape* sphereA, const CapsuleShape* capsuleB, Col
float sign = (axialDistance > 0.0f) ? -1.0f : 1.0f; float sign = (axialDistance > 0.0f) ? -1.0f : 1.0f;
collision->_penetration = (sign * (totalRadius + capsuleB->getHalfHeight() - absAxialDistance)) * capsuleAxis; collision->_penetration = (sign * (totalRadius + capsuleB->getHalfHeight() - absAxialDistance)) * capsuleAxis;
// contactPoint is on surface of sphereA // contactPoint is on surface of sphereA
collision->_contactPoint = sphereA->getPosition() + (sign * sphereA->getRadius()) * capsuleAxis; collision->_contactPoint = sphereA->getCenter() + (sign * sphereA->getRadius()) * capsuleAxis;
collision->_shapeA = sphereA; collision->_shapeA = sphereA;
collision->_shapeB = capsuleB; collision->_shapeB = capsuleB;
} }
@ -255,13 +255,13 @@ bool sphereCapsule(const SphereShape* sphereA, const CapsuleShape* capsuleB, Col
bool spherePlane(const SphereShape* sphereA, const PlaneShape* planeB, CollisionList& collisions) { bool spherePlane(const SphereShape* sphereA, const PlaneShape* planeB, CollisionList& collisions) {
glm::vec3 penetration; glm::vec3 penetration;
if (findSpherePlanePenetration(sphereA->getPosition(), sphereA->getRadius(), planeB->getCoefficients(), penetration)) { if (findSpherePlanePenetration(sphereA->getCenter(), sphereA->getRadius(), planeB->getCoefficients(), penetration)) {
CollisionInfo* collision = collisions.getNewCollision(); CollisionInfo* collision = collisions.getNewCollision();
if (!collision) { if (!collision) {
return false; // collision list is full return false; // collision list is full
} }
collision->_penetration = penetration; collision->_penetration = penetration;
collision->_contactPoint = sphereA->getPosition() + sphereA->getRadius() * glm::normalize(penetration); collision->_contactPoint = sphereA->getCenter() + sphereA->getRadius() * glm::normalize(penetration);
collision->_shapeA = sphereA; collision->_shapeA = sphereA;
collision->_shapeB = planeB; collision->_shapeB = planeB;
return true; return true;
@ -271,7 +271,7 @@ bool spherePlane(const SphereShape* sphereA, const PlaneShape* planeB, Collision
bool capsuleSphere(const CapsuleShape* capsuleA, const SphereShape* sphereB, CollisionList& collisions) { bool capsuleSphere(const CapsuleShape* capsuleA, const SphereShape* sphereB, CollisionList& collisions) {
// find sphereB's closest approach to axis of capsuleA // find sphereB's closest approach to axis of capsuleA
glm::vec3 AB = capsuleA->getPosition() - sphereB->getPosition(); glm::vec3 AB = capsuleA->getCenter() - sphereB->getCenter();
glm::vec3 capsuleAxis; glm::vec3 capsuleAxis;
capsuleA->computeNormalizedAxis(capsuleAxis); capsuleA->computeNormalizedAxis(capsuleAxis);
float axialDistance = - glm::dot(AB, capsuleAxis); float axialDistance = - glm::dot(AB, capsuleAxis);
@ -287,14 +287,14 @@ bool capsuleSphere(const CapsuleShape* capsuleA, const SphereShape* sphereB, Col
} }
// closestApproach = point on capsuleA's axis that is closest to sphereB's center // closestApproach = point on capsuleA's axis that is closest to sphereB's center
glm::vec3 closestApproach = capsuleA->getPosition() + axialDistance * capsuleAxis; glm::vec3 closestApproach = capsuleA->getCenter() + axialDistance * capsuleAxis;
if (absAxialDistance > capsuleA->getHalfHeight()) { if (absAxialDistance > capsuleA->getHalfHeight()) {
// sphere hits capsule on a cap // sphere hits capsule on a cap
// --> recompute radialAxis and closestApproach // --> recompute radialAxis and closestApproach
float sign = (axialDistance > 0.0f) ? 1.0f : -1.0f; float sign = (axialDistance > 0.0f) ? 1.0f : -1.0f;
closestApproach = capsuleA->getPosition() + (sign * capsuleA->getHalfHeight()) * capsuleAxis; closestApproach = capsuleA->getCenter() + (sign * capsuleA->getHalfHeight()) * capsuleAxis;
radialAxis = closestApproach - sphereB->getPosition(); radialAxis = closestApproach - sphereB->getCenter();
radialDistance2 = glm::length2(radialAxis); radialDistance2 = glm::length2(radialAxis);
if (radialDistance2 > totalRadius2) { if (radialDistance2 > totalRadius2) {
return false; return false;
@ -349,8 +349,8 @@ bool capsuleCapsule(const CapsuleShape* capsuleA, const CapsuleShape* capsuleB,
capsuleA->computeNormalizedAxis(axisA); capsuleA->computeNormalizedAxis(axisA);
glm::vec3 axisB; glm::vec3 axisB;
capsuleB->computeNormalizedAxis(axisB); capsuleB->computeNormalizedAxis(axisB);
glm::vec3 centerA = capsuleA->getPosition(); glm::vec3 centerA = capsuleA->getCenter();
glm::vec3 centerB = capsuleB->getPosition(); glm::vec3 centerB = capsuleB->getCenter();
// NOTE: The formula for closest approach between two lines is: // NOTE: The formula for closest approach between two lines is:
// d = [(B - A) . (a - (a.b)b)] / (1 - (a.b)^2) // d = [(B - A) . (a - (a.b)b)] / (1 - (a.b)^2)
@ -505,13 +505,13 @@ bool capsulePlane(const CapsuleShape* capsuleA, const PlaneShape* planeB, Collis
bool planeSphere(const PlaneShape* planeA, const SphereShape* sphereB, CollisionList& collisions) { bool planeSphere(const PlaneShape* planeA, const SphereShape* sphereB, CollisionList& collisions) {
glm::vec3 penetration; glm::vec3 penetration;
if (findSpherePlanePenetration(sphereB->getPosition(), sphereB->getRadius(), planeA->getCoefficients(), penetration)) { if (findSpherePlanePenetration(sphereB->getCenter(), sphereB->getRadius(), planeA->getCoefficients(), penetration)) {
CollisionInfo* collision = collisions.getNewCollision(); CollisionInfo* collision = collisions.getNewCollision();
if (!collision) { if (!collision) {
return false; // collision list is full return false; // collision list is full
} }
collision->_penetration = -penetration; collision->_penetration = -penetration;
collision->_contactPoint = sphereB->getPosition() + collision->_contactPoint = sphereB->getCenter() +
(sphereB->getRadius() / glm::length(penetration) - 1.0f) * penetration; (sphereB->getRadius() / glm::length(penetration) - 1.0f) * penetration;
collision->_shapeA = planeA; collision->_shapeA = planeA;
collision->_shapeB = sphereB; collision->_shapeB = sphereB;
@ -803,21 +803,21 @@ bool sphereAACube_StarkAngles(const glm::vec3& sphereCenter, float sphereRadius,
*/ */
bool sphereAACube(const SphereShape* sphereA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions) { bool sphereAACube(const SphereShape* sphereA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions) {
return sphereAACube(sphereA->getPosition(), sphereA->getRadius(), cubeCenter, cubeSide, collisions); return sphereAACube(sphereA->getCenter(), sphereA->getRadius(), cubeCenter, cubeSide, collisions);
} }
bool capsuleAACube(const CapsuleShape* capsuleA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions) { bool capsuleAACube(const CapsuleShape* capsuleA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions) {
// find nerest approach of capsule line segment to cube // find nerest approach of capsule line segment to cube
glm::vec3 capsuleAxis; glm::vec3 capsuleAxis;
capsuleA->computeNormalizedAxis(capsuleAxis); capsuleA->computeNormalizedAxis(capsuleAxis);
float offset = glm::dot(cubeCenter - capsuleA->getPosition(), capsuleAxis); float offset = glm::dot(cubeCenter - capsuleA->getCenter(), capsuleAxis);
float halfHeight = capsuleA->getHalfHeight(); float halfHeight = capsuleA->getHalfHeight();
if (offset > halfHeight) { if (offset > halfHeight) {
offset = halfHeight; offset = halfHeight;
} else if (offset < -halfHeight) { } else if (offset < -halfHeight) {
offset = -halfHeight; offset = -halfHeight;
} }
glm::vec3 nearestApproach = capsuleA->getPosition() + offset * capsuleAxis; glm::vec3 nearestApproach = capsuleA->getCenter() + offset * capsuleAxis;
// collide nearest approach like a sphere at that point // collide nearest approach like a sphere at that point
return sphereAACube(nearestApproach, capsuleA->getRadius(), cubeCenter, cubeSide, collisions); return sphereAACube(nearestApproach, capsuleA->getRadius(), cubeCenter, cubeSide, collisions);
} }

View file

@ -75,7 +75,7 @@ void SimulationEngine::stepForward(float deltaTime, float minError, int maxItera
int numDolls = _dolls.size(); int numDolls = _dolls.size();
for (int i = 0; i < numDolls; ++i) { for (int i = 0; i < numDolls; ++i) {
// TODO: need to implement: // TODO: Andrew need to implement:
// (1) joints pull points (SpecialCapsuleShape would help solve this) // (1) joints pull points (SpecialCapsuleShape would help solve this)
// (2) points slam shapes (SpecialCapsuleShape would help solve this) // (2) points slam shapes (SpecialCapsuleShape would help solve this)
// (3) shapes collide with pairwise collision bypass // (3) shapes collide with pairwise collision bypass

View file

@ -122,8 +122,8 @@ void ShapeColliderTests::sphereTouchesSphere() {
} }
// contactPoint is on surface of sphereA // contactPoint is on surface of sphereA
glm::vec3 AtoB = sphereB.getPosition() - sphereA.getPosition(); glm::vec3 AtoB = sphereB.getCenter() - sphereA.getCenter();
glm::vec3 expectedContactPoint = sphereA.getPosition() + radiusA * glm::normalize(AtoB); glm::vec3 expectedContactPoint = sphereA.getCenter() + radiusA * glm::normalize(AtoB);
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint); inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) { if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -152,8 +152,8 @@ void ShapeColliderTests::sphereTouchesSphere() {
} }
// contactPoint is on surface of sphereA // contactPoint is on surface of sphereA
glm::vec3 BtoA = sphereA.getPosition() - sphereB.getPosition(); glm::vec3 BtoA = sphereA.getCenter() - sphereB.getCenter();
glm::vec3 expectedContactPoint = sphereB.getPosition() + radiusB * glm::normalize(BtoA); glm::vec3 expectedContactPoint = sphereB.getCenter() + radiusB * glm::normalize(BtoA);
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint); inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) { if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -181,7 +181,7 @@ void ShapeColliderTests::sphereMissesCapsule() {
glm::quat rotation = glm::angleAxis(angle, axis); glm::quat rotation = glm::angleAxis(angle, axis);
glm::vec3 translation(15.1f, -27.1f, -38.6f); glm::vec3 translation(15.1f, -27.1f, -38.6f);
capsuleB.setRotation(rotation); capsuleB.setRotation(rotation);
capsuleB.setPosition(translation); capsuleB.setCenter(translation);
CollisionList collisions(16); CollisionList collisions(16);
@ -192,7 +192,7 @@ void ShapeColliderTests::sphereMissesCapsule() {
for (int i = 0; i < numberOfSteps; ++i) { for (int i = 0; i < numberOfSteps; ++i) {
// translate sphereA into world-frame // translate sphereA into world-frame
glm::vec3 localPosition = localStartPosition + ((float)i * delta) * yAxis; glm::vec3 localPosition = localStartPosition + ((float)i * delta) * yAxis;
sphereA.setPosition(rotation * localPosition + translation); sphereA.setCenter(rotation * localPosition + translation);
// sphereA agains capsuleB // sphereA agains capsuleB
if (ShapeCollider::collideShapes(&sphereA, &capsuleB, collisions)) if (ShapeCollider::collideShapes(&sphereA, &capsuleB, collisions))
@ -235,7 +235,7 @@ void ShapeColliderTests::sphereTouchesCapsule() {
int numCollisions = 0; int numCollisions = 0;
{ // sphereA collides with capsuleB's cylindrical wall { // sphereA collides with capsuleB's cylindrical wall
sphereA.setPosition(radialOffset * xAxis); sphereA.setCenter(radialOffset * xAxis);
if (!ShapeCollider::collideShapes(&sphereA, &capsuleB, collisions)) if (!ShapeCollider::collideShapes(&sphereA, &capsuleB, collisions))
{ {
@ -257,7 +257,7 @@ void ShapeColliderTests::sphereTouchesCapsule() {
} }
// contactPoint is on surface of sphereA // contactPoint is on surface of sphereA
glm::vec3 expectedContactPoint = sphereA.getPosition() - radiusA * xAxis; glm::vec3 expectedContactPoint = sphereA.getCenter() - radiusA * xAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint); inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) { if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -286,8 +286,8 @@ void ShapeColliderTests::sphereTouchesCapsule() {
} }
// contactPoint is on surface of capsuleB // contactPoint is on surface of capsuleB
glm::vec3 BtoA = sphereA.getPosition() - capsuleB.getPosition(); glm::vec3 BtoA = sphereA.getCenter() - capsuleB.getCenter();
glm::vec3 closestApproach = capsuleB.getPosition() + glm::dot(BtoA, yAxis) * yAxis; glm::vec3 closestApproach = capsuleB.getCenter() + glm::dot(BtoA, yAxis) * yAxis;
expectedContactPoint = closestApproach + radiusB * glm::normalize(BtoA - closestApproach); expectedContactPoint = closestApproach + radiusB * glm::normalize(BtoA - closestApproach);
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint); inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) { if (fabs(inaccuracy) > EPSILON) {
@ -298,7 +298,7 @@ void ShapeColliderTests::sphereTouchesCapsule() {
} }
{ // sphereA hits end cap at axis { // sphereA hits end cap at axis
glm::vec3 axialOffset = (halfHeightB + alpha * radiusA + beta * radiusB) * yAxis; glm::vec3 axialOffset = (halfHeightB + alpha * radiusA + beta * radiusB) * yAxis;
sphereA.setPosition(axialOffset * yAxis); sphereA.setCenter(axialOffset * yAxis);
if (!ShapeCollider::collideShapes(&sphereA, &capsuleB, collisions)) if (!ShapeCollider::collideShapes(&sphereA, &capsuleB, collisions))
{ {
@ -320,7 +320,7 @@ void ShapeColliderTests::sphereTouchesCapsule() {
} }
// contactPoint is on surface of sphereA // contactPoint is on surface of sphereA
glm::vec3 expectedContactPoint = sphereA.getPosition() - radiusA * yAxis; glm::vec3 expectedContactPoint = sphereA.getCenter() - radiusA * yAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint); inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) { if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -361,7 +361,7 @@ void ShapeColliderTests::sphereTouchesCapsule() {
} }
{ // sphereA hits start cap at axis { // sphereA hits start cap at axis
glm::vec3 axialOffset = - (halfHeightB + alpha * radiusA + beta * radiusB) * yAxis; glm::vec3 axialOffset = - (halfHeightB + alpha * radiusA + beta * radiusB) * yAxis;
sphereA.setPosition(axialOffset * yAxis); sphereA.setCenter(axialOffset * yAxis);
if (!ShapeCollider::collideShapes(&sphereA, &capsuleB, collisions)) if (!ShapeCollider::collideShapes(&sphereA, &capsuleB, collisions))
{ {
@ -383,7 +383,7 @@ void ShapeColliderTests::sphereTouchesCapsule() {
} }
// contactPoint is on surface of sphereA // contactPoint is on surface of sphereA
glm::vec3 expectedContactPoint = sphereA.getPosition() + radiusA * yAxis; glm::vec3 expectedContactPoint = sphereA.getCenter() + radiusA * yAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint); inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) { if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -445,7 +445,7 @@ void ShapeColliderTests::capsuleMissesCapsule() {
CollisionList collisions(16); CollisionList collisions(16);
// side by side // side by side
capsuleB.setPosition((1.01f * totalRadius) * xAxis); capsuleB.setCenter((1.01f * totalRadius) * xAxis);
if (ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions)) if (ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions))
{ {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -460,7 +460,7 @@ void ShapeColliderTests::capsuleMissesCapsule() {
} }
// end to end // end to end
capsuleB.setPosition((1.01f * totalHalfLength) * xAxis); capsuleB.setCenter((1.01f * totalHalfLength) * xAxis);
if (ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions)) if (ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions))
{ {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -477,7 +477,7 @@ void ShapeColliderTests::capsuleMissesCapsule() {
// rotate B and move it to the side // rotate B and move it to the side
glm::quat rotation = glm::angleAxis(PI_OVER_TWO, zAxis); glm::quat rotation = glm::angleAxis(PI_OVER_TWO, zAxis);
capsuleB.setRotation(rotation); capsuleB.setRotation(rotation);
capsuleB.setPosition((1.01f * (totalRadius + capsuleB.getHalfHeight())) * xAxis); capsuleB.setCenter((1.01f * (totalRadius + capsuleB.getHalfHeight())) * xAxis);
if (ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions)) if (ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions))
{ {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -515,7 +515,7 @@ void ShapeColliderTests::capsuleTouchesCapsule() {
int numCollisions = 0; int numCollisions = 0;
{ // side by side { // side by side
capsuleB.setPosition((0.99f * totalRadius) * xAxis); capsuleB.setCenter((0.99f * totalRadius) * xAxis);
if (!ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions)) if (!ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions))
{ {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -535,7 +535,7 @@ void ShapeColliderTests::capsuleTouchesCapsule() {
} }
{ // end to end { // end to end
capsuleB.setPosition((0.99f * totalHalfLength) * yAxis); capsuleB.setCenter((0.99f * totalHalfLength) * yAxis);
if (!ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions)) if (!ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions))
{ {
@ -558,7 +558,7 @@ void ShapeColliderTests::capsuleTouchesCapsule() {
{ // rotate B and move it to the side { // rotate B and move it to the side
glm::quat rotation = glm::angleAxis(PI_OVER_TWO, zAxis); glm::quat rotation = glm::angleAxis(PI_OVER_TWO, zAxis);
capsuleB.setRotation(rotation); capsuleB.setRotation(rotation);
capsuleB.setPosition((0.99f * (totalRadius + capsuleB.getHalfHeight())) * xAxis); capsuleB.setCenter((0.99f * (totalRadius + capsuleB.getHalfHeight())) * xAxis);
if (!ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions)) if (!ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions))
{ {
@ -583,7 +583,7 @@ void ShapeColliderTests::capsuleTouchesCapsule() {
glm::quat rotation = glm::angleAxis(PI_OVER_TWO, zAxis); glm::quat rotation = glm::angleAxis(PI_OVER_TWO, zAxis);
capsuleB.setRotation(rotation); capsuleB.setRotation(rotation);
glm::vec3 positionB = ((totalRadius + capsuleB.getHalfHeight()) - overlap) * xAxis; glm::vec3 positionB = ((totalRadius + capsuleB.getHalfHeight()) - overlap) * xAxis;
capsuleB.setPosition(positionB); capsuleB.setCenter(positionB);
// capsuleA vs capsuleB // capsuleA vs capsuleB
if (!ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions)) if (!ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions))
@ -604,7 +604,7 @@ void ShapeColliderTests::capsuleTouchesCapsule() {
<< " actual = " << collision->_penetration; << " actual = " << collision->_penetration;
} }
glm::vec3 expectedContactPoint = capsuleA.getPosition() + radiusA * xAxis; glm::vec3 expectedContactPoint = capsuleA.getCenter() + radiusA * xAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint); inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) { if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -632,7 +632,7 @@ void ShapeColliderTests::capsuleTouchesCapsule() {
<< std::endl; << std::endl;
} }
expectedContactPoint = capsuleB.getPosition() - (radiusB + halfHeightB) * xAxis; expectedContactPoint = capsuleB.getCenter() - (radiusB + halfHeightB) * xAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint); inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) { if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -648,7 +648,7 @@ void ShapeColliderTests::capsuleTouchesCapsule() {
glm::quat rotation = glm::angleAxis(PI_OVER_TWO, zAxis); glm::quat rotation = glm::angleAxis(PI_OVER_TWO, zAxis);
capsuleB.setRotation(rotation); capsuleB.setRotation(rotation);
glm::vec3 positionB = (totalRadius - overlap) * zAxis + shift * yAxis; glm::vec3 positionB = (totalRadius - overlap) * zAxis + shift * yAxis;
capsuleB.setPosition(positionB); capsuleB.setCenter(positionB);
// capsuleA vs capsuleB // capsuleA vs capsuleB
if (!ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions)) if (!ShapeCollider::collideShapes(&capsuleA, &capsuleB, collisions))
@ -670,7 +670,7 @@ void ShapeColliderTests::capsuleTouchesCapsule() {
<< std::endl; << std::endl;
} }
glm::vec3 expectedContactPoint = capsuleA.getPosition() + radiusA * zAxis + shift * yAxis; glm::vec3 expectedContactPoint = capsuleA.getCenter() + radiusA * zAxis + shift * yAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint); inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) { if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ std::cout << __FILE__ << ":" << __LINE__
@ -707,7 +707,7 @@ void ShapeColliderTests::sphereTouchesAACubeFaces() {
float overlap = 0.25f; float overlap = 0.25f;
float sphereOffset = 0.5f * cubeSide + sphereRadius - overlap; float sphereOffset = 0.5f * cubeSide + sphereRadius - overlap;
sphereCenter = cubeCenter + sphereOffset * axis; sphereCenter = cubeCenter + sphereOffset * axis;
sphere.setPosition(sphereCenter); sphere.setCenter(sphereCenter);
if (!ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){ if (!ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube. axis = " << axis << std::endl; std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube. axis = " << axis << std::endl;
@ -740,7 +740,7 @@ void ShapeColliderTests::sphereTouchesAACubeFaces() {
float overlap = 1.25f * sphereRadius; float overlap = 1.25f * sphereRadius;
float sphereOffset = 0.5f * cubeSide + sphereRadius - overlap; float sphereOffset = 0.5f * cubeSide + sphereRadius - overlap;
sphereCenter = cubeCenter + sphereOffset * axis; sphereCenter = cubeCenter + sphereOffset * axis;
sphere.setPosition(sphereCenter); sphere.setCenter(sphereCenter);
if (!ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){ if (!ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube." std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube."
@ -814,7 +814,7 @@ void ShapeColliderTests::sphereTouchesAACubeEdges() {
float overlap = 0.25f; float overlap = 0.25f;
sphereCenter = cubeCenter + (lengthAxis * 0.5f * cubeSide + sphereRadius - overlap) * axis; sphereCenter = cubeCenter + (lengthAxis * 0.5f * cubeSide + sphereRadius - overlap) * axis;
sphere.setPosition(sphereCenter); sphere.setCenter(sphereCenter);
if (!ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){ if (!ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube. axis = " << axis << std::endl; std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube. axis = " << axis << std::endl;
@ -856,42 +856,42 @@ void ShapeColliderTests::sphereMissesAACube() {
// top // top
sphereCenter = cubeCenter + sphereOffset * yAxis; sphereCenter = cubeCenter + sphereOffset * yAxis;
sphere.setPosition(sphereCenter); sphere.setCenter(sphereCenter);
if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){ if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl; std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
} }
// bottom // bottom
sphereCenter = cubeCenter - sphereOffset * yAxis; sphereCenter = cubeCenter - sphereOffset * yAxis;
sphere.setPosition(sphereCenter); sphere.setCenter(sphereCenter);
if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){ if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl; std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
} }
// left // left
sphereCenter = cubeCenter + sphereOffset * xAxis; sphereCenter = cubeCenter + sphereOffset * xAxis;
sphere.setPosition(sphereCenter); sphere.setCenter(sphereCenter);
if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){ if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl; std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
} }
// right // right
sphereCenter = cubeCenter - sphereOffset * xAxis; sphereCenter = cubeCenter - sphereOffset * xAxis;
sphere.setPosition(sphereCenter); sphere.setCenter(sphereCenter);
if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){ if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl; std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
} }
// forward // forward
sphereCenter = cubeCenter + sphereOffset * zAxis; sphereCenter = cubeCenter + sphereOffset * zAxis;
sphere.setPosition(sphereCenter); sphere.setCenter(sphereCenter);
if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){ if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl; std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
} }
// back // back
sphereCenter = cubeCenter - sphereOffset * zAxis; sphereCenter = cubeCenter - sphereOffset * zAxis;
sphere.setPosition(sphereCenter); sphere.setCenter(sphereCenter);
if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){ if (ShapeCollider::sphereAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl; std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
} }