Merge remote-tracking branch 'upstream/master' into slaps

This commit is contained in:
Philip Rosedale 2013-12-16 18:00:02 -08:00
commit 4bf4ba22bd
12 changed files with 541 additions and 396 deletions

View file

@ -10,7 +10,6 @@
#include <fcntl.h> #include <fcntl.h>
#include <fstream> #include <fstream>
#include <iostream> #include <iostream>
#include <limits>
#include <math.h> #include <math.h>
#include <signal.h> #include <signal.h>
#include <stdio.h> #include <stdio.h>
@ -54,10 +53,7 @@
const short JITTER_BUFFER_MSECS = 12; const short JITTER_BUFFER_MSECS = 12;
const short JITTER_BUFFER_SAMPLES = JITTER_BUFFER_MSECS * (SAMPLE_RATE / 1000.0); const short JITTER_BUFFER_SAMPLES = JITTER_BUFFER_MSECS * (SAMPLE_RATE / 1000.0);
const unsigned int BUFFER_SEND_INTERVAL_USECS = floorf((BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float) SAMPLE_RATE) * 1000 * 1000); const unsigned int BUFFER_SEND_INTERVAL_USECS = floorf((NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float) SAMPLE_RATE) * 1000 * 1000);
const int MAX_SAMPLE_VALUE = std::numeric_limits<int16_t>::max();
const int MIN_SAMPLE_VALUE = std::numeric_limits<int16_t>::min();
const char AUDIO_MIXER_LOGGING_TARGET_NAME[] = "audio-mixer"; const char AUDIO_MIXER_LOGGING_TARGET_NAME[] = "audio-mixer";
@ -160,35 +156,30 @@ void AudioMixer::addBufferToMixForListeningNodeWithBuffer(PositionalAudioRingBuf
} }
} }
int16_t* sourceBuffer = bufferToAdd->getNextOutput(); // if the bearing relative angle to source is > 0 then the delayed channel is the right one
int delayedChannelOffset = (bearingRelativeAngleToSource > 0.0f) ? 1 : 0;
int goodChannelOffset = delayedChannelOffset == 0 ? 1 : 0;
int16_t* goodChannel = (bearingRelativeAngleToSource > 0.0f) for (int s = 0; s < NETWORK_BUFFER_LENGTH_SAMPLES_STEREO; s += 2) {
? _clientSamples if ((s / 2) < numSamplesDelay) {
: _clientSamples + BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
int16_t* delayedChannel = (bearingRelativeAngleToSource > 0.0f)
? _clientSamples + BUFFER_LENGTH_SAMPLES_PER_CHANNEL
: _clientSamples;
int16_t* delaySamplePointer = bufferToAdd->getNextOutput() == bufferToAdd->getBuffer()
? bufferToAdd->getBuffer() + RING_BUFFER_LENGTH_SAMPLES - numSamplesDelay
: bufferToAdd->getNextOutput() - numSamplesDelay;
for (int s = 0; s < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; s++) {
if (s < numSamplesDelay) {
// pull the earlier sample for the delayed channel // pull the earlier sample for the delayed channel
int earlierSample = delaySamplePointer[s] * attenuationCoefficient * weakChannelAmplitudeRatio; int earlierSample = (*bufferToAdd)[(s / 2) - numSamplesDelay] * attenuationCoefficient * weakChannelAmplitudeRatio;
delayedChannel[s] = glm::clamp(delayedChannel[s] + earlierSample, MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE); _clientSamples[s + delayedChannelOffset] = glm::clamp(_clientSamples[s + delayedChannelOffset] + earlierSample,
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
} }
// pull the current sample for the good channel // pull the current sample for the good channel
int16_t currentSample = sourceBuffer[s] * attenuationCoefficient; int16_t currentSample = (*bufferToAdd)[s / 2] * attenuationCoefficient;
goodChannel[s] = glm::clamp(goodChannel[s] + currentSample, MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE); _clientSamples[s + goodChannelOffset] = glm::clamp(_clientSamples[s + goodChannelOffset] + currentSample,
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
if (s + numSamplesDelay < BUFFER_LENGTH_SAMPLES_PER_CHANNEL) { if ((s / 2) + numSamplesDelay < NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL) {
// place the curernt sample at the right spot in the delayed channel // place the curernt sample at the right spot in the delayed channel
int sumSample = delayedChannel[s + numSamplesDelay] + (currentSample * weakChannelAmplitudeRatio); int16_t clampedSample = glm::clamp((int) (_clientSamples[s + numSamplesDelay + delayedChannelOffset]
delayedChannel[s + numSamplesDelay] = glm::clamp(sumSample, MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE); + (currentSample * weakChannelAmplitudeRatio)),
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
_clientSamples[s + numSamplesDelay + delayedChannelOffset] = clampedSample;
} }
} }
} }
@ -282,7 +273,7 @@ void AudioMixer::run() {
gettimeofday(&startTime, NULL); gettimeofday(&startTime, NULL);
int numBytesPacketHeader = numBytesForPacketHeader((unsigned char*) &PACKET_TYPE_MIXED_AUDIO); int numBytesPacketHeader = numBytesForPacketHeader((unsigned char*) &PACKET_TYPE_MIXED_AUDIO);
unsigned char clientPacket[BUFFER_LENGTH_BYTES_STEREO + numBytesPacketHeader]; unsigned char clientPacket[NETWORK_BUFFER_LENGTH_BYTES_STEREO + numBytesPacketHeader];
populateTypeAndVersion(clientPacket, PACKET_TYPE_MIXED_AUDIO); populateTypeAndVersion(clientPacket, PACKET_TYPE_MIXED_AUDIO);
while (!_isFinished) { while (!_isFinished) {

View file

@ -35,7 +35,7 @@ private:
void prepareMixForListeningNode(Node* node); void prepareMixForListeningNode(Node* node);
int16_t _clientSamples[BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2]; int16_t _clientSamples[NETWORK_BUFFER_LENGTH_SAMPLES_STEREO];
}; };
#endif /* defined(__hifi__AudioMixer__) */ #endif /* defined(__hifi__AudioMixer__) */

View file

@ -91,16 +91,14 @@ void AudioMixerClientData::pushBuffersAfterFrameSend() {
PositionalAudioRingBuffer* audioBuffer = _ringBuffers[i]; PositionalAudioRingBuffer* audioBuffer = _ringBuffers[i];
if (audioBuffer->willBeAddedToMix()) { if (audioBuffer->willBeAddedToMix()) {
audioBuffer->setNextOutput(audioBuffer->getNextOutput() + BUFFER_LENGTH_SAMPLES_PER_CHANNEL); audioBuffer->shiftReadPosition(NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
if (audioBuffer->getNextOutput() >= audioBuffer->getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
audioBuffer->setNextOutput(audioBuffer->getBuffer());
}
audioBuffer->setWillBeAddedToMix(false); audioBuffer->setWillBeAddedToMix(false);
} else if (audioBuffer->hasStarted() && audioBuffer->isStarved()) { } else if (audioBuffer->isStarved()) {
delete audioBuffer; // this was previously the kill for injected audio from a client
_ringBuffers.erase(_ringBuffers.begin() + i); // fix when that is added back
// delete audioBuffer;
// _ringBuffers.erase(_ringBuffers.begin() + i);
} }
} }
} }

View file

@ -72,7 +72,7 @@ const int IDLE_SIMULATE_MSECS = 16; // How often should call simul
// in the idle loop? (60 FPS is default) // in the idle loop? (60 FPS is default)
static QTimer* idleTimer = NULL; static QTimer* idleTimer = NULL;
const int STARTUP_JITTER_SAMPLES = PACKET_LENGTH_SAMPLES_PER_CHANNEL / 2; const int STARTUP_JITTER_SAMPLES = NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL / 2;
// Startup optimistically with small jitter buffer that // Startup optimistically with small jitter buffer that
// will start playback on the second received audio packet. // will start playback on the second received audio packet.

View file

@ -13,6 +13,7 @@
#include <CoreAudio/AudioHardware.h> #include <CoreAudio/AudioHardware.h>
#endif #endif
#include <QtCore/QBuffer>
#include <QtMultimedia/QAudioInput> #include <QtMultimedia/QAudioInput>
#include <QtMultimedia/QAudioOutput> #include <QtMultimedia/QAudioOutput>
#include <QSvgRenderer> #include <QSvgRenderer>
@ -33,7 +34,7 @@
static const float JITTER_BUFFER_LENGTH_MSECS = 12; static const float JITTER_BUFFER_LENGTH_MSECS = 12;
static const short JITTER_BUFFER_SAMPLES = JITTER_BUFFER_LENGTH_MSECS * NUM_AUDIO_CHANNELS * (SAMPLE_RATE / 1000.0); static const short JITTER_BUFFER_SAMPLES = JITTER_BUFFER_LENGTH_MSECS * NUM_AUDIO_CHANNELS * (SAMPLE_RATE / 1000.0);
static const float AUDIO_CALLBACK_MSECS = (float)BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float)SAMPLE_RATE * 1000.0; static const float AUDIO_CALLBACK_MSECS = (float) NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float)SAMPLE_RATE * 1000.0;
// Mute icon configration // Mute icon configration
static const int ICON_SIZE = 24; static const int ICON_SIZE = 24;
@ -43,12 +44,16 @@ static const int BOTTOM_PADDING = 110;
Audio::Audio(Oscilloscope* scope, int16_t initialJitterBufferSamples, QObject* parent) : Audio::Audio(Oscilloscope* scope, int16_t initialJitterBufferSamples, QObject* parent) :
QObject(parent), QObject(parent),
_audioInput(NULL), _audioInput(NULL),
_inputDevice(NULL), _desiredInputFormat(),
_inputFormat(),
_numInputCallbackBytes(0),
_audioOutput(NULL), _audioOutput(NULL),
_desiredOutputFormat(),
_outputFormat(),
_outputDevice(NULL), _outputDevice(NULL),
_isBufferSendCallback(false), _numOutputCallbackBytes(0),
_nextOutputSamples(NULL), _inputRingBuffer(0),
_ringBuffer(true), _ringBuffer(NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL),
_scope(scope), _scope(scope),
_averagedLatency(0.0), _averagedLatency(0.0),
_measuredJitter(0), _measuredJitter(0),
@ -65,7 +70,8 @@ Audio::Audio(Oscilloscope* scope, int16_t initialJitterBufferSamples, QObject* p
_numFramesDisplayStarve(0), _numFramesDisplayStarve(0),
_muted(false) _muted(false)
{ {
// clear the array of locally injected samples
memset(_localInjectedSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
} }
void Audio::init(QGLWidget *parent) { void Audio::init(QGLWidget *parent) {
@ -124,120 +130,218 @@ QAudioDeviceInfo defaultAudioDeviceForMode(QAudio::Mode mode) {
return (mode == QAudio::AudioInput) ? QAudioDeviceInfo::defaultInputDevice() : QAudioDeviceInfo::defaultOutputDevice(); return (mode == QAudio::AudioInput) ? QAudioDeviceInfo::defaultInputDevice() : QAudioDeviceInfo::defaultOutputDevice();
} }
const int QT_SAMPLE_RATE = 44100; bool adjustedFormatForAudioDevice(const QAudioDeviceInfo& audioDevice,
const int SAMPLE_RATE_RATIO = QT_SAMPLE_RATE / SAMPLE_RATE; const QAudioFormat& desiredAudioFormat,
QAudioFormat& adjustedAudioFormat) {
if (!audioDevice.isFormatSupported(desiredAudioFormat)) {
qDebug() << "The desired format for audio I/O is" << desiredAudioFormat << "\n";
qDebug() << "The desired audio format is not supported by this device.\n";
if (desiredAudioFormat.channelCount() == 1) {
adjustedAudioFormat = desiredAudioFormat;
adjustedAudioFormat.setChannelCount(2);
if (audioDevice.isFormatSupported(adjustedAudioFormat)) {
return true;
} else {
adjustedAudioFormat.setChannelCount(1);
}
}
if (audioDevice.supportedSampleRates().contains(SAMPLE_RATE * 2)) {
// use 48, which is a sample downsample, upsample
adjustedAudioFormat = desiredAudioFormat;
adjustedAudioFormat.setSampleRate(SAMPLE_RATE * 2);
// return the nearest in case it needs 2 channels
adjustedAudioFormat = audioDevice.nearestFormat(adjustedAudioFormat);
return true;
}
return false;
} else {
// set the adjustedAudioFormat to the desiredAudioFormat, since it will work
adjustedAudioFormat = desiredAudioFormat;
return true;
}
}
void linearResampling(int16_t* sourceSamples, int16_t* destinationSamples,
unsigned int numSourceSamples, unsigned int numDestinationSamples,
const QAudioFormat& sourceAudioFormat, const QAudioFormat& destinationAudioFormat) {
if (sourceAudioFormat == destinationAudioFormat) {
memcpy(destinationSamples, sourceSamples, numSourceSamples * sizeof(int16_t));
} else {
int destinationChannels = (destinationAudioFormat.channelCount() >= 2) ? 2 : destinationAudioFormat.channelCount();
float sourceToDestinationFactor = (sourceAudioFormat.sampleRate() / (float) destinationAudioFormat.sampleRate())
* (sourceAudioFormat.channelCount() / (float) destinationChannels);
// take into account the number of channels in source and destination
// accomodate for the case where have an output with > 2 channels
// this is the case with our HDMI capture
if (sourceToDestinationFactor >= 2) {
// we need to downsample from 48 to 24
// for now this only supports a mono output - this would be the case for audio input
for (int i = sourceAudioFormat.channelCount(); i < numSourceSamples; i += 2 * sourceAudioFormat.channelCount()) {
if (i + (sourceAudioFormat.channelCount()) >= numSourceSamples) {
destinationSamples[(i - sourceAudioFormat.channelCount()) / (int) sourceToDestinationFactor] =
(sourceSamples[i - sourceAudioFormat.channelCount()] / 2)
+ (sourceSamples[i] / 2);
} else {
destinationSamples[(i - sourceAudioFormat.channelCount()) / (int) sourceToDestinationFactor] =
(sourceSamples[i - sourceAudioFormat.channelCount()] / 4)
+ (sourceSamples[i] / 2)
+ (sourceSamples[i + sourceAudioFormat.channelCount()] / 4);
}
}
} else {
// upsample from 24 to 48
// for now this only supports a stereo to stereo conversion - this is our case for network audio to output
int sourceIndex = 0;
int destinationToSourceFactor = (1 / sourceToDestinationFactor);
for (int i = 0; i < numDestinationSamples; i += destinationAudioFormat.channelCount() * destinationToSourceFactor) {
sourceIndex = (i / destinationToSourceFactor);
// fill the L/R channels and make the rest silent
for (int j = i; j < i + (destinationToSourceFactor * destinationAudioFormat.channelCount()); j++) {
if (j % destinationAudioFormat.channelCount() == 0) {
// left channel
destinationSamples[j] = sourceSamples[sourceIndex];
} else if (j % destinationAudioFormat.channelCount() == 1) {
// right channel
destinationSamples[j] = sourceSamples[sourceIndex + 1];
} else {
// channels above 2, fill with silence
destinationSamples[j] = 0;
}
}
}
}
}
}
const int CALLBACK_ACCELERATOR_RATIO = 2; const int CALLBACK_ACCELERATOR_RATIO = 2;
const int CALLBACK_IO_BUFFER_SIZE = BUFFER_LENGTH_BYTES_STEREO * SAMPLE_RATE_RATIO / CALLBACK_ACCELERATOR_RATIO;
void Audio::start() { void Audio::start() {
QAudioFormat audioFormat;
// set up the desired audio format // set up the desired audio format
audioFormat.setSampleRate(QT_SAMPLE_RATE); _desiredInputFormat.setSampleRate(SAMPLE_RATE);
audioFormat.setSampleSize(16); _desiredInputFormat.setSampleSize(16);
audioFormat.setCodec("audio/pcm"); _desiredInputFormat.setCodec("audio/pcm");
audioFormat.setSampleType(QAudioFormat::SignedInt); _desiredInputFormat.setSampleType(QAudioFormat::SignedInt);
audioFormat.setByteOrder(QAudioFormat::LittleEndian); _desiredInputFormat.setByteOrder(QAudioFormat::LittleEndian);
audioFormat.setChannelCount(2); _desiredInputFormat.setChannelCount(1);
qDebug() << "The format for audio I/O is" << audioFormat << "\n"; _desiredOutputFormat = _desiredInputFormat;
_desiredOutputFormat.setChannelCount(2);
QAudioDeviceInfo inputAudioDevice = defaultAudioDeviceForMode(QAudio::AudioInput); QAudioDeviceInfo inputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioInput);
qDebug() << "Audio input device is" << inputAudioDevice.deviceName() << "\n"; qDebug() << "The audio input device is" << inputDeviceInfo.deviceName() << "\n";
if (!inputAudioDevice.isFormatSupported(audioFormat)) {
qDebug() << "The desired audio input format is not supported by this device. Not starting audio input.\n";
return;
}
_audioInput = new QAudioInput(inputAudioDevice, audioFormat, this); if (adjustedFormatForAudioDevice(inputDeviceInfo, _desiredInputFormat, _inputFormat)) {
_audioInput->setBufferSize(CALLBACK_IO_BUFFER_SIZE); qDebug() << "The format to be used for audio input is" << _inputFormat << "\n";
_inputDevice = _audioInput->start();
connect(_inputDevice, SIGNAL(readyRead()), SLOT(handleAudioInput())); _audioInput = new QAudioInput(inputDeviceInfo, _inputFormat, this);
_numInputCallbackBytes = NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL * _inputFormat.channelCount()
* (_inputFormat.sampleRate() / SAMPLE_RATE)
/ CALLBACK_ACCELERATOR_RATIO;
_audioInput->setBufferSize(_numInputCallbackBytes);
QAudioDeviceInfo outputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioOutput); QAudioDeviceInfo outputDeviceInfo = defaultAudioDeviceForMode(QAudio::AudioOutput);
qDebug() << outputDeviceInfo.supportedSampleRates() << "\n"; qDebug() << "The audio output device is" << outputDeviceInfo.deviceName() << "\n";
qDebug() << "Audio output device is" << outputDeviceInfo.deviceName() << "\n"; if (adjustedFormatForAudioDevice(outputDeviceInfo, _desiredOutputFormat, _outputFormat)) {
qDebug() << "The format to be used for audio output is" << _outputFormat << "\n";
if (!outputDeviceInfo.isFormatSupported(audioFormat)) { _inputRingBuffer.resizeForFrameSize(_numInputCallbackBytes * CALLBACK_ACCELERATOR_RATIO / sizeof(int16_t));
qDebug() << "The desired audio output format is not supported by this device.\n"; _inputDevice = _audioInput->start();
return; connect(_inputDevice, SIGNAL(readyRead()), this, SLOT(handleAudioInput()));
}
_audioOutput = new QAudioOutput(outputDeviceInfo, audioFormat, this); _audioOutput = new QAudioOutput(outputDeviceInfo, _outputFormat, this);
_audioOutput->setBufferSize(CALLBACK_IO_BUFFER_SIZE);
_outputDevice = _audioOutput->start(); _outputDevice = _audioOutput->start();
gettimeofday(&_lastReceiveTime, NULL); gettimeofday(&_lastReceiveTime, NULL);
}
return;
}
qDebug() << "Unable to set up audio I/O because of a problem with input or output formats.\n";
} }
void Audio::handleAudioInput() { void Audio::handleAudioInput() {
static int16_t stereoInputBuffer[CALLBACK_IO_BUFFER_SIZE * 2];
static char monoAudioDataPacket[MAX_PACKET_SIZE]; static char monoAudioDataPacket[MAX_PACKET_SIZE];
static int bufferSizeSamples = _audioInput->bufferSize() / sizeof(int16_t);
static int numBytesPacketHeader = numBytesForPacketHeader((unsigned char*) &PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO); static int numBytesPacketHeader = numBytesForPacketHeader((unsigned char*) &PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO);
static int leadingBytes = numBytesPacketHeader + sizeof(glm::vec3) + sizeof(glm::quat) + NUM_BYTES_RFC4122_UUID; static int leadingBytes = numBytesPacketHeader + sizeof(glm::vec3) + sizeof(glm::quat) + NUM_BYTES_RFC4122_UUID;
static int16_t* monoAudioSamples = (int16_t*) (monoAudioDataPacket + leadingBytes); static int16_t* monoAudioSamples = (int16_t*) (monoAudioDataPacket + leadingBytes);
QByteArray inputByteArray = _inputDevice->read(CALLBACK_IO_BUFFER_SIZE); static float inputToNetworkInputRatio = _numInputCallbackBytes * CALLBACK_ACCELERATOR_RATIO
/ NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL;
if (_isBufferSendCallback) { static int inputSamplesRequired = NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL * inputToNetworkInputRatio;
// copy samples from the inputByteArray to the stereoInputBuffer
memcpy((char*) (stereoInputBuffer + bufferSizeSamples), inputByteArray.data(), inputByteArray.size()); QByteArray inputByteArray = _inputDevice->readAll();
_inputRingBuffer.writeData(inputByteArray.data(), inputByteArray.size());
while (_inputRingBuffer.samplesAvailable() > inputSamplesRequired) {
int16_t inputAudioSamples[inputSamplesRequired];
_inputRingBuffer.readSamples(inputAudioSamples, inputSamplesRequired);
// zero out the monoAudioSamples array and the locally injected audio
memset(monoAudioSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
// zero out the locally injected audio in preparation for audio procedural sounds
memset(_localInjectedSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
if (!_muted) {
// we aren't muted, downsample the input audio
linearResampling((int16_t*) inputAudioSamples,
monoAudioSamples,
inputSamplesRequired,
NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL,
_inputFormat, _desiredInputFormat);
// Measure the loudness of the signal from the microphone and store in audio object
float loudness = 0; float loudness = 0;
for (int i = 0; i < BUFFER_LENGTH_SAMPLES_PER_CHANNEL * SAMPLE_RATE_RATIO; i += 2) {
loudness += abs(stereoInputBuffer[i]); for (int i = 0; i < NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL; i++) {
loudness += fabsf(monoAudioSamples[i]);
} }
loudness /= BUFFER_LENGTH_SAMPLES_PER_CHANNEL * SAMPLE_RATE_RATIO; _lastInputLoudness = loudness / NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
_lastInputLoudness = loudness;
} else {
// this is the first half of a full buffer of data
// zero out the monoAudioSamples array
memset(monoAudioSamples, 0, BUFFER_LENGTH_BYTES_PER_CHANNEL);
// take samples we have in this callback and store them in the first half of the static buffer
// to send off in the next callback
memcpy((char*) stereoInputBuffer, inputByteArray.data(), inputByteArray.size());
}
// add input data just written to the scope // add input data just written to the scope
QMetaObject::invokeMethod(_scope, "addStereoSamples", Qt::QueuedConnection, QMetaObject::invokeMethod(_scope, "addSamples", Qt::QueuedConnection,
Q_ARG(QByteArray, inputByteArray), Q_ARG(bool, true)); Q_ARG(QByteArray, QByteArray((char*) monoAudioSamples,
NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL)),
Q_ARG(bool, false), Q_ARG(bool, true));
QByteArray stereoOutputBuffer; if (Menu::getInstance()->isOptionChecked(MenuOption::EchoLocalAudio)) {
// if this person wants local loopback add that to the locally injected audio
if (Menu::getInstance()->isOptionChecked(MenuOption::EchoLocalAudio) && !_muted) { memcpy(_localInjectedSamples, monoAudioSamples, NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL);
// if local loopback enabled, copy input to output
if (_isBufferSendCallback) {
stereoOutputBuffer.append((char*) (stereoInputBuffer + bufferSizeSamples), CALLBACK_IO_BUFFER_SIZE);
} else {
stereoOutputBuffer.append((char*) stereoInputBuffer, CALLBACK_IO_BUFFER_SIZE);
} }
} else { } else {
// zero out the stereoOutputBuffer // our input loudness is 0, since we're muted
stereoOutputBuffer = QByteArray(CALLBACK_IO_BUFFER_SIZE, 0); _lastInputLoudness = 0;
} }
// add procedural effects to the appropriate input samples // add procedural effects to the appropriate input samples
addProceduralSounds(monoAudioSamples + (_isBufferSendCallback addProceduralSounds(monoAudioSamples,
? BUFFER_LENGTH_SAMPLES_PER_CHANNEL / CALLBACK_ACCELERATOR_RATIO : 0), NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
(int16_t*) stereoOutputBuffer.data(),
BUFFER_LENGTH_SAMPLES_PER_CHANNEL / CALLBACK_ACCELERATOR_RATIO);
if (_isBufferSendCallback) {
NodeList* nodeList = NodeList::getInstance(); NodeList* nodeList = NodeList::getInstance();
Node* audioMixer = nodeList->soloNodeOfType(NODE_TYPE_AUDIO_MIXER); Node* audioMixer = nodeList->soloNodeOfType(NODE_TYPE_AUDIO_MIXER);
if (audioMixer) { if (audioMixer && nodeList->getNodeActiveSocketOrPing(audioMixer)) {
if (audioMixer->getActiveSocket()) {
MyAvatar* interfaceAvatar = Application::getInstance()->getAvatar(); MyAvatar* interfaceAvatar = Application::getInstance()->getAvatar();
glm::vec3 headPosition = interfaceAvatar->getHeadJointPosition(); glm::vec3 headPosition = interfaceAvatar->getHeadJointPosition();
@ -265,101 +369,15 @@ void Audio::handleAudioInput() {
memcpy(currentPacketPtr, &headOrientation, sizeof(headOrientation)); memcpy(currentPacketPtr, &headOrientation, sizeof(headOrientation));
currentPacketPtr += sizeof(headOrientation); currentPacketPtr += sizeof(headOrientation);
if (!_muted) { nodeList->getNodeSocket().writeDatagram(monoAudioDataPacket,
// we aren't muted, average each set of four samples together to set up the mono input buffers NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes,
for (int i = 2; i < BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2 * SAMPLE_RATE_RATIO; i += 4) {
int16_t averagedSample = 0;
if (i + 2 == BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 2 * SAMPLE_RATE_RATIO) {
averagedSample = (stereoInputBuffer[i - 2] / 2) + (stereoInputBuffer[i] / 2);
} else {
averagedSample = (stereoInputBuffer[i - 2] / 4) + (stereoInputBuffer[i] / 2)
+ (stereoInputBuffer[i + 2] / 4);
}
// add the averaged sample to our array of audio samples
monoAudioSamples[(i - 2) / 4] += averagedSample;
}
}
nodeList->getNodeSocket().writeDatagram(monoAudioDataPacket, BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes,
audioMixer->getActiveSocket()->getAddress(), audioMixer->getActiveSocket()->getAddress(),
audioMixer->getActiveSocket()->getPort()); audioMixer->getActiveSocket()->getPort());
Application::getInstance()->getBandwidthMeter()->outputStream(BandwidthMeter::AUDIO) Application::getInstance()->getBandwidthMeter()->outputStream(BandwidthMeter::AUDIO)
.updateValue(BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes); .updateValue(NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes);
} else {
nodeList->pingPublicAndLocalSocketsForInactiveNode(audioMixer);
} }
} }
}
// if there is anything in the ring buffer, decide what to do
if (!_nextOutputSamples) {
if (_ringBuffer.getEndOfLastWrite()) {
if (_ringBuffer.isStarved() && _ringBuffer.diffLastWriteNextOutput() <
(PACKET_LENGTH_SAMPLES + _jitterBufferSamples * (_ringBuffer.isStereo() ? 2 : 1))) {
// If not enough audio has arrived to start playback, keep waiting
} else if (!_ringBuffer.isStarved() && _ringBuffer.diffLastWriteNextOutput() == 0) {
// If we have started and now have run out of audio to send to the audio device,
// this means we've starved and should restart.
_ringBuffer.setIsStarved(true);
// show a starve in the GUI for 10 frames
_numFramesDisplayStarve = 10;
} else {
// We are either already playing back, or we have enough audio to start playing back.
if (_ringBuffer.isStarved()) {
_ringBuffer.setIsStarved(false);
_ringBuffer.setHasStarted(true);
}
_nextOutputSamples = _ringBuffer.getNextOutput();
}
}
}
if (_nextOutputSamples) {
int16_t* stereoOutputBufferSamples = (int16_t*) stereoOutputBuffer.data();
// play whatever we have in the audio buffer
for (int s = 0; s < PACKET_LENGTH_SAMPLES_PER_CHANNEL / CALLBACK_ACCELERATOR_RATIO; s++) {
int16_t leftSample = _nextOutputSamples[s];
int16_t rightSample = _nextOutputSamples[s + PACKET_LENGTH_SAMPLES_PER_CHANNEL];
stereoOutputBufferSamples[(s * 4)] += leftSample;
stereoOutputBufferSamples[(s * 4) + 2] += leftSample;
stereoOutputBufferSamples[(s * 4) + 1] += rightSample;
stereoOutputBufferSamples[(s * 4) + 3] += rightSample;
}
if (_isBufferSendCallback) {
_ringBuffer.setNextOutput(_ringBuffer.getNextOutput() + PACKET_LENGTH_SAMPLES);
if (_ringBuffer.getNextOutput() == _ringBuffer.getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
_ringBuffer.setNextOutput(_ringBuffer.getBuffer());
}
_nextOutputSamples = NULL;
} else {
_nextOutputSamples += PACKET_LENGTH_SAMPLES_PER_CHANNEL / CALLBACK_ACCELERATOR_RATIO;
}
}
_outputDevice->write(stereoOutputBuffer);
// add output (@speakers) data just written to the scope
QMetaObject::invokeMethod(_scope, "addStereoSamples", Qt::QueuedConnection,
Q_ARG(QByteArray, stereoOutputBuffer), Q_ARG(bool, false));
_isBufferSendCallback = !_isBufferSendCallback;
gettimeofday(&_lastCallbackTime, NULL);
} }
void Audio::addReceivedAudioToBuffer(const QByteArray& audioByteArray) { void Audio::addReceivedAudioToBuffer(const QByteArray& audioByteArray) {
@ -381,7 +399,7 @@ void Audio::addReceivedAudioToBuffer(const QByteArray& audioByteArray) {
_measuredJitter = _stdev.getStDev(); _measuredJitter = _stdev.getStDev();
_stdev.reset(); _stdev.reset();
// Set jitter buffer to be a multiple of the measured standard deviation // Set jitter buffer to be a multiple of the measured standard deviation
const int MAX_JITTER_BUFFER_SAMPLES = RING_BUFFER_LENGTH_SAMPLES / 2; const int MAX_JITTER_BUFFER_SAMPLES = _ringBuffer.getSampleCapacity() / 2;
const float NUM_STANDARD_DEVIATIONS = 3.f; const float NUM_STANDARD_DEVIATIONS = 3.f;
if (Menu::getInstance()->getAudioJitterBufferSamples() == 0) { if (Menu::getInstance()->getAudioJitterBufferSamples() == 0) {
float newJitterBufferSamples = (NUM_STANDARD_DEVIATIONS * _measuredJitter) / 1000.f * SAMPLE_RATE; float newJitterBufferSamples = (NUM_STANDARD_DEVIATIONS * _measuredJitter) / 1000.f * SAMPLE_RATE;
@ -389,22 +407,69 @@ void Audio::addReceivedAudioToBuffer(const QByteArray& audioByteArray) {
} }
} }
if (_ringBuffer.diffLastWriteNextOutput() + PACKET_LENGTH_SAMPLES >
PACKET_LENGTH_SAMPLES + (ceilf((float) (_jitterBufferSamples * 2) / PACKET_LENGTH_SAMPLES) * PACKET_LENGTH_SAMPLES)) {
// this packet would give us more than the required amount for play out
// discard the first packet in the buffer
_ringBuffer.setNextOutput(_ringBuffer.getNextOutput() + PACKET_LENGTH_SAMPLES);
if (_ringBuffer.getNextOutput() == _ringBuffer.getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
_ringBuffer.setNextOutput(_ringBuffer.getBuffer());
}
}
_ringBuffer.parseData((unsigned char*) audioByteArray.data(), audioByteArray.size()); _ringBuffer.parseData((unsigned char*) audioByteArray.data(), audioByteArray.size());
Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::AUDIO).updateValue(PACKET_LENGTH_BYTES static float networkOutputToOutputRatio = (_desiredOutputFormat.sampleRate() / (float) _outputFormat.sampleRate())
+ sizeof(PACKET_TYPE)); * (_desiredOutputFormat.channelCount() / (float) _outputFormat.channelCount());
static int numRequiredOutputSamples = NETWORK_BUFFER_LENGTH_SAMPLES_STEREO / networkOutputToOutputRatio;
QByteArray outputBuffer;
outputBuffer.resize(numRequiredOutputSamples * sizeof(int16_t));
// if there is anything in the ring buffer, decide what to do
if (_ringBuffer.samplesAvailable() > 0) {
if (!_ringBuffer.isNotStarvedOrHasMinimumSamples(NETWORK_BUFFER_LENGTH_SAMPLES_STEREO
+ (_jitterBufferSamples * 2))) {
// starved and we don't have enough to start, keep waiting
qDebug() << "Buffer is starved and doesn't have enough samples to start. Held back.\n";
} else {
// We are either already playing back, or we have enough audio to start playing back.
_ringBuffer.setIsStarved(false);
// copy the samples we'll resample from the ring buffer - this also
// pushes the read pointer of the ring buffer forwards
int16_t ringBufferSamples[NETWORK_BUFFER_LENGTH_SAMPLES_STEREO];
_ringBuffer.readSamples(ringBufferSamples, NETWORK_BUFFER_LENGTH_SAMPLES_STEREO);
// add to the output samples whatever is in the _localAudioOutput byte array
// that lets this user hear sound effects and loopback (if enabled)
for (int i = 0; i < NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL; i++) {
ringBufferSamples[i * 2] = glm::clamp(ringBufferSamples[i * 2] + _localInjectedSamples[i],
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
ringBufferSamples[(i * 2) + 1] += glm::clamp(ringBufferSamples[(i * 2) + 1] + _localInjectedSamples[i],
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
}
// copy the packet from the RB to the output
linearResampling(ringBufferSamples,
(int16_t*) outputBuffer.data(),
NETWORK_BUFFER_LENGTH_SAMPLES_STEREO,
numRequiredOutputSamples,
_desiredOutputFormat, _outputFormat);
if (_outputDevice) {
_outputDevice->write(outputBuffer);
// add output (@speakers) data just written to the scope
QMetaObject::invokeMethod(_scope, "addSamples", Qt::QueuedConnection,
Q_ARG(QByteArray, QByteArray((char*) ringBufferSamples,
NETWORK_BUFFER_LENGTH_BYTES_STEREO)),
Q_ARG(bool, true), Q_ARG(bool, false));
}
}
} else if (_audioOutput->bytesFree() == _audioOutput->bufferSize()) {
// we don't have any audio data left in the output buffer, and the ring buffer from
// the network has nothing in it either - we just starved
qDebug() << "Audio output just starved.\n";
_ringBuffer.setIsStarved(true);
_numFramesDisplayStarve = 10;
}
Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::AUDIO).updateValue(audioByteArray.size());
_lastReceiveTime = currentReceiveTime; _lastReceiveTime = currentReceiveTime;
} }
@ -435,7 +500,7 @@ void Audio::render(int screenWidth, int screenHeight) {
glVertex2f(currentX, topY); glVertex2f(currentX, topY);
glVertex2f(currentX, bottomY); glVertex2f(currentX, bottomY);
for (int i = 0; i < RING_BUFFER_LENGTH_FRAMES / 2; i++) { for (int i = 0; i < RING_BUFFER_LENGTH_FRAMES; i++) {
glVertex2f(currentX, halfY); glVertex2f(currentX, halfY);
glVertex2f(currentX + frameWidth, halfY); glVertex2f(currentX + frameWidth, halfY);
currentX += frameWidth; currentX += frameWidth;
@ -445,17 +510,15 @@ void Audio::render(int screenWidth, int screenHeight) {
} }
glEnd(); glEnd();
// Show a bar with the amount of audio remaining in ring buffer beyond current playback // show a bar with the amount of audio remaining in ring buffer and output device
float remainingBuffer = 0; // beyond the current playback
timeval currentTime;
gettimeofday(&currentTime, NULL);
float timeLeftInCurrentBuffer = 0;
if (_lastCallbackTime.tv_usec > 0) {
timeLeftInCurrentBuffer = AUDIO_CALLBACK_MSECS - diffclock(&_lastCallbackTime, &currentTime);
}
if (_ringBuffer.getEndOfLastWrite() != NULL) int bytesLeftInAudioOutput = _audioOutput->bufferSize() - _audioOutput->bytesFree();
remainingBuffer = _ringBuffer.diffLastWriteNextOutput() / PACKET_LENGTH_SAMPLES * AUDIO_CALLBACK_MSECS; float secondsLeftForAudioOutput = (bytesLeftInAudioOutput / sizeof(int16_t))
/ ((float) _outputFormat.sampleRate() * _outputFormat.channelCount());
float secondsLeftForRingBuffer = _ringBuffer.samplesAvailable()
/ ((float) _desiredOutputFormat.sampleRate() * _desiredOutputFormat.channelCount());
float msLeftForAudioOutput = (secondsLeftForAudioOutput + secondsLeftForRingBuffer) * 1000;
if (_numFramesDisplayStarve == 0) { if (_numFramesDisplayStarve == 0) {
glColor3f(0, 1, 0); glColor3f(0, 1, 0);
@ -464,19 +527,19 @@ void Audio::render(int screenWidth, int screenHeight) {
_numFramesDisplayStarve--; _numFramesDisplayStarve--;
} }
if (_averagedLatency == 0.0) {
_averagedLatency = msLeftForAudioOutput;
} else {
_averagedLatency = 0.99f * _averagedLatency + 0.01f * (msLeftForAudioOutput);
}
glBegin(GL_QUADS); glBegin(GL_QUADS);
glVertex2f(startX, topY + 2); glVertex2f(startX, topY + 2);
glVertex2f(startX + (remainingBuffer + timeLeftInCurrentBuffer) / AUDIO_CALLBACK_MSECS * frameWidth, topY + 2); glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth, topY + 2);
glVertex2f(startX + (remainingBuffer + timeLeftInCurrentBuffer) / AUDIO_CALLBACK_MSECS * frameWidth, bottomY - 2); glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth, bottomY - 2);
glVertex2f(startX, bottomY - 2); glVertex2f(startX, bottomY - 2);
glEnd(); glEnd();
if (_averagedLatency == 0.0) {
_averagedLatency = remainingBuffer + timeLeftInCurrentBuffer;
} else {
_averagedLatency = 0.99f * _averagedLatency + 0.01f * (remainingBuffer + timeLeftInCurrentBuffer);
}
// Show a yellow bar with the averaged msecs latency you are hearing (from time of packet receipt) // Show a yellow bar with the averaged msecs latency you are hearing (from time of packet receipt)
glColor3f(1,1,0); glColor3f(1,1,0);
glBegin(GL_QUADS); glBegin(GL_QUADS);
@ -493,7 +556,8 @@ void Audio::render(int screenWidth, int screenHeight) {
// Show a red bar with the 'start' point of one frame plus the jitter buffer // Show a red bar with the 'start' point of one frame plus the jitter buffer
glColor3f(1, 0, 0); glColor3f(1, 0, 0);
int jitterBufferPels = (1.f + (float)getJitterBufferSamples() / (float) PACKET_LENGTH_SAMPLES_PER_CHANNEL) * frameWidth; int jitterBufferPels = (1.f + (float)getJitterBufferSamples()
/ (float) NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL) * frameWidth;
sprintf(out, "%.0f\n", getJitterBufferSamples() / SAMPLE_RATE * 1000.f); sprintf(out, "%.0f\n", getJitterBufferSamples() / SAMPLE_RATE * 1000.f);
drawtext(startX + jitterBufferPels - 5, topY - 9, 0.10, 0, 1, 0, out, 1, 0, 0); drawtext(startX + jitterBufferPels - 5, topY - 9, 0.10, 0, 1, 0, out, 1, 0, 0);
sprintf(out, "j %.1f\n", _measuredJitter); sprintf(out, "j %.1f\n", _measuredJitter);
@ -515,7 +579,7 @@ void Audio::render(int screenWidth, int screenHeight) {
} }
// Take a pointer to the acquired microphone input samples and add procedural sounds // Take a pointer to the acquired microphone input samples and add procedural sounds
void Audio::addProceduralSounds(int16_t* monoInput, int16_t* stereoUpsampledOutput, int numSamples) { void Audio::addProceduralSounds(int16_t* monoInput, int numSamples) {
const float MAX_AUDIBLE_VELOCITY = 6.0; const float MAX_AUDIBLE_VELOCITY = 6.0;
const float MIN_AUDIBLE_VELOCITY = 0.1; const float MIN_AUDIBLE_VELOCITY = 0.1;
const int VOLUME_BASELINE = 400; const int VOLUME_BASELINE = 400;
@ -551,11 +615,9 @@ void Audio::addProceduralSounds(int16_t* monoInput, int16_t* stereoUpsampledOutp
int16_t collisionSample = (int16_t) sample; int16_t collisionSample = (int16_t) sample;
monoInput[i] += collisionSample; monoInput[i] = glm::clamp(monoInput[i] + collisionSample, MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
_localInjectedSamples[i] = glm::clamp(_localInjectedSamples[i] + collisionSample,
for (int j = (i * 4); j < (i * 4) + 4; j++) { MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
stereoUpsampledOutput[j] += collisionSample;
}
_collisionSoundMagnitude *= _collisionSoundDuration; _collisionSoundMagnitude *= _collisionSoundDuration;
} }
@ -577,11 +639,9 @@ void Audio::addProceduralSounds(int16_t* monoInput, int16_t* stereoUpsampledOutp
int16_t collisionSample = (int16_t) sample; int16_t collisionSample = (int16_t) sample;
monoInput[i] += collisionSample; monoInput[i] = glm::clamp(monoInput[i] + collisionSample, MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
_localInjectedSamples[i] = glm::clamp(_localInjectedSamples[i] + collisionSample,
for (int j = (i * 4); j < (i * 4) + 4; j++) { MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
stereoUpsampledOutput[j] += collisionSample;
}
_drumSoundVolume *= (1.f - _drumSoundDecay); _drumSoundVolume *= (1.f - _drumSoundDecay);
} }

View file

@ -15,6 +15,7 @@
#include "InterfaceConfig.h" #include "InterfaceConfig.h"
#include <QtCore/QObject> #include <QtCore/QObject>
#include <QtMultimedia/QAudioFormat>
#include <AbstractAudioInterface.h> #include <AbstractAudioInterface.h>
#include <AudioRingBuffer.h> #include <AudioRingBuffer.h>
@ -26,11 +27,6 @@
static const int NUM_AUDIO_CHANNELS = 2; static const int NUM_AUDIO_CHANNELS = 2;
static const int PACKET_LENGTH_BYTES = 1024;
static const int PACKET_LENGTH_BYTES_PER_CHANNEL = PACKET_LENGTH_BYTES / 2;
static const int PACKET_LENGTH_SAMPLES = PACKET_LENGTH_BYTES / sizeof(int16_t);
static const int PACKET_LENGTH_SAMPLES_PER_CHANNEL = PACKET_LENGTH_SAMPLES / 2;
class QAudioInput; class QAudioInput;
class QAudioOutput; class QAudioOutput;
class QIODevice; class QIODevice;
@ -70,16 +66,22 @@ public slots:
void reset(); void reset();
private: private:
QByteArray firstInputFrame;
QAudioInput* _audioInput; QAudioInput* _audioInput;
QAudioFormat _desiredInputFormat;
QAudioFormat _inputFormat;
QIODevice* _inputDevice; QIODevice* _inputDevice;
int16_t _localInjectedSamples[NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL];
int _numInputCallbackBytes;
QAudioOutput* _audioOutput; QAudioOutput* _audioOutput;
QAudioFormat _desiredOutputFormat;
QAudioFormat _outputFormat;
QIODevice* _outputDevice; QIODevice* _outputDevice;
bool _isBufferSendCallback; int _numOutputCallbackBytes;
int16_t* _nextOutputSamples; AudioRingBuffer _inputRingBuffer;
AudioRingBuffer _ringBuffer; AudioRingBuffer _ringBuffer;
Oscilloscope* _scope; Oscilloscope* _scope;
StDev _stdev; StDev _stdev;
timeval _lastCallbackTime;
timeval _lastReceiveTime; timeval _lastReceiveTime;
float _averagedLatency; float _averagedLatency;
float _measuredJitter; float _measuredJitter;
@ -114,7 +116,7 @@ private:
inline void performIO(int16_t* inputLeft, int16_t* outputLeft, int16_t* outputRight); inline void performIO(int16_t* inputLeft, int16_t* outputLeft, int16_t* outputRight);
// Add sounds that we want the user to not hear themselves, by adding on top of mic input signal // Add sounds that we want the user to not hear themselves, by adding on top of mic input signal
void addProceduralSounds(int16_t* monoInput, int16_t* stereoUpsampledOutput, int numSamples); void addProceduralSounds(int16_t* monoInput, int numSamples);
void renderToolIcon(int screenHeight); void renderToolIcon(int screenHeight);
}; };

View file

@ -68,24 +68,18 @@ Oscilloscope::~Oscilloscope() {
delete[] _samples; delete[] _samples;
} }
void Oscilloscope::addStereoSamples(const QByteArray& audioByteArray, bool isInput) { void Oscilloscope::addSamples(const QByteArray& audioByteArray, bool isStereo, bool isInput) {
if (! enabled || inputPaused) { if (! enabled || inputPaused) {
return; return;
} }
unsigned int numSamplesPerChannel = audioByteArray.size() / (sizeof(int16_t) * 2); int numSamplesPerChannel = audioByteArray.size() / (sizeof(int16_t) * (isStereo ? 2 : 1));
int16_t samples[numSamplesPerChannel]; int16_t* samples = (int16_t*) audioByteArray.data();
const int16_t* stereoSamples = (int16_t*) audioByteArray.constData();
for (int channel = 0; channel < (isInput ? 1 : 2); channel++) { for (int channel = 0; channel < (isStereo ? 2 : 1); channel++) {
// add samples for each of the channels // add samples for each of the channels
// enumerate the interleaved stereoSamples array and pull out the samples for this channel
for (int i = 0; i < audioByteArray.size() / sizeof(int16_t); i += 2) {
samples[i / 2] = stereoSamples[i + channel];
}
// determine start/end offset of this channel's region // determine start/end offset of this channel's region
unsigned baseOffs = MAX_SAMPLES_PER_CHANNEL * (channel + !isInput); unsigned baseOffs = MAX_SAMPLES_PER_CHANNEL * (channel + !isInput);
unsigned endOffs = baseOffs + MAX_SAMPLES_PER_CHANNEL; unsigned endOffs = baseOffs + MAX_SAMPLES_PER_CHANNEL;
@ -103,11 +97,22 @@ void Oscilloscope::addStereoSamples(const QByteArray& audioByteArray, bool isInp
numSamplesPerChannel -= n2; numSamplesPerChannel -= n2;
} }
if (!isStereo) {
// copy data // copy data
memcpy(_samples + writePos, samples, numSamplesPerChannel * sizeof(int16_t)); memcpy(_samples + writePos, samples, numSamplesPerChannel * sizeof(int16_t));
if (n2 > 0) { if (n2 > 0) {
memcpy(_samples + baseOffs, samples + numSamplesPerChannel, n2 * sizeof(int16_t)); memcpy(_samples + baseOffs, samples + numSamplesPerChannel, n2 * sizeof(int16_t));
} }
} else {
// we have interleaved samples we need to separate into two channels
for (int i = 0; i < numSamplesPerChannel + n2; i++) {
if (i < numSamplesPerChannel - n2) {
_samples[writePos] = samples[(i * 2) + channel];
} else {
_samples[baseOffs] = samples[(i * 2) + channel];
}
}
}
// set new write position for this channel // set new write position for this channel
_writePos[channel + !isInput] = newWritePos; _writePos[channel + !isInput] = newWritePos;

View file

@ -59,7 +59,7 @@ public:
// just uses every nTh sample. // just uses every nTh sample.
void setDownsampleRatio(unsigned n) { assert(n > 0); _downsampleRatio = n; } void setDownsampleRatio(unsigned n) { assert(n > 0); _downsampleRatio = n; }
public slots: public slots:
void addStereoSamples(const QByteArray& audioByteArray, bool isInput); void addSamples(const QByteArray& audioByteArray, bool isStereo, bool isInput);
private: private:
// don't copy/assign // don't copy/assign
Oscilloscope(Oscilloscope const&); // = delete; Oscilloscope(Oscilloscope const&); // = delete;

View file

@ -9,19 +9,27 @@
#include <cstring> #include <cstring>
#include <math.h> #include <math.h>
#include <QtCore/QDebug>
#include "PacketHeaders.h" #include "PacketHeaders.h"
#include "AudioRingBuffer.h" #include "AudioRingBuffer.h"
AudioRingBuffer::AudioRingBuffer(bool isStereo) : AudioRingBuffer::AudioRingBuffer(int numFrameSamples) :
NodeData(NULL), NodeData(NULL),
_endOfLastWrite(NULL), _sampleCapacity(numFrameSamples * RING_BUFFER_LENGTH_FRAMES),
_isStarved(true), _isStarved(true),
_hasStarted(false), _hasStarted(false)
_isStereo(isStereo)
{ {
_buffer = new int16_t[RING_BUFFER_LENGTH_SAMPLES]; if (numFrameSamples) {
_buffer = new int16_t[_sampleCapacity];
_nextOutput = _buffer; _nextOutput = _buffer;
_endOfLastWrite = _buffer;
} else {
_buffer = NULL;
_nextOutput = NULL;
_endOfLastWrite = NULL;
}
}; };
AudioRingBuffer::~AudioRingBuffer() { AudioRingBuffer::~AudioRingBuffer() {
@ -32,53 +40,130 @@ void AudioRingBuffer::reset() {
_endOfLastWrite = _buffer; _endOfLastWrite = _buffer;
_nextOutput = _buffer; _nextOutput = _buffer;
_isStarved = true; _isStarved = true;
_hasStarted = false; }
void AudioRingBuffer::resizeForFrameSize(qint64 numFrameSamples) {
delete[] _buffer;
_sampleCapacity = numFrameSamples * RING_BUFFER_LENGTH_FRAMES;
_buffer = new int16_t[_sampleCapacity];
_nextOutput = _buffer;
_endOfLastWrite = _buffer;
} }
int AudioRingBuffer::parseData(unsigned char* sourceBuffer, int numBytes) { int AudioRingBuffer::parseData(unsigned char* sourceBuffer, int numBytes) {
int numBytesPacketHeader = numBytesForPacketHeader(sourceBuffer); int numBytesPacketHeader = numBytesForPacketHeader(sourceBuffer);
return parseAudioSamples(sourceBuffer + numBytesPacketHeader, numBytes - numBytesPacketHeader); return writeData((char*) sourceBuffer + numBytesPacketHeader, numBytes - numBytesPacketHeader);
} }
int AudioRingBuffer::parseAudioSamples(unsigned char* sourceBuffer, int numBytes) { qint64 AudioRingBuffer::readSamples(int16_t* destination, qint64 maxSamples) {
return readData((char*) destination, maxSamples * sizeof(int16_t));
}
qint64 AudioRingBuffer::readData(char *data, qint64 maxSize) {
// only copy up to the number of samples we have available
int numReadSamples = std::min((unsigned) (maxSize / sizeof(int16_t)), samplesAvailable());
if (_nextOutput + numReadSamples > _buffer + _sampleCapacity) {
// we're going to need to do two reads to get this data, it wraps around the edge
// read to the end of the buffer
int numSamplesToEnd = (_buffer + _sampleCapacity) - _nextOutput;
memcpy(data, _nextOutput, numSamplesToEnd * sizeof(int16_t));
// read the rest from the beginning of the buffer
memcpy(data + numSamplesToEnd, _buffer, (numReadSamples - numSamplesToEnd) * sizeof(int16_t));
} else {
// read the data
memcpy(data, _nextOutput, numReadSamples * sizeof(int16_t));
}
// push the position of _nextOutput by the number of samples read
_nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, numReadSamples);
return numReadSamples * sizeof(int16_t);
}
qint64 AudioRingBuffer::writeSamples(const int16_t* source, qint64 maxSamples) {
return writeData((const char*) source, maxSamples * sizeof(int16_t));
}
qint64 AudioRingBuffer::writeData(const char* data, qint64 maxSize) {
// make sure we have enough bytes left for this to be the right amount of audio // make sure we have enough bytes left for this to be the right amount of audio
// otherwise we should not copy that data, and leave the buffer pointers where they are // otherwise we should not copy that data, and leave the buffer pointers where they are
int samplesToCopy = BUFFER_LENGTH_SAMPLES_PER_CHANNEL * (_isStereo ? 2 : 1);
if (numBytes == samplesToCopy * sizeof(int16_t)) { int samplesToCopy = std::min(maxSize / sizeof(int16_t), (quint64) _sampleCapacity);
if (!_endOfLastWrite) { std::less<int16_t*> less;
_endOfLastWrite = _buffer; std::less_equal<int16_t*> lessEqual;
} else if (diffLastWriteNextOutput() > RING_BUFFER_LENGTH_SAMPLES - samplesToCopy) {
if (_hasStarted
&& (less(_endOfLastWrite, _nextOutput)
&& lessEqual(_nextOutput, shiftedPositionAccomodatingWrap(_endOfLastWrite, samplesToCopy)))) {
// this read will cross the next output, so call us starved and reset the buffer
qDebug() << "Filled the ring buffer. Resetting.\n";
_endOfLastWrite = _buffer; _endOfLastWrite = _buffer;
_nextOutput = _buffer; _nextOutput = _buffer;
_isStarved = true; _isStarved = true;
} }
memcpy(_endOfLastWrite, sourceBuffer, numBytes); _hasStarted = true;
_endOfLastWrite += samplesToCopy; if (_endOfLastWrite + samplesToCopy <= _buffer + _sampleCapacity) {
memcpy(_endOfLastWrite, data, samplesToCopy * sizeof(int16_t));
if (_endOfLastWrite >= _buffer + RING_BUFFER_LENGTH_SAMPLES) {
_endOfLastWrite = _buffer;
}
return numBytes;
} else { } else {
return 0; int numSamplesToEnd = (_buffer + _sampleCapacity) - _endOfLastWrite;
memcpy(_endOfLastWrite, data, numSamplesToEnd * sizeof(int16_t));
memcpy(_buffer, data + (numSamplesToEnd * sizeof(int16_t)), (samplesToCopy - numSamplesToEnd) * sizeof(int16_t));
} }
_endOfLastWrite = shiftedPositionAccomodatingWrap(_endOfLastWrite, samplesToCopy);
return samplesToCopy * sizeof(int16_t);
} }
int AudioRingBuffer::diffLastWriteNextOutput() const { int16_t& AudioRingBuffer::operator[](const int index) {
// make sure this is a valid index
assert(index > -_sampleCapacity && index < _sampleCapacity);
return *shiftedPositionAccomodatingWrap(_nextOutput, index);
}
void AudioRingBuffer::shiftReadPosition(unsigned int numSamples) {
_nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, numSamples);
}
unsigned int AudioRingBuffer::samplesAvailable() const {
if (!_endOfLastWrite) { if (!_endOfLastWrite) {
return 0; return 0;
} else { } else {
int sampleDifference = _endOfLastWrite - _nextOutput; int sampleDifference = _endOfLastWrite - _nextOutput;
if (sampleDifference < 0) { if (sampleDifference < 0) {
sampleDifference += RING_BUFFER_LENGTH_SAMPLES; sampleDifference += _sampleCapacity;
} }
return sampleDifference; return sampleDifference;
} }
} }
bool AudioRingBuffer::isNotStarvedOrHasMinimumSamples(unsigned int numRequiredSamples) const {
if (!_isStarved) {
return true;
} else {
return samplesAvailable() >= numRequiredSamples;
}
}
int16_t* AudioRingBuffer::shiftedPositionAccomodatingWrap(int16_t* position, int numSamplesShift) const {
if (numSamplesShift > 0 && position + numSamplesShift >= _buffer + _sampleCapacity) {
// this shift will wrap the position around to the beginning of the ring
return position + numSamplesShift - _sampleCapacity;
} else if (numSamplesShift < 0 && position + numSamplesShift < _buffer) {
// this shift will go around to the end of the ring
return position + numSamplesShift - _sampleCapacity;
} else {
return position + numSamplesShift;
}
}

View file

@ -9,61 +9,69 @@
#ifndef __interface__AudioRingBuffer__ #ifndef __interface__AudioRingBuffer__
#define __interface__AudioRingBuffer__ #define __interface__AudioRingBuffer__
#include <limits>
#include <stdint.h> #include <stdint.h>
#include <map>
#include <glm/glm.hpp> #include <glm/glm.hpp>
#include <QtCore/QIODevice>
#include "NodeData.h" #include "NodeData.h"
const int SAMPLE_RATE = 22050; const int SAMPLE_RATE = 24000;
const int BUFFER_LENGTH_BYTES_STEREO = 1024; const int NETWORK_BUFFER_LENGTH_BYTES_STEREO = 1024;
const int BUFFER_LENGTH_BYTES_PER_CHANNEL = 512; const int NETWORK_BUFFER_LENGTH_SAMPLES_STEREO = NETWORK_BUFFER_LENGTH_BYTES_STEREO / sizeof(int16_t);
const int BUFFER_LENGTH_SAMPLES_PER_CHANNEL = BUFFER_LENGTH_BYTES_PER_CHANNEL / sizeof(int16_t); const int NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL = 512;
const int NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL = NETWORK_BUFFER_LENGTH_BYTES_PER_CHANNEL / sizeof(int16_t);
const short RING_BUFFER_LENGTH_FRAMES = 20; const short RING_BUFFER_LENGTH_FRAMES = 10;
const short RING_BUFFER_LENGTH_SAMPLES = RING_BUFFER_LENGTH_FRAMES * BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
const int MAX_SAMPLE_VALUE = std::numeric_limits<int16_t>::max();
const int MIN_SAMPLE_VALUE = std::numeric_limits<int16_t>::min();
class AudioRingBuffer : public NodeData { class AudioRingBuffer : public NodeData {
Q_OBJECT
public: public:
AudioRingBuffer(bool isStereo); AudioRingBuffer(int numFrameSamples);
~AudioRingBuffer(); ~AudioRingBuffer();
void reset(); void reset();
void resizeForFrameSize(qint64 numFrameSamples);
int getSampleCapacity() const { return _sampleCapacity; }
int parseData(unsigned char* sourceBuffer, int numBytes); int parseData(unsigned char* sourceBuffer, int numBytes);
int parseAudioSamples(unsigned char* sourceBuffer, int numBytes);
int16_t* getNextOutput() const { return _nextOutput; } qint64 readSamples(int16_t* destination, qint64 maxSamples);
void setNextOutput(int16_t* nextOutput) { _nextOutput = nextOutput; } qint64 writeSamples(const int16_t* source, qint64 maxSamples);
int16_t* getEndOfLastWrite() const { return _endOfLastWrite; } qint64 readData(char* data, qint64 maxSize);
void setEndOfLastWrite(int16_t* endOfLastWrite) { _endOfLastWrite = endOfLastWrite; } qint64 writeData(const char* data, qint64 maxSize);
int16_t* getBuffer() const { return _buffer; } int16_t& operator[](const int index);
void shiftReadPosition(unsigned int numSamples);
unsigned int samplesAvailable() const;
bool isNotStarvedOrHasMinimumSamples(unsigned int numRequiredSamples) const;
bool isStarved() const { return _isStarved; } bool isStarved() const { return _isStarved; }
void setIsStarved(bool isStarved) { _isStarved = isStarved; } void setIsStarved(bool isStarved) { _isStarved = isStarved; }
bool hasStarted() const { return _hasStarted; }
void setHasStarted(bool hasStarted) { _hasStarted = hasStarted; }
int diffLastWriteNextOutput() const;
bool isStereo() const { return _isStereo; }
protected: protected:
// disallow copying of AudioRingBuffer objects // disallow copying of AudioRingBuffer objects
AudioRingBuffer(const AudioRingBuffer&); AudioRingBuffer(const AudioRingBuffer&);
AudioRingBuffer& operator= (const AudioRingBuffer&); AudioRingBuffer& operator= (const AudioRingBuffer&);
int16_t* shiftedPositionAccomodatingWrap(int16_t* position, int numSamplesShift) const;
int _sampleCapacity;
int16_t* _nextOutput; int16_t* _nextOutput;
int16_t* _endOfLastWrite; int16_t* _endOfLastWrite;
int16_t* _buffer; int16_t* _buffer;
bool _isStarved; bool _isStarved;
bool _hasStarted; bool _hasStarted;
bool _isStereo;
}; };
#endif /* defined(__interface__AudioRingBuffer__) */ #endif /* defined(__interface__AudioRingBuffer__) */

View file

@ -42,7 +42,7 @@ int InjectedAudioRingBuffer::parseData(unsigned char* sourceBuffer, int numBytes
unsigned int attenuationByte = *(currentBuffer++); unsigned int attenuationByte = *(currentBuffer++);
_attenuationRatio = attenuationByte / (float) MAX_INJECTOR_VOLUME; _attenuationRatio = attenuationByte / (float) MAX_INJECTOR_VOLUME;
currentBuffer += parseAudioSamples(currentBuffer, numBytes - (currentBuffer - sourceBuffer)); currentBuffer += writeData((char*) currentBuffer, numBytes - (currentBuffer - sourceBuffer));
return currentBuffer - sourceBuffer; return currentBuffer - sourceBuffer;
} }

View file

@ -15,7 +15,7 @@
#include "PositionalAudioRingBuffer.h" #include "PositionalAudioRingBuffer.h"
PositionalAudioRingBuffer::PositionalAudioRingBuffer(PositionalAudioRingBuffer::Type type) : PositionalAudioRingBuffer::PositionalAudioRingBuffer(PositionalAudioRingBuffer::Type type) :
AudioRingBuffer(false), AudioRingBuffer(NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL),
_type(type), _type(type),
_position(0.0f, 0.0f, 0.0f), _position(0.0f, 0.0f, 0.0f),
_orientation(0.0f, 0.0f, 0.0f, 0.0f), _orientation(0.0f, 0.0f, 0.0f, 0.0f),
@ -31,7 +31,7 @@ int PositionalAudioRingBuffer::parseData(unsigned char* sourceBuffer, int numByt
unsigned char* currentBuffer = sourceBuffer + numBytesForPacketHeader(sourceBuffer); unsigned char* currentBuffer = sourceBuffer + numBytesForPacketHeader(sourceBuffer);
currentBuffer += NUM_BYTES_RFC4122_UUID; // the source UUID currentBuffer += NUM_BYTES_RFC4122_UUID; // the source UUID
currentBuffer += parsePositionalData(currentBuffer, numBytes - (currentBuffer - sourceBuffer)); currentBuffer += parsePositionalData(currentBuffer, numBytes - (currentBuffer - sourceBuffer));
currentBuffer += parseAudioSamples(currentBuffer, numBytes - (currentBuffer - sourceBuffer)); currentBuffer += writeData((char*) currentBuffer, numBytes - (currentBuffer - sourceBuffer));
return currentBuffer - sourceBuffer; return currentBuffer - sourceBuffer;
} }
@ -47,8 +47,7 @@ int PositionalAudioRingBuffer::parsePositionalData(unsigned char* sourceBuffer,
// if this node sent us a NaN for first float in orientation then don't consider this good audio and bail // if this node sent us a NaN for first float in orientation then don't consider this good audio and bail
if (std::isnan(_orientation.x)) { if (std::isnan(_orientation.x)) {
_endOfLastWrite = _nextOutput = _buffer; reset();
_isStarved = true;
return 0; return 0;
} }
@ -56,21 +55,18 @@ int PositionalAudioRingBuffer::parsePositionalData(unsigned char* sourceBuffer,
} }
bool PositionalAudioRingBuffer::shouldBeAddedToMix(int numJitterBufferSamples) { bool PositionalAudioRingBuffer::shouldBeAddedToMix(int numJitterBufferSamples) {
if (_endOfLastWrite) { if (!isNotStarvedOrHasMinimumSamples(NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL + numJitterBufferSamples)) {
if (_isStarved && diffLastWriteNextOutput() <= BUFFER_LENGTH_SAMPLES_PER_CHANNEL + numJitterBufferSamples) { qDebug() << "Starved and do not have minimum samples to start. Buffer held back.\n";
printf("Buffer held back\n");
return false; return false;
} else if (diffLastWriteNextOutput() < BUFFER_LENGTH_SAMPLES_PER_CHANNEL) { } else if (samplesAvailable() < NETWORK_BUFFER_LENGTH_SAMPLES_PER_CHANNEL) {
printf("Buffer starved.\n"); qDebug() << "Do not have number of samples needed for interval. Buffer starved.\n";
_isStarved = true; _isStarved = true;
return false; return false;
} else { } else {
// good buffer, add this to the mix // good buffer, add this to the mix
_isStarved = false; _isStarved = false;
_hasStarted = true;
return true; return true;
} }
}
return false; return false;
} }