Merge branch 'master' of https://github.com/worklist/hifi into copy_and_paste_voxels

This commit is contained in:
ZappoMan 2013-06-03 16:42:27 -07:00
commit 0b7f4b21f4
16 changed files with 728 additions and 683 deletions

View file

@ -1,48 +1,106 @@
#version 120
//
// For licensing information, see http://http.developer.nvidia.com/GPUGems/gpugems_app01.html:
//
// NVIDIA Statement on the Software
//
// The source code provided is freely distributable, so long as the NVIDIA header remains unaltered and user modifications are
// detailed.
//
// No Warranty
//
// THE SOFTWARE AND ANY OTHER MATERIALS PROVIDED BY NVIDIA ON THE ENCLOSED CD-ROM ARE PROVIDED "AS IS." NVIDIA DISCLAIMS ALL
// WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
//
// Limitation of Liability
//
// NVIDIA SHALL NOT BE LIABLE TO ANY USER, DEVELOPER, DEVELOPER'S CUSTOMERS, OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH OR
// UNDER DEVELOPER FOR ANY LOSS OF PROFITS, INCOME, SAVINGS, OR ANY OTHER CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE, DIRECT
// OR INDIRECT DAMAGES (WHETHER IN AN ACTION IN CONTRACT, TORT OR BASED ON A WARRANTY), EVEN IF NVIDIA HAS BEEN ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF THE ESSENTIAL PURPOSE OF ANY
// LIMITED REMEDY. IN NO EVENT SHALL NVIDIA'S AGGREGATE LIABILITY TO DEVELOPER OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH
// OR UNDER DEVELOPER EXCEED THE AMOUNT OF MONEY ACTUALLY PAID BY DEVELOPER TO NVIDIA FOR THE SOFTWARE OR ANY OTHER MATERIALS.
//
//
// Atmospheric scattering fragment shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//
uniform vec3 v3LightPos;
uniform float g;
uniform float g2;
varying vec3 v3Direction;
void main (void)
{
float fCos = dot(v3LightPos, v3Direction) / length(v3Direction);
float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5);
gl_FragColor = gl_Color + fMiePhase * gl_SecondaryColor;
gl_FragColor.a = gl_FragColor.b;
}
#version 120
//
// For licensing information, see http://http.developer.nvidia.com/GPUGems/gpugems_app01.html:
//
// NVIDIA Statement on the Software
//
// The source code provided is freely distributable, so long as the NVIDIA header remains unaltered and user modifications are
// detailed.
//
// No Warranty
//
// THE SOFTWARE AND ANY OTHER MATERIALS PROVIDED BY NVIDIA ON THE ENCLOSED CD-ROM ARE PROVIDED "AS IS." NVIDIA DISCLAIMS ALL
// WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
//
// Limitation of Liability
//
// NVIDIA SHALL NOT BE LIABLE TO ANY USER, DEVELOPER, DEVELOPER'S CUSTOMERS, OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH OR
// UNDER DEVELOPER FOR ANY LOSS OF PROFITS, INCOME, SAVINGS, OR ANY OTHER CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE, DIRECT
// OR INDIRECT DAMAGES (WHETHER IN AN ACTION IN CONTRACT, TORT OR BASED ON A WARRANTY), EVEN IF NVIDIA HAS BEEN ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF THE ESSENTIAL PURPOSE OF ANY
// LIMITED REMEDY. IN NO EVENT SHALL NVIDIA'S AGGREGATE LIABILITY TO DEVELOPER OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH
// OR UNDER DEVELOPER EXCEED THE AMOUNT OF MONEY ACTUALLY PAID BY DEVELOPER TO NVIDIA FOR THE SOFTWARE OR ANY OTHER MATERIALS.
//
//
// Atmospheric scattering fragment shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//
uniform vec3 v3CameraPos; // The camera's current position
uniform vec3 v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels
uniform float fInnerRadius; // The inner (planetary) radius
uniform float fKrESun; // Kr * ESun
uniform float fKmESun; // Km * ESun
uniform float fKr4PI; // Kr * 4 * PI
uniform float fKm4PI; // Km * 4 * PI
uniform float fScale; // 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth; // fScale / fScaleDepth
const int nSamples = 2;
const float fSamples = 2.0;
uniform vec3 v3LightPos;
uniform float g;
uniform float g2;
varying vec3 position;
float scale(float fCos)
{
float x = 1.0 - fCos;
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
void main (void)
{
// Get the ray from the camera to the vertex, and its length (which is the far point of the ray passing through the atmosphere)
vec3 v3Pos = position;
vec3 v3Ray = v3Pos - v3CameraPos;
float fFar = length(v3Ray);
v3Ray /= fFar;
// Calculate the ray's starting position, then calculate its scattering offset
vec3 v3Start = v3CameraPos;
float fHeight = length(v3Start);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fStartAngle = dot(v3Ray, v3Start) / fHeight;
float fStartOffset = fDepth * scale(fStartAngle);
// Initialize the scattering loop variables
//gl_FrontColor = vec4(0.0, 0.0, 0.0, 0.0);
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
vec3 v3SampleRay = v3Ray * fSampleLength;
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
// Now loop through the sample rays
vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
for(int i=0; i<nSamples; i++)
{
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight;
float fCameraAngle = dot((v3Ray), v3SamplePoint) / fHeight * 0.99;
float fScatter = (fStartOffset + fDepth * (scale(fLightAngle) - scale(fCameraAngle)));
vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
v3SamplePoint += v3SampleRay;
}
// Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
vec3 secondaryFrontColor = v3FrontColor * fKmESun;
vec3 frontColor = v3FrontColor * (v3InvWavelength * fKrESun);
vec3 v3Direction = v3CameraPos - v3Pos;
float fCos = dot(v3LightPos, v3Direction) / length(v3Direction);
float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5);
gl_FragColor.rgb = frontColor.rgb + fMiePhase * secondaryFrontColor.rgb;
gl_FragColor.a = gl_FragColor.b;
}

View file

@ -1,100 +1,65 @@
#version 120
//
// For licensing information, see http://http.developer.nvidia.com/GPUGems/gpugems_app01.html:
//
// NVIDIA Statement on the Software
//
// The source code provided is freely distributable, so long as the NVIDIA header remains unaltered and user modifications are
// detailed.
//
// No Warranty
//
// THE SOFTWARE AND ANY OTHER MATERIALS PROVIDED BY NVIDIA ON THE ENCLOSED CD-ROM ARE PROVIDED "AS IS." NVIDIA DISCLAIMS ALL
// WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
//
// Limitation of Liability
//
// NVIDIA SHALL NOT BE LIABLE TO ANY USER, DEVELOPER, DEVELOPER'S CUSTOMERS, OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH OR
// UNDER DEVELOPER FOR ANY LOSS OF PROFITS, INCOME, SAVINGS, OR ANY OTHER CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE, DIRECT
// OR INDIRECT DAMAGES (WHETHER IN AN ACTION IN CONTRACT, TORT OR BASED ON A WARRANTY), EVEN IF NVIDIA HAS BEEN ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF THE ESSENTIAL PURPOSE OF ANY
// LIMITED REMEDY. IN NO EVENT SHALL NVIDIA'S AGGREGATE LIABILITY TO DEVELOPER OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH
// OR UNDER DEVELOPER EXCEED THE AMOUNT OF MONEY ACTUALLY PAID BY DEVELOPER TO NVIDIA FOR THE SOFTWARE OR ANY OTHER MATERIALS.
//
//
// Atmospheric scattering vertex shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//
uniform vec3 v3CameraPos; // The camera's current position
uniform vec3 v3LightPos; // The direction vector to the light source
uniform vec3 v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels
uniform float fInnerRadius; // The inner (planetary) radius
uniform float fKrESun; // Kr * ESun
uniform float fKmESun; // Km * ESun
uniform float fKr4PI; // Kr * 4 * PI
uniform float fKm4PI; // Km * 4 * PI
uniform float fScale; // 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth; // fScale / fScaleDepth
const int nSamples = 2;
const float fSamples = 2.0;
varying vec3 v3Direction;
float scale(float fCos)
{
float x = 1.0 - fCos;
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
void main(void)
{
// Get the ray from the camera to the vertex, and its length (which is the far point of the ray passing through the atmosphere)
vec3 v3Pos = gl_Vertex.xyz;
vec3 v3Ray = v3Pos - v3CameraPos;
float fFar = length(v3Ray);
v3Ray /= fFar;
// Calculate the ray's starting position, then calculate its scattering offset
vec3 v3Start = v3CameraPos;
float fHeight = length(v3Start);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fStartAngle = dot(v3Ray, v3Start) / fHeight;
float fStartOffset = fDepth * scale(fStartAngle);
// Initialize the scattering loop variables
//gl_FrontColor = vec4(0.0, 0.0, 0.0, 0.0);
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
vec3 v3SampleRay = v3Ray * fSampleLength;
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
// Now loop through the sample rays
vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
for(int i=0; i<nSamples; i++)
{
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight;
float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight;
float fScatter = (fStartOffset + fDepth * (scale(fLightAngle) - scale(fCameraAngle)));
vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
v3SamplePoint += v3SampleRay;
}
// Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
gl_FrontSecondaryColor.rgb = v3FrontColor * fKmESun;
gl_FrontColor.rgb = v3FrontColor * (v3InvWavelength * fKrESun);
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
v3Direction = v3CameraPos - v3Pos;
}
#version 120
//
// For licensing information, see http://http.developer.nvidia.com/GPUGems/gpugems_app01.html:
//
// NVIDIA Statement on the Software
//
// The source code provided is freely distributable, so long as the NVIDIA header remains unaltered and user modifications are
// detailed.
//
// No Warranty
//
// THE SOFTWARE AND ANY OTHER MATERIALS PROVIDED BY NVIDIA ON THE ENCLOSED CD-ROM ARE PROVIDED "AS IS." NVIDIA DISCLAIMS ALL
// WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
//
// Limitation of Liability
//
// NVIDIA SHALL NOT BE LIABLE TO ANY USER, DEVELOPER, DEVELOPER'S CUSTOMERS, OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH OR
// UNDER DEVELOPER FOR ANY LOSS OF PROFITS, INCOME, SAVINGS, OR ANY OTHER CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE, DIRECT
// OR INDIRECT DAMAGES (WHETHER IN AN ACTION IN CONTRACT, TORT OR BASED ON A WARRANTY), EVEN IF NVIDIA HAS BEEN ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF THE ESSENTIAL PURPOSE OF ANY
// LIMITED REMEDY. IN NO EVENT SHALL NVIDIA'S AGGREGATE LIABILITY TO DEVELOPER OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH
// OR UNDER DEVELOPER EXCEED THE AMOUNT OF MONEY ACTUALLY PAID BY DEVELOPER TO NVIDIA FOR THE SOFTWARE OR ANY OTHER MATERIALS.
//
//
// Atmospheric scattering vertex shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//
uniform vec3 v3CameraPos; // The camera's current position
uniform vec3 v3LightPos; // The direction vector to the light source
uniform vec3 v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels
uniform float fInnerRadius; // The inner (planetary) radius
uniform float fKrESun; // Kr * ESun
uniform float fKmESun; // Km * ESun
uniform float fKr4PI; // Kr * 4 * PI
uniform float fKm4PI; // Km * 4 * PI
uniform float fScale; // 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth; // fScale / fScaleDepth
const int nSamples = 2;
const float fSamples = 2.0;
varying vec3 position;
float scale(float fCos)
{
float x = 1.0 - fCos;
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
void main(void)
{
// Get the ray from the camera to the vertex, and its length (which is the far point of the ray passing through the atmosphere)
position = gl_Vertex.xyz;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

View file

@ -1,48 +1,113 @@
#version 120
//
// For licensing information, see http://http.developer.nvidia.com/GPUGems/gpugems_app01.html:
//
// NVIDIA Statement on the Software
//
// The source code provided is freely distributable, so long as the NVIDIA header remains unaltered and user modifications are
// detailed.
//
// No Warranty
//
// THE SOFTWARE AND ANY OTHER MATERIALS PROVIDED BY NVIDIA ON THE ENCLOSED CD-ROM ARE PROVIDED "AS IS." NVIDIA DISCLAIMS ALL
// WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
//
// Limitation of Liability
//
// NVIDIA SHALL NOT BE LIABLE TO ANY USER, DEVELOPER, DEVELOPER'S CUSTOMERS, OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH OR
// UNDER DEVELOPER FOR ANY LOSS OF PROFITS, INCOME, SAVINGS, OR ANY OTHER CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE, DIRECT
// OR INDIRECT DAMAGES (WHETHER IN AN ACTION IN CONTRACT, TORT OR BASED ON A WARRANTY), EVEN IF NVIDIA HAS BEEN ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF THE ESSENTIAL PURPOSE OF ANY
// LIMITED REMEDY. IN NO EVENT SHALL NVIDIA'S AGGREGATE LIABILITY TO DEVELOPER OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH
// OR UNDER DEVELOPER EXCEED THE AMOUNT OF MONEY ACTUALLY PAID BY DEVELOPER TO NVIDIA FOR THE SOFTWARE OR ANY OTHER MATERIALS.
//
//
// Atmospheric scattering fragment shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//
uniform vec3 v3LightPos;
uniform float g;
uniform float g2;
varying vec3 v3Direction;
void main (void)
{
float fCos = dot(v3LightPos, v3Direction) / length(v3Direction);
float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5);
gl_FragColor = gl_Color + fMiePhase * gl_SecondaryColor;
gl_FragColor.a = gl_FragColor.b;
}
#version 120
//
// For licensing information, see http://http.developer.nvidia.com/GPUGems/gpugems_app01.html:
//
// NVIDIA Statement on the Software
//
// The source code provided is freely distributable, so long as the NVIDIA header remains unaltered and user modifications are
// detailed.
//
// No Warranty
//
// THE SOFTWARE AND ANY OTHER MATERIALS PROVIDED BY NVIDIA ON THE ENCLOSED CD-ROM ARE PROVIDED "AS IS." NVIDIA DISCLAIMS ALL
// WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
//
// Limitation of Liability
//
// NVIDIA SHALL NOT BE LIABLE TO ANY USER, DEVELOPER, DEVELOPER'S CUSTOMERS, OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH OR
// UNDER DEVELOPER FOR ANY LOSS OF PROFITS, INCOME, SAVINGS, OR ANY OTHER CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE, DIRECT
// OR INDIRECT DAMAGES (WHETHER IN AN ACTION IN CONTRACT, TORT OR BASED ON A WARRANTY), EVEN IF NVIDIA HAS BEEN ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF THE ESSENTIAL PURPOSE OF ANY
// LIMITED REMEDY. IN NO EVENT SHALL NVIDIA'S AGGREGATE LIABILITY TO DEVELOPER OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH
// OR UNDER DEVELOPER EXCEED THE AMOUNT OF MONEY ACTUALLY PAID BY DEVELOPER TO NVIDIA FOR THE SOFTWARE OR ANY OTHER MATERIALS.
//
//
// Atmospheric scattering fragment shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//
uniform vec3 v3CameraPos; // The camera's current position
uniform vec3 v3LightPos; // The direction vector to the light source
uniform vec3 v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels
uniform float fCameraHeight2; // fCameraHeight^2
uniform float fOuterRadius; // The outer (atmosphere) radius
uniform float fOuterRadius2; // fOuterRadius^2
uniform float fInnerRadius; // The inner (planetary) radius
uniform float fKrESun; // Kr * ESun
uniform float fKmESun; // Km * ESun
uniform float fKr4PI; // Kr * 4 * PI
uniform float fKm4PI; // Km * 4 * PI
uniform float fScale; // 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth; // fScale / fScaleDepth
uniform float g;
uniform float g2;
const int nSamples = 2;
const float fSamples = 2.0;
varying vec3 position;
float scale(float fCos)
{
float x = 1.0 - fCos;
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
void main (void)
{
// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
vec3 v3Pos = position;
vec3 v3Ray = v3Pos - v3CameraPos;
float fFar = length(v3Ray);
v3Ray /= fFar;
// Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
float B = 2.0 * dot(v3CameraPos, v3Ray);
float C = fCameraHeight2 - fOuterRadius2;
float fDet = max(0.0, B*B - 4.0 * C);
float fNear = 0.5 * (-B - sqrt(fDet));
// Calculate the ray's starting position, then calculate its scattering offset
vec3 v3Start = v3CameraPos + v3Ray * fNear;
fFar -= fNear;
float fStartAngle = dot(v3Ray, v3Start) / fOuterRadius;
float fStartDepth = exp(-1.0 / fScaleDepth);
float fStartOffset = fStartDepth * scale(fStartAngle);
// Initialize the scattering loop variables
//gl_FrontColor = vec4(0.0, 0.0, 0.0, 0.0);
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
vec3 v3SampleRay = v3Ray * fSampleLength;
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
// Now loop through the sample rays
vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
for(int i=0; i<nSamples; i++)
{
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight;
float fCameraAngle = dot((v3Ray), v3SamplePoint) / fHeight * 0.99;
float fScatter = (fStartOffset + fDepth * (scale(fLightAngle) - scale(fCameraAngle)));
vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
v3SamplePoint += v3SampleRay;
}
vec3 v3Direction = v3CameraPos - v3Pos;
float fCos = dot(v3LightPos, v3Direction) / length(v3Direction);
float fMiePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos*fCos) / pow(1.0 + g2 - 2.0*g*fCos, 1.5);
vec3 color = v3FrontColor * (v3InvWavelength * fKrESun);
vec3 secondaryColor = v3FrontColor * fKmESun;
gl_FragColor.rgb = color + fMiePhase * secondaryColor;
gl_FragColor.a = gl_FragColor.b;
}

View file

@ -1,109 +1,41 @@
#version 120
//
// For licensing information, see http://http.developer.nvidia.com/GPUGems/gpugems_app01.html:
//
// NVIDIA Statement on the Software
//
// The source code provided is freely distributable, so long as the NVIDIA header remains unaltered and user modifications are
// detailed.
//
// No Warranty
//
// THE SOFTWARE AND ANY OTHER MATERIALS PROVIDED BY NVIDIA ON THE ENCLOSED CD-ROM ARE PROVIDED "AS IS." NVIDIA DISCLAIMS ALL
// WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
//
// Limitation of Liability
//
// NVIDIA SHALL NOT BE LIABLE TO ANY USER, DEVELOPER, DEVELOPER'S CUSTOMERS, OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH OR
// UNDER DEVELOPER FOR ANY LOSS OF PROFITS, INCOME, SAVINGS, OR ANY OTHER CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE, DIRECT
// OR INDIRECT DAMAGES (WHETHER IN AN ACTION IN CONTRACT, TORT OR BASED ON A WARRANTY), EVEN IF NVIDIA HAS BEEN ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF THE ESSENTIAL PURPOSE OF ANY
// LIMITED REMEDY. IN NO EVENT SHALL NVIDIA'S AGGREGATE LIABILITY TO DEVELOPER OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH
// OR UNDER DEVELOPER EXCEED THE AMOUNT OF MONEY ACTUALLY PAID BY DEVELOPER TO NVIDIA FOR THE SOFTWARE OR ANY OTHER MATERIALS.
//
//
// Atmospheric scattering vertex shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//
uniform vec3 v3CameraPos; // The camera's current position
uniform vec3 v3LightPos; // The direction vector to the light source
uniform vec3 v3InvWavelength; // 1 / pow(wavelength, 4) for the red, green, and blue channels
uniform float fCameraHeight2; // fCameraHeight^2
uniform float fOuterRadius; // The outer (atmosphere) radius
uniform float fOuterRadius2; // fOuterRadius^2
uniform float fInnerRadius; // The inner (planetary) radius
uniform float fKrESun; // Kr * ESun
uniform float fKmESun; // Km * ESun
uniform float fKr4PI; // Kr * 4 * PI
uniform float fKm4PI; // Km * 4 * PI
uniform float fScale; // 1 / (fOuterRadius - fInnerRadius)
uniform float fScaleDepth; // The scale depth (i.e. the altitude at which the atmosphere's average density is found)
uniform float fScaleOverScaleDepth; // fScale / fScaleDepth
const int nSamples = 2;
const float fSamples = 2.0;
varying vec3 v3Direction;
float scale(float fCos)
{
float x = 1.0 - fCos;
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
void main(void)
{
// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
vec3 v3Pos = gl_Vertex.xyz;
vec3 v3Ray = v3Pos - v3CameraPos;
float fFar = length(v3Ray);
v3Ray /= fFar;
// Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
float B = 2.0 * dot(v3CameraPos, v3Ray);
float C = fCameraHeight2 - fOuterRadius2;
float fDet = max(0.0, B*B - 4.0 * C);
float fNear = 0.5 * (-B - sqrt(fDet));
// Calculate the ray's starting position, then calculate its scattering offset
vec3 v3Start = v3CameraPos + v3Ray * fNear;
fFar -= fNear;
float fStartAngle = dot(v3Ray, v3Start) / fOuterRadius;
float fStartDepth = exp(-1.0 / fScaleDepth);
float fStartOffset = fStartDepth * scale(fStartAngle);
// Initialize the scattering loop variables
//gl_FrontColor = vec4(0.0, 0.0, 0.0, 0.0);
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
vec3 v3SampleRay = v3Ray * fSampleLength;
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
// Now loop through the sample rays
vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
for(int i=0; i<nSamples; i++)
{
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fLightAngle = dot(v3LightPos, v3SamplePoint) / fHeight;
float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight;
float fScatter = (fStartOffset + fDepth * (scale(fLightAngle) - scale(fCameraAngle)));
vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
v3SamplePoint += v3SampleRay;
}
// Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
gl_FrontSecondaryColor.rgb = v3FrontColor * fKmESun;
gl_FrontColor.rgb = v3FrontColor * (v3InvWavelength * fKrESun);
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
v3Direction = v3CameraPos - v3Pos;
}
#version 120
//
// For licensing information, see http://http.developer.nvidia.com/GPUGems/gpugems_app01.html:
//
// NVIDIA Statement on the Software
//
// The source code provided is freely distributable, so long as the NVIDIA header remains unaltered and user modifications are
// detailed.
//
// No Warranty
//
// THE SOFTWARE AND ANY OTHER MATERIALS PROVIDED BY NVIDIA ON THE ENCLOSED CD-ROM ARE PROVIDED "AS IS." NVIDIA DISCLAIMS ALL
// WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF TITLE, MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
//
// Limitation of Liability
//
// NVIDIA SHALL NOT BE LIABLE TO ANY USER, DEVELOPER, DEVELOPER'S CUSTOMERS, OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH OR
// UNDER DEVELOPER FOR ANY LOSS OF PROFITS, INCOME, SAVINGS, OR ANY OTHER CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE, DIRECT
// OR INDIRECT DAMAGES (WHETHER IN AN ACTION IN CONTRACT, TORT OR BASED ON A WARRANTY), EVEN IF NVIDIA HAS BEEN ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING ANY FAILURE OF THE ESSENTIAL PURPOSE OF ANY
// LIMITED REMEDY. IN NO EVENT SHALL NVIDIA'S AGGREGATE LIABILITY TO DEVELOPER OR ANY OTHER PERSON OR ENTITY CLAIMING THROUGH
// OR UNDER DEVELOPER EXCEED THE AMOUNT OF MONEY ACTUALLY PAID BY DEVELOPER TO NVIDIA FOR THE SOFTWARE OR ANY OTHER MATERIALS.
//
//
// Atmospheric scattering vertex shader
//
// Author: Sean O'Neil
//
// Copyright (c) 2004 Sean O'Neil
//
varying vec3 position;
void main(void)
{
position = gl_Vertex.xyz;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

View file

@ -1105,7 +1105,7 @@ void Application::idle() {
}
}
}
// Update audio stats for procedural sounds
#ifndef _WIN32
_audio.setLastAcceleration(_myAvatar.getThrust());

View file

@ -116,7 +116,7 @@ int audioCallback (const void* inputBuffer,
printLog("got output\n");
}
if (inputLeft) {
if (agentList && inputLeft) {
// Measure the loudness of the signal from the microphone and store in audio object
float loudness = 0;

View file

@ -25,23 +25,17 @@ using namespace std;
const bool BALLS_ON = false;
const bool USING_AVATAR_GRAVITY = true;
const float GRAVITY_SCALE = 10.0f;
const float BOUNCE = 0.3f;
const float THRUST_MAG = 1200.0;
const glm::vec3 DEFAULT_UP_DIRECTION (0.0f, 1.0f, 0.0f);
const float YAW_MAG = 500.0;
const float BODY_SPIN_FRICTION = 5.0;
const float BODY_UPRIGHT_FORCE = 10.0;
const float VELOCITY_DECAY = 5.0;
const float MY_HAND_HOLDING_PULL = 0.2;
const float YOUR_HAND_HOLDING_PULL = 1.0;
const float BODY_SPRING_DEFAULT_TIGHTNESS = 1000.0f;
const float BODY_SPRING_FORCE = 300.0f;
const float BODY_SPRING_DECAY = 16.0f;
const float COLLISION_RADIUS_SCALAR = 1.8;
const float COLLISION_BALL_FORCE = 1.0;
const float COLLISION_BODY_FORCE = 6.0;
const float COLLISION_BALL_FRICTION = 60.0;
const float COLLISION_BODY_FRICTION = 0.5;
const float COLLISION_RADIUS_SCALAR = 1.2; //pertains to avatar-to-avatar collisions
const float COLLISION_BALL_FORCE = 200.0; //pertains to avatar-to-avatar collisions
const float COLLISION_BODY_FORCE = 30.0; //pertains to avatar-to-avatar collisions
const float HEAD_ROTATION_SCALE = 0.70;
const float HEAD_ROLL_SCALE = 0.40;
const float HEAD_MAX_PITCH = 45;
@ -50,7 +44,7 @@ const float HEAD_MAX_YAW = 85;
const float HEAD_MIN_YAW = -85;
const float PERIPERSONAL_RADIUS = 1.0f;
const float AVATAR_BRAKING_STRENGTH = 40.0f;
const float JOINT_TOUCH_RANGE = 0.0005f;
const float JOINT_TOUCH_RANGE = 0.01f;
const float FLOATING_HEIGHT = 0.13f;
const bool USING_HEAD_LEAN = false;
const float LEAN_SENSITIVITY = 0.15;
@ -88,7 +82,7 @@ Avatar::Avatar(Agent* owningAgent) :
_pelvisFloatingHeight(0.0f),
_distanceToNearestAvatar(std::numeric_limits<float>::max()),
_gravity(0.0f, -1.0f, 0.0f),
_worldUpDirection(0.0f, 1.0f, 0.0),
_worldUpDirection(DEFAULT_UP_DIRECTION),
_mouseRayOrigin(0.0f, 0.0f, 0.0f),
_mouseRayDirection(0.0f, 0.0f, 0.0f),
_interactingOther(NULL),
@ -103,8 +97,15 @@ Avatar::Avatar(Agent* owningAgent) :
_driveKeys[i] = false;
}
initializeSkeleton();
_skeleton.initialize();
initializeBodyBalls();
_height = _skeleton.getHeight() + _bodyBall[ AVATAR_JOINT_LEFT_HEEL ].radius + _bodyBall[ AVATAR_JOINT_HEAD_BASE ].radius;
_maxArmLength = _skeleton.getArmLength();
_pelvisStandingHeight = _skeleton.getPelvisStandingHeight() + _bodyBall[ AVATAR_JOINT_LEFT_HEEL ].radius;
_pelvisFloatingHeight = _skeleton.getPelvisFloatingHeight() + _bodyBall[ AVATAR_JOINT_LEFT_HEEL ].radius;
_avatarTouch.setReachableRadius(PERIPERSONAL_RADIUS);
if (BALLS_ON) {
@ -114,6 +115,56 @@ Avatar::Avatar(Agent* owningAgent) :
}
}
void Avatar::initializeBodyBalls() {
for (int b=0; b<NUM_AVATAR_JOINTS; b++) {
_bodyBall[b].isCollidable = true;
_bodyBall[b].position = glm::vec3(0.0, 0.0, 0.0);
_bodyBall[b].velocity = glm::vec3(0.0, 0.0, 0.0);
_bodyBall[b].radius = 0.0;
_bodyBall[b].touchForce = 0.0;
_bodyBall[b].jointTightness = BODY_SPRING_DEFAULT_TIGHTNESS;
}
// specify the radii of the joints
_bodyBall[ AVATAR_JOINT_PELVIS ].radius = 0.07;
_bodyBall[ AVATAR_JOINT_TORSO ].radius = 0.065;
_bodyBall[ AVATAR_JOINT_CHEST ].radius = 0.08;
_bodyBall[ AVATAR_JOINT_NECK_BASE ].radius = 0.03;
_bodyBall[ AVATAR_JOINT_HEAD_BASE ].radius = 0.07;
_bodyBall[ AVATAR_JOINT_LEFT_COLLAR ].radius = 0.04;
_bodyBall[ AVATAR_JOINT_LEFT_SHOULDER ].radius = 0.03;
_bodyBall[ AVATAR_JOINT_LEFT_ELBOW ].radius = 0.02;
_bodyBall[ AVATAR_JOINT_LEFT_WRIST ].radius = 0.02;
_bodyBall[ AVATAR_JOINT_LEFT_FINGERTIPS ].radius = 0.01;
_bodyBall[ AVATAR_JOINT_RIGHT_COLLAR ].radius = 0.04;
_bodyBall[ AVATAR_JOINT_RIGHT_SHOULDER ].radius = 0.03;
_bodyBall[ AVATAR_JOINT_RIGHT_ELBOW ].radius = 0.02;
_bodyBall[ AVATAR_JOINT_RIGHT_WRIST ].radius = 0.02;
_bodyBall[ AVATAR_JOINT_RIGHT_FINGERTIPS ].radius = 0.01;
_bodyBall[ AVATAR_JOINT_LEFT_HIP ].radius = 0.04;
_bodyBall[ AVATAR_JOINT_LEFT_KNEE ].radius = 0.025;
_bodyBall[ AVATAR_JOINT_LEFT_HEEL ].radius = 0.025;
_bodyBall[ AVATAR_JOINT_LEFT_TOES ].radius = 0.025;
_bodyBall[ AVATAR_JOINT_RIGHT_HIP ].radius = 0.04;
_bodyBall[ AVATAR_JOINT_RIGHT_KNEE ].radius = 0.025;
_bodyBall[ AVATAR_JOINT_RIGHT_HEEL ].radius = 0.025;
_bodyBall[ AVATAR_JOINT_RIGHT_TOES ].radius = 0.025;
/*
// to aid in hand-shaking and hand-holding, the right hand is not collidable
_bodyBall[ AVATAR_JOINT_RIGHT_ELBOW ].isCollidable = false;
_bodyBall[ AVATAR_JOINT_RIGHT_WRIST ].isCollidable = false;
_bodyBall[ AVATAR_JOINT_RIGHT_FINGERTIPS].isCollidable = false;
*/
}
Avatar::~Avatar() {
_headData = NULL;
delete _balls;
@ -220,12 +271,15 @@ void Avatar::simulate(float deltaTime, Transmitter* transmitter) {
// update balls
if (_balls) { _balls->simulate(deltaTime); }
// update avatar skeleton
_skeleton.update(deltaTime, getOrientation(), _position);
// if other avatar, update head position from network data
// update avatar skeleton
updateSkeleton();
// if this is not my avatar, then hand position comes from transmitted data
if (_owningAgent) {
_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = _handPosition;
}
//detect and respond to collisions with other avatars...
if (!_owningAgent) {
updateAvatarCollisions(deltaTime);
@ -238,13 +292,12 @@ void Avatar::simulate(float deltaTime, Transmitter* transmitter) {
// apply gravity and collision with the ground/floor
if (!_owningAgent && USING_AVATAR_GRAVITY) {
_velocity += _gravity * (GRAVITY_SCALE * deltaTime);
_velocity += _gravity * (GRAVITY_EARTH * deltaTime);
updateCollisionWithEnvironment();
}
// update body springs
updateBodySprings(deltaTime);
// update body balls
updateBodyBalls(deltaTime);
// test for avatar collision response with the big sphere
if (usingBigSphereCollisionTest) {
@ -262,6 +315,8 @@ void Avatar::simulate(float deltaTime, Transmitter* transmitter) {
glm::vec3 up = orientation * AVATAR_UP;
// driving the avatar around should only apply if this is my avatar (as opposed to an avatar being driven remotely)
const float THRUST_MAG = 600.0f;
if (!_owningAgent) {
_thrust = glm::vec3(0.0f, 0.0f, 0.0f);
@ -330,7 +385,8 @@ void Avatar::simulate(float deltaTime, Transmitter* transmitter) {
BODY_PITCH_WHILE_WALKING * deltaTime * forwardComponentOfVelocity, 0.0f,
BODY_ROLL_WHILE_TURNING * deltaTime * _speed * _bodyYawDelta)));
// these forces keep the body upright...
// these forces keep the body upright...
const float BODY_UPRIGHT_FORCE = 10.0;
float tiltDecay = BODY_UPRIGHT_FORCE * deltaTime;
if (tiltDecay > 1.0f) {tiltDecay = 1.0f;}
@ -344,6 +400,7 @@ void Avatar::simulate(float deltaTime, Transmitter* transmitter) {
_position += _velocity * deltaTime;
// decay velocity
const float VELOCITY_DECAY = 0.9;
float decay = 1.0 - VELOCITY_DECAY * deltaTime;
if ( decay < 0.0 ) {
_velocity = glm::vec3( 0.0f, 0.0f, 0.0f );
@ -392,29 +449,29 @@ void Avatar::simulate(float deltaTime, Transmitter* transmitter) {
}
}
//apply the head lean values to the springy position...
//apply the head lean values to the ball positions...
if (USING_HEAD_LEAN) {
if (fabs(_head.getLeanSideways() + _head.getLeanForward()) > 0.0f) {
glm::vec3 headLean =
right * _head.getLeanSideways() +
front * _head.getLeanForward();
_joint[ AVATAR_JOINT_TORSO ].springyPosition += headLean * 0.1f;
_joint[ AVATAR_JOINT_CHEST ].springyPosition += headLean * 0.4f;
_joint[ AVATAR_JOINT_NECK_BASE ].springyPosition += headLean * 0.7f;
_joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition += headLean * 1.0f;
_bodyBall[ AVATAR_JOINT_TORSO ].position += headLean * 0.1f;
_bodyBall[ AVATAR_JOINT_CHEST ].position += headLean * 0.4f;
_bodyBall[ AVATAR_JOINT_NECK_BASE ].position += headLean * 0.7f;
_bodyBall[ AVATAR_JOINT_HEAD_BASE ].position += headLean * 1.0f;
_joint[ AVATAR_JOINT_LEFT_COLLAR ].springyPosition += headLean * 0.6f;
_joint[ AVATAR_JOINT_LEFT_SHOULDER ].springyPosition += headLean * 0.6f;
_joint[ AVATAR_JOINT_LEFT_ELBOW ].springyPosition += headLean * 0.2f;
_joint[ AVATAR_JOINT_LEFT_WRIST ].springyPosition += headLean * 0.1f;
_joint[ AVATAR_JOINT_LEFT_FINGERTIPS ].springyPosition += headLean * 0.0f;
_bodyBall[ AVATAR_JOINT_LEFT_COLLAR ].position += headLean * 0.6f;
_bodyBall[ AVATAR_JOINT_LEFT_SHOULDER ].position += headLean * 0.6f;
_bodyBall[ AVATAR_JOINT_LEFT_ELBOW ].position += headLean * 0.2f;
_bodyBall[ AVATAR_JOINT_LEFT_WRIST ].position += headLean * 0.1f;
_bodyBall[ AVATAR_JOINT_LEFT_FINGERTIPS ].position += headLean * 0.0f;
_joint[ AVATAR_JOINT_RIGHT_COLLAR ].springyPosition += headLean * 0.6f;
_joint[ AVATAR_JOINT_RIGHT_SHOULDER ].springyPosition += headLean * 0.6f;
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].springyPosition += headLean * 0.2f;
_joint[ AVATAR_JOINT_RIGHT_WRIST ].springyPosition += headLean * 0.1f;
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].springyPosition += headLean * 0.0f;
_bodyBall[ AVATAR_JOINT_RIGHT_COLLAR ].position += headLean * 0.6f;
_bodyBall[ AVATAR_JOINT_RIGHT_SHOULDER ].position += headLean * 0.6f;
_bodyBall[ AVATAR_JOINT_RIGHT_ELBOW ].position += headLean * 0.2f;
_bodyBall[ AVATAR_JOINT_RIGHT_WRIST ].position += headLean * 0.1f;
_bodyBall[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position += headLean * 0.0f;
}
}
@ -427,9 +484,9 @@ void Avatar::simulate(float deltaTime, Transmitter* transmitter) {
}
}
_head.setBodyRotation(glm::vec3(_bodyPitch, _bodyYaw, _bodyRoll));
_head.setPosition(_joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition);
_head.setScale (_joint[ AVATAR_JOINT_HEAD_BASE ].radius);
_head.setBodyRotation (glm::vec3(_bodyPitch, _bodyYaw, _bodyRoll));
_head.setPosition(_bodyBall[ AVATAR_JOINT_HEAD_BASE ].position);
_head.setScale (_bodyBall[ AVATAR_JOINT_HEAD_BASE ].radius);
_head.setSkinColor(glm::vec3(SKIN_COLOR[0], SKIN_COLOR[1], SKIN_COLOR[2]));
_head.simulate(deltaTime, !_owningAgent);
@ -445,13 +502,15 @@ void Avatar::checkForMouseRayTouching() {
for (int b = 0; b < NUM_AVATAR_JOINTS; b++) {
glm::vec3 directionToBodySphere = glm::normalize(_joint[b].springyPosition - _mouseRayOrigin);
glm::vec3 directionToBodySphere = glm::normalize(_bodyBall[b].position - _mouseRayOrigin);
float dot = glm::dot(directionToBodySphere, _mouseRayDirection);
if (dot > (1.0f - JOINT_TOUCH_RANGE)) {
_joint[b].touchForce = (dot - (1.0f - JOINT_TOUCH_RANGE)) / JOINT_TOUCH_RANGE;
float range = _bodyBall[b].radius * JOINT_TOUCH_RANGE;
if (dot > (1.0f - range)) {
_bodyBall[b].touchForce = (dot - (1.0f - range)) / range;
} else {
_joint[b].touchForce = 0.0;
_bodyBall[b].touchForce = 0.0;
}
}
}
@ -474,15 +533,15 @@ void Avatar::updateHandMovementAndTouching(float deltaTime) {
// reset hand and arm positions according to hand movement
glm::vec3 right = orientation * AVATAR_RIGHT;
glm::vec3 up = orientation * AVATAR_UP;
glm::vec3 up = orientation * AVATAR_UP;
glm::vec3 front = orientation * AVATAR_FRONT;
glm::vec3 transformedHandMovement
= right * _movedHandOffset.x * 2.0f
+ up * -_movedHandOffset.y * 2.0f
+ front * -_movedHandOffset.z * 2.0f;
+ up * -_movedHandOffset.y * 2.0f
+ front * -_movedHandOffset.y * 2.0f;
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position += transformedHandMovement;
_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position += transformedHandMovement;
if (!_owningAgent) {
_avatarTouch.setMyBodyPosition(_position);
@ -520,8 +579,8 @@ void Avatar::updateHandMovementAndTouching(float deltaTime) {
_avatarTouch.setHasInteractingOther(true);
_avatarTouch.setYourBodyPosition(_interactingOther->_position);
_avatarTouch.setYourHandPosition(_interactingOther->_bodyBall[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position);
_avatarTouch.setYourOrientation (_interactingOther->getOrientation());
_avatarTouch.setYourHandPosition(_interactingOther->_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].springyPosition);
_avatarTouch.setYourHandState (_interactingOther->_handState);
//if hand-holding is initiated by either avatar, turn on hand-holding...
@ -536,8 +595,8 @@ void Avatar::updateHandMovementAndTouching(float deltaTime) {
glm::vec3 vectorFromMyHandToYourHand
(
_interactingOther->_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position -
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position
_interactingOther->_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position -
_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position
);
float distanceBetweenOurHands = glm::length(vectorFromMyHandToYourHand);
@ -559,10 +618,10 @@ void Avatar::updateHandMovementAndTouching(float deltaTime) {
//if holding hands, apply the appropriate forces
if (_avatarTouch.getHoldingHands()) {
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position +=
_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position +=
(
_interactingOther->_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position
- _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position
_interactingOther->_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position
- _skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position
) * 0.5f;
if (distanceBetweenOurHands > 0.3) {
@ -582,7 +641,7 @@ void Avatar::updateHandMovementAndTouching(float deltaTime) {
//Set right hand position and state to be transmitted, and also tell AvatarTouch about it
if (!_owningAgent) {
setHandPosition(_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position);
setHandPosition(_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position);
if (_mousePressed) {
_handState = HAND_STATE_GRASPING;
@ -591,7 +650,7 @@ void Avatar::updateHandMovementAndTouching(float deltaTime) {
}
_avatarTouch.setMyHandState(_handState);
_avatarTouch.setMyHandPosition(_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].springyPosition);
_avatarTouch.setMyHandPosition(_bodyBall[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position);
}
}
@ -603,9 +662,9 @@ void Avatar::updateCollisionWithSphere(glm::vec3 position, float radius, float d
float distanceToBigSphere = glm::length(vectorFromMyBodyToBigSphere);
if (distanceToBigSphere < myBodyApproximateBoundingRadius + radius) {
for (int b = 0; b < NUM_AVATAR_JOINTS; b++) {
glm::vec3 vectorFromJointToBigSphereCenter(_joint[b].springyPosition - position);
glm::vec3 vectorFromJointToBigSphereCenter(_bodyBall[b].position - position);
float distanceToBigSphereCenter = glm::length(vectorFromJointToBigSphereCenter);
float combinedRadius = _joint[b].radius + radius;
float combinedRadius = _bodyBall[b].radius + radius;
if (distanceToBigSphereCenter < combinedRadius) {
jointCollision = true;
@ -615,9 +674,9 @@ void Avatar::updateCollisionWithSphere(glm::vec3 position, float radius, float d
float penetration = 1.0 - (distanceToBigSphereCenter / combinedRadius);
glm::vec3 collisionForce = vectorFromJointToBigSphereCenter * penetration;
_joint[b].springyVelocity += collisionForce * 0.0f * deltaTime;
_bodyBall[b].velocity += collisionForce * 0.0f * deltaTime;
_velocity += collisionForce * 40.0f * deltaTime;
_joint[b].springyPosition = position + directionVector * combinedRadius;
_bodyBall[b].position = position + directionVector * combinedRadius;
}
}
}
@ -647,12 +706,21 @@ void Avatar::updateCollisionWithVoxels() {
void Avatar::applyCollisionWithScene(const glm::vec3& penetration) {
_position -= penetration;
static float STATIC_FRICTION_VELOCITY = 0.15f;
static float STATIC_FRICTION_DAMPING = 0.0f;
static float KINETIC_FRICTION_DAMPING = 0.95f;
const float BOUNCE = 0.3f;
// reflect the velocity component in the direction of penetration
float penetrationLength = glm::length(penetration);
if (penetrationLength > EPSILON) {
glm::vec3 direction = penetration / penetrationLength;
_velocity -= 2.0f * glm::dot(_velocity, direction) * direction * BOUNCE;
_velocity *= KINETIC_FRICTION_DAMPING;
// If velocity is quite low, apply static friction that takes away energy
if (glm::length(_velocity) < STATIC_FRICTION_VELOCITY) {
_velocity *= STATIC_FRICTION_DAMPING;
}
}
}
@ -666,16 +734,17 @@ void Avatar::updateAvatarCollisions(float deltaTime) {
for (AgentList::iterator agent = agentList->begin(); agent != agentList->end(); agent++) {
if (agent->getLinkedData() != NULL && agent->getType() == AGENT_TYPE_AVATAR) {
Avatar *otherAvatar = (Avatar *)agent->getLinkedData();
// check if the bounding spheres of the two avatars are colliding
glm::vec3 vectorBetweenBoundingSpheres(_position - otherAvatar->_position);
if (glm::length(vectorBetweenBoundingSpheres) < _height * ONE_HALF + otherAvatar->_height * ONE_HALF) {
//apply forces from collision
applyCollisionWithOtherAvatar(otherAvatar, deltaTime);
//apply forces from collision
applyCollisionWithOtherAvatar(otherAvatar, deltaTime);
}
// test other avatar hand position for proximity
glm::vec3 v(_joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position);
glm::vec3 v(_skeleton.joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position);
v -= otherAvatar->getPosition();
float distance = glm::length(v);
@ -688,43 +757,34 @@ void Avatar::updateAvatarCollisions(float deltaTime) {
//detect collisions with other avatars and respond
void Avatar::applyCollisionWithOtherAvatar(Avatar * otherAvatar, float deltaTime) {
float bodyMomentum = 1.0f;
glm::vec3 bodyPushForce = glm::vec3(0.0f, 0.0f, 0.0f);
// loop through the joints of each avatar to check for every possible collision
for (int b=1; b<NUM_AVATAR_JOINTS; b++) {
if (_joint[b].isCollidable) {
if (_bodyBall[b].isCollidable) {
for (int o=b+1; o<NUM_AVATAR_JOINTS; o++) {
if (otherAvatar->_joint[o].isCollidable) {
if (otherAvatar->_bodyBall[o].isCollidable) {
glm::vec3 vectorBetweenJoints(_joint[b].springyPosition - otherAvatar->_joint[o].springyPosition);
glm::vec3 vectorBetweenJoints(_bodyBall[b].position - otherAvatar->_bodyBall[o].position);
float distanceBetweenJoints = glm::length(vectorBetweenJoints);
if (distanceBetweenJoints > 0.0) { // to avoid divide by zero
float combinedRadius = _joint[b].radius + otherAvatar->_joint[o].radius;
float combinedRadius = _bodyBall[b].radius + otherAvatar->_bodyBall[o].radius;
// check for collision
if (distanceBetweenJoints < combinedRadius * COLLISION_RADIUS_SCALAR) {
glm::vec3 directionVector = vectorBetweenJoints / distanceBetweenJoints;
// push balls away from each other and apply friction
glm::vec3 ballPushForce = directionVector * COLLISION_BALL_FORCE * deltaTime;
float ballMomentum = 1.0 - COLLISION_BALL_FRICTION * deltaTime;
if (ballMomentum < 0.0) { ballMomentum = 0.0;}
_joint[b].springyVelocity += ballPushForce;
otherAvatar->_joint[o].springyVelocity -= ballPushForce;
float penetration = 1.0f - (distanceBetweenJoints / (combinedRadius * COLLISION_RADIUS_SCALAR));
_joint[b].springyVelocity *= ballMomentum;
otherAvatar->_joint[o].springyVelocity *= ballMomentum;
// accumulate forces and frictions to apply to the velocities of avatar bodies
bodyPushForce += directionVector * COLLISION_BODY_FORCE * deltaTime;
bodyMomentum -= COLLISION_BODY_FRICTION * deltaTime;
if (bodyMomentum < 0.0) { bodyMomentum = 0.0;}
glm::vec3 ballPushForce = directionVector * COLLISION_BALL_FORCE * penetration * deltaTime;
bodyPushForce += directionVector * COLLISION_BODY_FORCE * penetration * deltaTime;
_bodyBall[b].velocity += ballPushForce;
otherAvatar->_bodyBall[o].velocity -= ballPushForce;
}// check for collision
} // to avoid divide by zero
@ -733,12 +793,8 @@ void Avatar::applyCollisionWithOtherAvatar(Avatar * otherAvatar, float deltaTime
} // b loop
} // collidable
//apply forces and frictions on the bodies of both avatars
_velocity += bodyPushForce;
otherAvatar->_velocity -= bodyPushForce;
_velocity *= bodyMomentum;
otherAvatar->_velocity *= bodyMomentum;
//apply force on the whole body
_velocity += bodyPushForce;
}
@ -755,6 +811,8 @@ void Avatar::setGravity(glm::vec3 gravity) {
float gravityLength = glm::length(gravity);
if (gravityLength > EPSILON) {
_worldUpDirection = _gravity / -gravityLength;
} else {
_worldUpDirection = DEFAULT_UP_DIRECTION;
}
}
@ -799,11 +857,12 @@ void Avatar::render(bool lookingInMirror) {
}
glPushMatrix();
glm::vec3 chatPosition = _joint[AVATAR_JOINT_HEAD_BASE].springyPosition + getBodyUpDirection() * chatMessageHeight;
glm::vec3 chatPosition = _bodyBall[AVATAR_JOINT_HEAD_BASE].position + getBodyUpDirection() * chatMessageHeight;
glTranslatef(chatPosition.x, chatPosition.y, chatPosition.z);
glm::quat chatRotation = Application::getInstance()->getCamera()->getRotation();
glm::vec3 chatAxis = glm::axis(chatRotation);
glRotatef(glm::angle(chatRotation), chatAxis.x, chatAxis.y, chatAxis.z);
glColor3f(0, 0.8, 0);
glRotatef(180, 0, 1, 0);
@ -833,252 +892,71 @@ void Avatar::render(bool lookingInMirror) {
}
}
void Avatar::initializeSkeleton() {
for (int b=0; b<NUM_AVATAR_JOINTS; b++) {
_joint[b].isCollidable = true;
_joint[b].parent = AVATAR_JOINT_NULL;
_joint[b].position = glm::vec3(0.0, 0.0, 0.0);
_joint[b].defaultPosePosition = glm::vec3(0.0, 0.0, 0.0);
_joint[b].springyPosition = glm::vec3(0.0, 0.0, 0.0);
_joint[b].springyVelocity = glm::vec3(0.0, 0.0, 0.0);
_joint[b].orientation = glm::quat(0.0f, 0.0f, 0.0f, 1.0f);
_joint[b].length = 0.0;
_joint[b].radius = 0.0;
_joint[b].touchForce = 0.0;
_joint[b].springBodyTightness = BODY_SPRING_DEFAULT_TIGHTNESS;
}
// specify the parental hierarchy
_joint[ AVATAR_JOINT_PELVIS ].parent = AVATAR_JOINT_NULL;
_joint[ AVATAR_JOINT_TORSO ].parent = AVATAR_JOINT_PELVIS;
_joint[ AVATAR_JOINT_CHEST ].parent = AVATAR_JOINT_TORSO;
_joint[ AVATAR_JOINT_NECK_BASE ].parent = AVATAR_JOINT_CHEST;
_joint[ AVATAR_JOINT_HEAD_BASE ].parent = AVATAR_JOINT_NECK_BASE;
_joint[ AVATAR_JOINT_HEAD_TOP ].parent = AVATAR_JOINT_HEAD_BASE;
_joint[ AVATAR_JOINT_LEFT_COLLAR ].parent = AVATAR_JOINT_CHEST;
_joint[ AVATAR_JOINT_LEFT_SHOULDER ].parent = AVATAR_JOINT_LEFT_COLLAR;
_joint[ AVATAR_JOINT_LEFT_ELBOW ].parent = AVATAR_JOINT_LEFT_SHOULDER;
_joint[ AVATAR_JOINT_LEFT_WRIST ].parent = AVATAR_JOINT_LEFT_ELBOW;
_joint[ AVATAR_JOINT_LEFT_FINGERTIPS ].parent = AVATAR_JOINT_LEFT_WRIST;
_joint[ AVATAR_JOINT_RIGHT_COLLAR ].parent = AVATAR_JOINT_CHEST;
_joint[ AVATAR_JOINT_RIGHT_SHOULDER ].parent = AVATAR_JOINT_RIGHT_COLLAR;
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].parent = AVATAR_JOINT_RIGHT_SHOULDER;
_joint[ AVATAR_JOINT_RIGHT_WRIST ].parent = AVATAR_JOINT_RIGHT_ELBOW;
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].parent = AVATAR_JOINT_RIGHT_WRIST;
_joint[ AVATAR_JOINT_LEFT_HIP ].parent = AVATAR_JOINT_PELVIS;
_joint[ AVATAR_JOINT_LEFT_KNEE ].parent = AVATAR_JOINT_LEFT_HIP;
_joint[ AVATAR_JOINT_LEFT_HEEL ].parent = AVATAR_JOINT_LEFT_KNEE;
_joint[ AVATAR_JOINT_LEFT_TOES ].parent = AVATAR_JOINT_LEFT_HEEL;
_joint[ AVATAR_JOINT_RIGHT_HIP ].parent = AVATAR_JOINT_PELVIS;
_joint[ AVATAR_JOINT_RIGHT_KNEE ].parent = AVATAR_JOINT_RIGHT_HIP;
_joint[ AVATAR_JOINT_RIGHT_HEEL ].parent = AVATAR_JOINT_RIGHT_KNEE;
_joint[ AVATAR_JOINT_RIGHT_TOES ].parent = AVATAR_JOINT_RIGHT_HEEL;
// specify the default pose position
_joint[ AVATAR_JOINT_PELVIS ].defaultPosePosition = glm::vec3( 0.0, 0.0, 0.0 );
_joint[ AVATAR_JOINT_TORSO ].defaultPosePosition = glm::vec3( 0.0, 0.09, -0.01 );
_joint[ AVATAR_JOINT_CHEST ].defaultPosePosition = glm::vec3( 0.0, 0.09, -0.01 );
_joint[ AVATAR_JOINT_NECK_BASE ].defaultPosePosition = glm::vec3( 0.0, 0.14, 0.01 );
_joint[ AVATAR_JOINT_HEAD_BASE ].defaultPosePosition = glm::vec3( 0.0, 0.04, 0.00 );
_joint[ AVATAR_JOINT_LEFT_COLLAR ].defaultPosePosition = glm::vec3( -0.06, 0.04, 0.01 );
_joint[ AVATAR_JOINT_LEFT_SHOULDER ].defaultPosePosition = glm::vec3( -0.05, 0.0, 0.01 );
_joint[ AVATAR_JOINT_LEFT_ELBOW ].defaultPosePosition = glm::vec3( 0.0, -0.16, 0.0 );
_joint[ AVATAR_JOINT_LEFT_WRIST ].defaultPosePosition = glm::vec3( 0.0, -0.117, 0.0 );
_joint[ AVATAR_JOINT_LEFT_FINGERTIPS ].defaultPosePosition = glm::vec3( 0.0, -0.1, 0.0 );
_joint[ AVATAR_JOINT_RIGHT_COLLAR ].defaultPosePosition = glm::vec3( 0.06, 0.04, 0.01 );
_joint[ AVATAR_JOINT_RIGHT_SHOULDER ].defaultPosePosition = glm::vec3( 0.05, 0.0, 0.01 );
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].defaultPosePosition = glm::vec3( 0.0, -0.16, 0.0 );
_joint[ AVATAR_JOINT_RIGHT_WRIST ].defaultPosePosition = glm::vec3( 0.0, -0.117, 0.0 );
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].defaultPosePosition = glm::vec3( 0.0, -0.1, 0.0 );
_joint[ AVATAR_JOINT_LEFT_HIP ].defaultPosePosition = glm::vec3( -0.05, 0.0, 0.02 );
_joint[ AVATAR_JOINT_LEFT_KNEE ].defaultPosePosition = glm::vec3( 0.01, -0.25, -0.03 );
_joint[ AVATAR_JOINT_LEFT_HEEL ].defaultPosePosition = glm::vec3( 0.01, -0.22, 0.08 );
_joint[ AVATAR_JOINT_LEFT_TOES ].defaultPosePosition = glm::vec3( 0.00, -0.03, -0.05 );
_joint[ AVATAR_JOINT_RIGHT_HIP ].defaultPosePosition = glm::vec3( 0.05, 0.0, 0.02 );
_joint[ AVATAR_JOINT_RIGHT_KNEE ].defaultPosePosition = glm::vec3( -0.01, -0.25, -0.03 );
_joint[ AVATAR_JOINT_RIGHT_HEEL ].defaultPosePosition = glm::vec3( -0.01, -0.22, 0.08 );
_joint[ AVATAR_JOINT_RIGHT_TOES ].defaultPosePosition = glm::vec3( 0.00, -0.03, -0.05 );
// specify the radii of the joints
_joint[ AVATAR_JOINT_PELVIS ].radius = 0.07;
_joint[ AVATAR_JOINT_TORSO ].radius = 0.065;
_joint[ AVATAR_JOINT_CHEST ].radius = 0.08;
_joint[ AVATAR_JOINT_NECK_BASE ].radius = 0.03;
_joint[ AVATAR_JOINT_HEAD_BASE ].radius = 0.07;
_joint[ AVATAR_JOINT_LEFT_COLLAR ].radius = 0.04;
_joint[ AVATAR_JOINT_LEFT_SHOULDER ].radius = 0.03;
_joint[ AVATAR_JOINT_LEFT_ELBOW ].radius = 0.02;
_joint[ AVATAR_JOINT_LEFT_WRIST ].radius = 0.02;
_joint[ AVATAR_JOINT_LEFT_FINGERTIPS ].radius = 0.01;
_joint[ AVATAR_JOINT_RIGHT_COLLAR ].radius = 0.04;
_joint[ AVATAR_JOINT_RIGHT_SHOULDER ].radius = 0.03;
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].radius = 0.02;
_joint[ AVATAR_JOINT_RIGHT_WRIST ].radius = 0.02;
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].radius = 0.01;
_joint[ AVATAR_JOINT_LEFT_HIP ].radius = 0.04;
_joint[ AVATAR_JOINT_LEFT_KNEE ].radius = 0.025;
_joint[ AVATAR_JOINT_LEFT_HEEL ].radius = 0.025;
_joint[ AVATAR_JOINT_LEFT_TOES ].radius = 0.025;
_joint[ AVATAR_JOINT_RIGHT_HIP ].radius = 0.04;
_joint[ AVATAR_JOINT_RIGHT_KNEE ].radius = 0.025;
_joint[ AVATAR_JOINT_RIGHT_HEEL ].radius = 0.025;
_joint[ AVATAR_JOINT_RIGHT_TOES ].radius = 0.025;
// to aid in hand-shaking and hand-holding, the right hand is not collidable
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].isCollidable = false;
_joint[ AVATAR_JOINT_RIGHT_WRIST ].isCollidable = false;
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].isCollidable = false;
// calculate bone length
calculateBoneLengths();
_pelvisStandingHeight =
_joint[ AVATAR_JOINT_LEFT_HEEL ].radius +
_joint[ AVATAR_JOINT_LEFT_HEEL ].length +
_joint[ AVATAR_JOINT_LEFT_KNEE ].length;
//printf("_pelvisStandingHeight = %f\n", _pelvisStandingHeight);
_pelvisFloatingHeight = _pelvisStandingHeight + FLOATING_HEIGHT;
_height =
(
_pelvisStandingHeight +
_joint[ AVATAR_JOINT_LEFT_HEEL ].radius +
_joint[ AVATAR_JOINT_LEFT_HEEL ].length +
_joint[ AVATAR_JOINT_LEFT_KNEE ].length +
_joint[ AVATAR_JOINT_PELVIS ].length +
_joint[ AVATAR_JOINT_TORSO ].length +
_joint[ AVATAR_JOINT_CHEST ].length +
_joint[ AVATAR_JOINT_NECK_BASE ].length +
_joint[ AVATAR_JOINT_HEAD_BASE ].length +
_joint[ AVATAR_JOINT_HEAD_BASE ].radius
);
//printf("_height = %f\n", _height);
// generate joint positions by updating the skeleton
updateSkeleton();
//set spring positions to be in the skeleton bone positions
initializeBodySprings();
}
void Avatar::calculateBoneLengths() {
void Avatar::resetBodyBalls() {
for (int b = 0; b < NUM_AVATAR_JOINTS; b++) {
_joint[b].length = glm::length(_joint[b].defaultPosePosition);
}
_maxArmLength
= _joint[ AVATAR_JOINT_RIGHT_ELBOW ].length
+ _joint[ AVATAR_JOINT_RIGHT_WRIST ].length
+ _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].length;
}
void Avatar::updateSkeleton() {
// rotate body...
glm::quat orientation = getOrientation();
// calculate positions of all bones by traversing the skeleton tree:
for (int b = 0; b < NUM_AVATAR_JOINTS; b++) {
if (_joint[b].parent == AVATAR_JOINT_NULL) {
_joint[b].orientation = orientation;
_joint[b].position = _position;
}
else {
_joint[b].orientation = _joint[ _joint[b].parent ].orientation;
_joint[b].position = _joint[ _joint[b].parent ].position;
}
// if this is not my avatar, then hand position comes from transmitted data
if (_owningAgent) {
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = _handPosition;
}
// the following will be replaced by a proper rotation...close
glm::vec3 rotatedJointVector = _joint[b].orientation * _joint[b].defaultPosePosition;
//glm::vec3 myEuler (0.0f, 0.0f, 0.0f);
//glm::quat myQuat (myEuler);
_joint[b].position += rotatedJointVector;
_bodyBall[b].position = _skeleton.joint[b].position;
_bodyBall[b].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
}
}
void Avatar::initializeBodySprings() {
for (int b = 0; b < NUM_AVATAR_JOINTS; b++) {
_joint[b].springyPosition = _joint[b].position;
_joint[b].springyVelocity = glm::vec3(0.0f, 0.0f, 0.0f);
}
}
void Avatar::updateBodySprings(float deltaTime) {
// Check for a large repositioning, and re-initialize body springs if this has happened
void Avatar::updateBodyBalls(float deltaTime) {
// Check for a large repositioning, and re-initialize balls if this has happened
const float BEYOND_BODY_SPRING_RANGE = 2.f;
if (glm::length(_position - _joint[AVATAR_JOINT_PELVIS].springyPosition) > BEYOND_BODY_SPRING_RANGE) {
initializeBodySprings();
if (glm::length(_position - _bodyBall[AVATAR_JOINT_PELVIS].position) > BEYOND_BODY_SPRING_RANGE) {
resetBodyBalls();
}
for (int b = 0; b < NUM_AVATAR_JOINTS; b++) {
glm::vec3 springVector(_joint[b].springyPosition);
glm::vec3 springVector(_bodyBall[b].position);
if (_joint[b].parent == AVATAR_JOINT_NULL) {
if (_skeleton.joint[b].parent == AVATAR_JOINT_NULL) {
springVector -= _position;
}
else {
springVector -= _joint[ _joint[b].parent ].springyPosition;
springVector -= _bodyBall[ _skeleton.joint[b].parent ].position;
}
float length = glm::length(springVector);
if (length > 0.0f) { // to avoid divide by zero
glm::vec3 springDirection = springVector / length;
float force = (length - _skeleton.joint[b].length) * BODY_SPRING_FORCE * deltaTime;
_bodyBall[b].velocity -= springDirection * force;
float force = (length - _joint[b].length) * BODY_SPRING_FORCE * deltaTime;
_joint[b].springyVelocity -= springDirection * force;
if (_joint[b].parent != AVATAR_JOINT_NULL) {
_joint[_joint[b].parent].springyVelocity += springDirection * force;
if (_skeleton.joint[b].parent != AVATAR_JOINT_NULL) {
_bodyBall[_skeleton.joint[b].parent].velocity += springDirection * force;
}
}
// apply tightness force - (causing springy position to be close to rigid body position)
_joint[b].springyVelocity += (_joint[b].position - _joint[b].springyPosition) * _joint[b].springBodyTightness * deltaTime;
// apply tightness force - (causing ball position to be close to skeleton joint position)
_bodyBall[b].velocity += (_skeleton.joint[b].position - _bodyBall[b].position) * _bodyBall[b].jointTightness * deltaTime;
// apply decay
float decay = 1.0 - BODY_SPRING_DECAY * deltaTime;
if (decay > 0.0) {
_joint[b].springyVelocity *= decay;
_bodyBall[b].velocity *= decay;
}
else {
_joint[b].springyVelocity = glm::vec3(0.0f, 0.0f, 0.0f);
_bodyBall[b].velocity = glm::vec3(0.0f, 0.0f, 0.0f);
}
/*
//apply forces from touch...
if (_joint[b].touchForce > 0.0) {
_joint[b].springyVelocity += _mouseRayDirection * _joint[b].touchForce * 0.7f;
if (_skeleton.joint[b].touchForce > 0.0) {
_skeleton.joint[b].springyVelocity += _mouseRayDirection * _skeleton.joint[b].touchForce * 0.7f;
}
*/
//update position by velocity...
_joint[b].springyPosition += _joint[b].springyVelocity * deltaTime;
_bodyBall[b].position += _bodyBall[b].velocity * deltaTime;
}
}
void Avatar::updateArmIKAndConstraints(float deltaTime) {
// determine the arm vector
glm::vec3 armVector = _joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position;
armVector -= _joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position;
glm::vec3 armVector = _skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position;
armVector -= _skeleton.joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position;
// test to see if right hand is being dragged beyond maximum arm length
float distance = glm::length(armVector);
@ -1086,29 +964,28 @@ void Avatar::updateArmIKAndConstraints(float deltaTime) {
// don't let right hand get dragged beyond maximum arm length...
if (distance > _maxArmLength) {
// reset right hand to be constrained to maximum arm length
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = _joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position;
_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = _skeleton.joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position;
glm::vec3 armNormal = armVector / distance;
armVector = armNormal * _maxArmLength;
distance = _maxArmLength;
glm::vec3 constrainedPosition = _joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position;
glm::vec3 constrainedPosition = _skeleton.joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position;
constrainedPosition += armVector;
_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = constrainedPosition;
_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position = constrainedPosition;
}
// set elbow position
glm::vec3 newElbowPosition = _joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position;
newElbowPosition += armVector * ONE_HALF;
glm::vec3 newElbowPosition = _skeleton.joint[ AVATAR_JOINT_RIGHT_SHOULDER ].position + armVector * ONE_HALF;
glm::vec3 perpendicular = glm::cross(getBodyFrontDirection(), armVector);
glm::vec3 perpendicular = glm::cross(getBodyRightDirection(), armVector);
newElbowPosition += perpendicular * (1.0f - (_maxArmLength / distance)) * ONE_HALF;
_joint[ AVATAR_JOINT_RIGHT_ELBOW ].position = newElbowPosition;
_skeleton.joint[ AVATAR_JOINT_RIGHT_ELBOW ].position = newElbowPosition;
// set wrist position
glm::vec3 vv(_joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position);
vv -= _joint[ AVATAR_JOINT_RIGHT_ELBOW ].position;
glm::vec3 newWristPosition = _joint[ AVATAR_JOINT_RIGHT_ELBOW ].position + vv * 0.7f;
_joint[ AVATAR_JOINT_RIGHT_WRIST ].position = newWristPosition;
glm::vec3 vv(_skeleton.joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].position);
vv -= _skeleton.joint[ AVATAR_JOINT_RIGHT_ELBOW ].position;
glm::vec3 newWristPosition = _skeleton.joint[ AVATAR_JOINT_RIGHT_ELBOW ].position + vv * 0.7f;
_skeleton.joint[ AVATAR_JOINT_RIGHT_WRIST ].position = newWristPosition;
}
glm::quat Avatar::computeRotationFromBodyToWorldUp(float proportion) const {
@ -1134,7 +1011,7 @@ void Avatar::renderBody(bool lookingInMirror) {
// Render the body as balls and cones
for (int b = 0; b < NUM_AVATAR_JOINTS; b++) {
float distanceToCamera = glm::length(_cameraPosition - _joint[b].position);
float distanceToCamera = glm::length(_cameraPosition - _skeleton.joint[b].position);
float alpha = lookingInMirror ? 1.0f : glm::clamp((distanceToCamera - RENDER_TRANSLUCENT_BEYOND) /
(RENDER_OPAQUE_BEYOND - RENDER_TRANSLUCENT_BEYOND), 0.f, 1.f);
@ -1156,26 +1033,26 @@ void Avatar::renderBody(bool lookingInMirror) {
if (_owningAgent || b == AVATAR_JOINT_RIGHT_ELBOW
|| b == AVATAR_JOINT_RIGHT_WRIST
|| b == AVATAR_JOINT_RIGHT_FINGERTIPS ) {
glColor3f(SKIN_COLOR[0] + _joint[b].touchForce * 0.3f,
SKIN_COLOR[1] - _joint[b].touchForce * 0.2f,
SKIN_COLOR[2] - _joint[b].touchForce * 0.1f);
glColor3f(SKIN_COLOR[0] + _bodyBall[b].touchForce * 0.3f,
SKIN_COLOR[1] - _bodyBall[b].touchForce * 0.2f,
SKIN_COLOR[2] - _bodyBall[b].touchForce * 0.1f);
} else {
glColor4f(SKIN_COLOR[0] + _joint[b].touchForce * 0.3f,
SKIN_COLOR[1] - _joint[b].touchForce * 0.2f,
SKIN_COLOR[2] - _joint[b].touchForce * 0.1f,
glColor4f(SKIN_COLOR[0] + _bodyBall[b].touchForce * 0.3f,
SKIN_COLOR[1] - _bodyBall[b].touchForce * 0.2f,
SKIN_COLOR[2] - _bodyBall[b].touchForce * 0.1f,
alpha);
}
if ((b != AVATAR_JOINT_HEAD_TOP )
&& (b != AVATAR_JOINT_HEAD_BASE )) {
glPushMatrix();
glTranslatef(_joint[b].springyPosition.x, _joint[b].springyPosition.y, _joint[b].springyPosition.z);
glutSolidSphere(_joint[b].radius, 20.0f, 20.0f);
glTranslatef(_bodyBall[b].position.x, _bodyBall[b].position.y, _bodyBall[b].position.z);
glutSolidSphere(_bodyBall[b].radius, 20.0f, 20.0f);
glPopMatrix();
}
// Render the cone connecting this joint to its parent
if (_joint[b].parent != AVATAR_JOINT_NULL) {
if (_skeleton.joint[b].parent != AVATAR_JOINT_NULL) {
if ((b != AVATAR_JOINT_HEAD_TOP )
&& (b != AVATAR_JOINT_HEAD_BASE )
&& (b != AVATAR_JOINT_PELVIS )
@ -1187,15 +1064,15 @@ void Avatar::renderBody(bool lookingInMirror) {
&& (b != AVATAR_JOINT_RIGHT_SHOULDER)) {
glColor3fv(DARK_SKIN_COLOR);
float r1 = _joint[_joint[b].parent ].radius * 0.8;
float r2 = _joint[b ].radius * 0.8;
float r1 = _bodyBall[_skeleton.joint[b].parent ].radius * 0.8;
float r2 = _bodyBall[b ].radius * 0.8;
if (b == AVATAR_JOINT_HEAD_BASE) {
r1 *= 0.5f;
}
renderJointConnectingCone
(
_joint[_joint[b].parent ].springyPosition,
_joint[b ].springyPosition, r2, r2
_bodyBall[_skeleton.joint[b].parent ].position,
_bodyBall[b ].position, r2, r2
);
}
}

View file

@ -64,24 +64,28 @@ public:
void setOrientation (const glm::quat& orientation);
//getters
float getHeadYawRate () const { return _head.yawRate;}
float getBodyYaw () const { return _bodyYaw;}
bool getIsNearInteractingOther () const { return _avatarTouch.getAbleToReachOtherAvatar();}
const glm::vec3& getHeadPosition () const { return _joint[ AVATAR_JOINT_HEAD_BASE ].position;}
const glm::vec3& getSpringyHeadPosition () const { return _joint[ AVATAR_JOINT_HEAD_BASE ].springyPosition;}
const glm::vec3& getJointPosition (AvatarJointID j) const { return _joint[j].springyPosition;}
float getHeadYawRate () const { return _head.yawRate;}
float getBodyYaw () const { return _bodyYaw;}
bool getIsNearInteractingOther() const { return _avatarTouch.getAbleToReachOtherAvatar();}
const glm::vec3& getHeadPosition () const { return _skeleton.joint[ AVATAR_JOINT_HEAD_BASE ].position;}
const glm::vec3& getSpringyHeadPosition () const { return _bodyBall[ AVATAR_JOINT_HEAD_BASE ].position;}
const glm::vec3& getJointPosition (AvatarJointID j) const { return _bodyBall[j].position;}
glm::vec3 getBodyRightDirection () const { return getOrientation() * AVATAR_RIGHT; }
glm::vec3 getBodyUpDirection () const { return getOrientation() * AVATAR_UP; }
glm::vec3 getBodyFrontDirection () const { return getOrientation() * AVATAR_FRONT; }
const glm::vec3& getVelocity () const { return _velocity;}
float getSpeed () const { return _speed;}
float getHeight () const { return _height;}
AvatarMode getMode () const { return _mode;}
float getAbsoluteHeadYaw () const;
float getAbsoluteHeadPitch () const;
Head& getHead () { return _head; }
glm::quat getOrientation () const;
glm::quat getWorldAlignedOrientation () const;
const glm::vec3& getVelocity () const { return _velocity;}
float getSpeed () const { return _speed;}
float getHeight () const { return _height;}
AvatarMode getMode () const { return _mode;}
float getAbsoluteHeadYaw () const;
float getAbsoluteHeadPitch () const;
Head& getHead () {return _head; }
glm::quat getOrientation () const;
glm::quat getWorldAlignedOrientation() const;
// Set what driving keys are being pressed to control thrust levels
void setDriveKeys(int key, bool val) { _driveKeys[key] = val; };
@ -100,19 +104,14 @@ private:
Avatar(const Avatar&);
Avatar& operator= (const Avatar&);
struct AvatarJoint
struct AvatarBall
{
AvatarJointID parent; // which joint is this joint connected to?
glm::vec3 position; // the position at the "end" of the joint - in global space
glm::vec3 defaultPosePosition; // the parent relative position when the avatar is in the "T-pose"
glm::vec3 springyPosition; // used for special effects (a 'flexible' variant of position)
glm::vec3 springyVelocity; // used for special effects ( the velocity of the springy position)
float springBodyTightness; // how tightly the springy position tries to stay on the position
glm::quat orientation; // this will eventually replace yaw, pitch and roll (and maybe orientation)
float length; // the length of vector connecting the joint and its parent
float radius; // used for detecting collisions for certain physical effects
bool isCollidable; // when false, the joint position will not register a collision
float touchForce; // if being touched, what's the degree of influence? (0 to 1)
glm::vec3 position;
glm::vec3 velocity;
float jointTightness;
float radius;
bool isCollidable;
float touchForce;
};
Head _head;
@ -124,7 +123,8 @@ private:
float _bodyYawDelta;
float _bodyRollDelta;
glm::vec3 _movedHandOffset;
AvatarJoint _joint[ NUM_AVATAR_JOINTS ];
glm::quat _rotation; // the rotation of the avatar body as a whole expressed as a quaternion
AvatarBall _bodyBall[ NUM_AVATAR_JOINTS ];
AvatarMode _mode;
glm::vec3 _cameraPosition;
glm::vec3 _handHoldingPosition;
@ -152,10 +152,9 @@ private:
glm::vec3 caclulateAverageEyePosition() { return _head.caclulateAverageEyePosition(); } // get the position smack-dab between the eyes (for lookat)
glm::quat computeRotationFromBodyToWorldUp(float proportion = 1.0f) const;
void renderBody(bool lookingInMirror);
void initializeSkeleton();
void updateSkeleton();
void initializeBodySprings();
void updateBodySprings( float deltaTime );
void initializeBodyBalls();
void resetBodyBalls();
void updateBodyBalls( float deltaTime );
void calculateBoneLengths();
void readSensors();
void updateHandMovementAndTouching(float deltaTime);

View file

@ -43,6 +43,10 @@ void AvatarTouch::simulate (float deltaTime) {
glm::vec3 vectorBetweenBodies = _yourBodyPosition - _myBodyPosition;
float distanceBetweenBodies = glm::length(vectorBetweenBodies);
//KEEP THIS - it is another variation that we are considering getting rid of
//the following code take into account of the two avatars are facing each other
/*
glm::vec3 directionBetweenBodies = vectorBetweenBodies / distanceBetweenBodies;
bool facingEachOther = false;
@ -50,12 +54,14 @@ void AvatarTouch::simulate (float deltaTime) {
glm::vec3 myFront = _myOrientation * AVATAR_FRONT;
glm::vec3 yourFront = _yourOrientation * AVATAR_FRONT;
if (( glm::dot(myFront, yourFront) < -AVATAR_FACING_THRESHOLD) // we're facing each other
&& ( glm::dot(myFront, directionBetweenBodies ) > AVATAR_FACING_THRESHOLD)) { // I'm facing you
if (( glm::dot(myFront, yourFront ) < -AVATAR_FACING_THRESHOLD) // we're facing each other
&& ( glm::dot(myFront, directionBetweenBodies ) > AVATAR_FACING_THRESHOLD)) { // I'm facing you
facingEachOther = true;
}
if (distanceBetweenBodies < _reachableRadius) {
*/
if (distanceBetweenBodies < _reachableRadius)
{
_canReachToOtherAvatar = true;
_vectorBetweenHands = _yourHandPosition - _myHandPosition;

View file

@ -32,7 +32,7 @@ Camera::Camera() {
_needsToInitialize = true;
_frustumNeedsReshape = true;
_modeShift = 0.0f;
_modeShift = 1.0f;
_modeShiftRate = 1.0f;
_linearModeShift = 0.0f;
_mode = CAMERA_MODE_THIRD_PERSON;

View file

@ -58,11 +58,17 @@ void Environment::renderAtmospheres(Camera& camera) {
}
glm::vec3 Environment::getGravity (const glm::vec3& position) {
// the "original gravity"
glm::vec3 gravity;
if (position.x > 0.0f && position.x < EDGE_SIZE_GROUND_PLANE && position.y > 0.0f &&
position.y < 3.0f && position.z > 0.0f && position.z < EDGE_SIZE_GROUND_PLANE) {
gravity = glm::vec3(0.0f, -1.0f, 0.0f);
//
// 'Default' gravity pulls you downward in Y when you are near the X/Z plane
const glm::vec3 DEFAULT_GRAVITY(0.f, -1.f, 0.f);
glm::vec3 gravity(DEFAULT_GRAVITY);
float DEFAULT_SURFACE_RADIUS = 30.f;
float gravityStrength;
// Weaken gravity with height
if (position.y > 0.f) {
gravityStrength = 1.f / powf((DEFAULT_SURFACE_RADIUS + position.y) / DEFAULT_SURFACE_RADIUS, 2.f);
gravity *= gravityStrength;
}
// get the lock for the duration of the call
@ -71,12 +77,18 @@ glm::vec3 Environment::getGravity (const glm::vec3& position) {
foreach (const ServerData& serverData, _data) {
foreach (const EnvironmentData& environmentData, serverData) {
glm::vec3 vector = environmentData.getAtmosphereCenter() - position;
const float GRAVITY_RADIUS_MULTIPLIER = 1.5f;
if (glm::length(vector) < environmentData.getAtmosphereOuterRadius() * GRAVITY_RADIUS_MULTIPLIER) {
float surfaceRadius = environmentData.getAtmosphereInnerRadius();
if (glm::length(vector) <= surfaceRadius) {
// At or inside a planet, gravity is as set for the planet
gravity += glm::normalize(vector) * environmentData.getGravity();
} else {
// Outside a planet, the gravity falls off with distance
gravityStrength = 1.f / powf(glm::length(vector) / surfaceRadius, 2.f);
gravity += glm::normalize(vector) * environmentData.getGravity() * gravityStrength;
}
}
}
return gravity;
}

View file

@ -20,7 +20,6 @@ const float EYE_RIGHT_OFFSET = 0.27f;
const float EYE_UP_OFFSET = 0.36f;
const float EYE_FRONT_OFFSET = 0.8f;
const float EAR_RIGHT_OFFSET = 1.0;
//const float MOUTH_FRONT_OFFSET = 0.9f;
const float MOUTH_UP_OFFSET = -0.3f;
const float HEAD_MOTION_DECAY = 0.1;
const float MINIMUM_EYE_ROTATION_DOT = 0.5f; // based on a dot product: 1.0 is straight ahead, 0.0 is 90 degrees off
@ -276,7 +275,7 @@ void Head::renderMohawk(glm::vec3 cameraPosition) {
glm::vec3 mid2 = _hairTuft[t].midPosition + midPerpendicular * _hairTuft[t].thickness * ONE_HALF * ONE_HALF;
glColor3f(_mohawkColors[t].x, _mohawkColors[t].y, _mohawkColors[t].z);
glBegin(GL_TRIANGLES);
glVertex3f(base1.x, base1.y, base1.z );
glVertex3f(base2.x, base2.y, base2.z );
@ -374,7 +373,7 @@ void Head::renderMouth() {
rightTop = _position + glm::normalize(rightTop - _position) * constrainedRadius;
leftBottom = _position + glm::normalize(leftBottom - _position) * constrainedRadius;
rightBottom = _position + glm::normalize(rightBottom - _position) * constrainedRadius;
glColor3f(0.2f, 0.0f, 0.0f);
glBegin(GL_TRIANGLES);

View file

@ -6,15 +6,129 @@
#include "Skeleton.h"
const float BODY_SPRING_DEFAULT_TIGHTNESS = 1000.0f;
const float FLOATING_HEIGHT = 0.13f;
Skeleton::Skeleton() {
}
void Skeleton::initialize() {
for (int b=0; b<NUM_AVATAR_JOINTS; b++) {
joint[b].parent = AVATAR_JOINT_NULL;
joint[b].position = glm::vec3(0.0, 0.0, 0.0);
joint[b].defaultPosePosition = glm::vec3(0.0, 0.0, 0.0);
joint[b].rotation = glm::quat(0.0f, 0.0f, 0.0f, 0.0f);
joint[b].length = 0.0;
}
// specify the parental hierarchy
joint[ AVATAR_JOINT_PELVIS ].parent = AVATAR_JOINT_NULL;
joint[ AVATAR_JOINT_TORSO ].parent = AVATAR_JOINT_PELVIS;
joint[ AVATAR_JOINT_CHEST ].parent = AVATAR_JOINT_TORSO;
joint[ AVATAR_JOINT_NECK_BASE ].parent = AVATAR_JOINT_CHEST;
joint[ AVATAR_JOINT_HEAD_BASE ].parent = AVATAR_JOINT_NECK_BASE;
joint[ AVATAR_JOINT_HEAD_TOP ].parent = AVATAR_JOINT_HEAD_BASE;
joint[ AVATAR_JOINT_LEFT_COLLAR ].parent = AVATAR_JOINT_CHEST;
joint[ AVATAR_JOINT_LEFT_SHOULDER ].parent = AVATAR_JOINT_LEFT_COLLAR;
joint[ AVATAR_JOINT_LEFT_ELBOW ].parent = AVATAR_JOINT_LEFT_SHOULDER;
joint[ AVATAR_JOINT_LEFT_WRIST ].parent = AVATAR_JOINT_LEFT_ELBOW;
joint[ AVATAR_JOINT_LEFT_FINGERTIPS ].parent = AVATAR_JOINT_LEFT_WRIST;
joint[ AVATAR_JOINT_RIGHT_COLLAR ].parent = AVATAR_JOINT_CHEST;
joint[ AVATAR_JOINT_RIGHT_SHOULDER ].parent = AVATAR_JOINT_RIGHT_COLLAR;
joint[ AVATAR_JOINT_RIGHT_ELBOW ].parent = AVATAR_JOINT_RIGHT_SHOULDER;
joint[ AVATAR_JOINT_RIGHT_WRIST ].parent = AVATAR_JOINT_RIGHT_ELBOW;
joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].parent = AVATAR_JOINT_RIGHT_WRIST;
joint[ AVATAR_JOINT_LEFT_HIP ].parent = AVATAR_JOINT_PELVIS;
joint[ AVATAR_JOINT_LEFT_KNEE ].parent = AVATAR_JOINT_LEFT_HIP;
joint[ AVATAR_JOINT_LEFT_HEEL ].parent = AVATAR_JOINT_LEFT_KNEE;
joint[ AVATAR_JOINT_LEFT_TOES ].parent = AVATAR_JOINT_LEFT_HEEL;
joint[ AVATAR_JOINT_RIGHT_HIP ].parent = AVATAR_JOINT_PELVIS;
joint[ AVATAR_JOINT_RIGHT_KNEE ].parent = AVATAR_JOINT_RIGHT_HIP;
joint[ AVATAR_JOINT_RIGHT_HEEL ].parent = AVATAR_JOINT_RIGHT_KNEE;
joint[ AVATAR_JOINT_RIGHT_TOES ].parent = AVATAR_JOINT_RIGHT_HEEL;
// specify the default pose position
joint[ AVATAR_JOINT_PELVIS ].defaultPosePosition = glm::vec3( 0.0, 0.0, 0.0 );
joint[ AVATAR_JOINT_TORSO ].defaultPosePosition = glm::vec3( 0.0, 0.09, -0.01 );
joint[ AVATAR_JOINT_CHEST ].defaultPosePosition = glm::vec3( 0.0, 0.09, -0.01 );
joint[ AVATAR_JOINT_NECK_BASE ].defaultPosePosition = glm::vec3( 0.0, 0.14, 0.01 );
joint[ AVATAR_JOINT_HEAD_BASE ].defaultPosePosition = glm::vec3( 0.0, 0.04, 0.00 );
joint[ AVATAR_JOINT_LEFT_COLLAR ].defaultPosePosition = glm::vec3( -0.06, 0.04, 0.01 );
joint[ AVATAR_JOINT_LEFT_SHOULDER ].defaultPosePosition = glm::vec3( -0.05, 0.0, 0.01 );
joint[ AVATAR_JOINT_LEFT_ELBOW ].defaultPosePosition = glm::vec3( 0.0, -0.16, 0.0 );
joint[ AVATAR_JOINT_LEFT_WRIST ].defaultPosePosition = glm::vec3( 0.0, -0.117, 0.0 );
joint[ AVATAR_JOINT_LEFT_FINGERTIPS ].defaultPosePosition = glm::vec3( 0.0, -0.1, 0.0 );
joint[ AVATAR_JOINT_RIGHT_COLLAR ].defaultPosePosition = glm::vec3( 0.06, 0.04, 0.01 );
joint[ AVATAR_JOINT_RIGHT_SHOULDER ].defaultPosePosition = glm::vec3( 0.05, 0.0, 0.01 );
joint[ AVATAR_JOINT_RIGHT_ELBOW ].defaultPosePosition = glm::vec3( 0.0, -0.16, 0.0 );
joint[ AVATAR_JOINT_RIGHT_WRIST ].defaultPosePosition = glm::vec3( 0.0, -0.117, 0.0 );
joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].defaultPosePosition = glm::vec3( 0.0, -0.1, 0.0 );
joint[ AVATAR_JOINT_LEFT_HIP ].defaultPosePosition = glm::vec3( -0.05, 0.0, 0.02 );
joint[ AVATAR_JOINT_LEFT_KNEE ].defaultPosePosition = glm::vec3( 0.01, -0.25, -0.03 );
joint[ AVATAR_JOINT_LEFT_HEEL ].defaultPosePosition = glm::vec3( 0.01, -0.22, 0.08 );
joint[ AVATAR_JOINT_LEFT_TOES ].defaultPosePosition = glm::vec3( 0.00, -0.03, -0.05 );
joint[ AVATAR_JOINT_RIGHT_HIP ].defaultPosePosition = glm::vec3( 0.05, 0.0, 0.02 );
joint[ AVATAR_JOINT_RIGHT_KNEE ].defaultPosePosition = glm::vec3( -0.01, -0.25, -0.03 );
joint[ AVATAR_JOINT_RIGHT_HEEL ].defaultPosePosition = glm::vec3( -0.01, -0.22, 0.08 );
joint[ AVATAR_JOINT_RIGHT_TOES ].defaultPosePosition = glm::vec3( 0.00, -0.03, -0.05 );
// calculate bone length
for (int b = 0; b < NUM_AVATAR_JOINTS; b++) {
joint[b].length = glm::length(joint[b].defaultPosePosition);
}
}
void Skeleton::render() {
// calculate positions and rotations of all bones by traversing the skeleton tree:
void Skeleton::update(float deltaTime, const glm::quat& orientation, glm::vec3 position) {
for (int b = 0; b < NUM_AVATAR_JOINTS; b++) {
if (joint[b].parent == AVATAR_JOINT_NULL) {
joint[b].rotation = orientation;
joint[b].position = position;
}
else {
joint[b].rotation = joint[ joint[b].parent ].rotation;
joint[b].position = joint[ joint[b].parent ].position;
}
glm::vec3 rotatedJointVector = joint[b].rotation * joint[b].defaultPosePosition;
joint[b].position += rotatedJointVector;
}
}
void Skeleton::simulate(float deltaTime) {
float Skeleton::getArmLength() {
return joint[ AVATAR_JOINT_RIGHT_ELBOW ].length
+ joint[ AVATAR_JOINT_RIGHT_WRIST ].length
+ joint[ AVATAR_JOINT_RIGHT_FINGERTIPS ].length;
}
float Skeleton::getHeight() {
return
joint[ AVATAR_JOINT_LEFT_HEEL ].length +
joint[ AVATAR_JOINT_LEFT_KNEE ].length +
joint[ AVATAR_JOINT_PELVIS ].length +
joint[ AVATAR_JOINT_TORSO ].length +
joint[ AVATAR_JOINT_CHEST ].length +
joint[ AVATAR_JOINT_NECK_BASE ].length +
joint[ AVATAR_JOINT_HEAD_BASE ].length;
}
float Skeleton::getPelvisStandingHeight() {
return joint[ AVATAR_JOINT_LEFT_HEEL ].length +
joint[ AVATAR_JOINT_LEFT_KNEE ].length;
}
float Skeleton::getPelvisFloatingHeight() {
return joint[ AVATAR_JOINT_LEFT_HEEL ].length +
joint[ AVATAR_JOINT_LEFT_KNEE ].length +
FLOATING_HEIGHT;
}

View file

@ -8,6 +8,9 @@
#ifndef hifi_Skeleton_h
#define hifi_Skeleton_h
#include <glm/glm.hpp>
#include <glm/gtc/quaternion.hpp>
enum AvatarJointID
{
AVATAR_JOINT_NULL = -1,
@ -45,10 +48,24 @@ public:
Skeleton();
void initialize();
void simulate(float deltaTime);
void update(float deltaTime, const glm::quat&, glm::vec3 position);
void render();
private:
};
float getArmLength();
float getHeight();
float getPelvisStandingHeight();
float getPelvisFloatingHeight();
struct AvatarJoint
{
AvatarJointID parent; // which joint is this joint connected to?
glm::vec3 position; // the position at the "end" of the joint - in global space
glm::vec3 defaultPosePosition; // the parent relative position when the avatar is in the "T-pose"
glm::quat rotation; // the parent-relative rotation (orientation) of the joint as a quaternion
float length; // the length of vector connecting the joint and its parent
};
AvatarJoint joint[ NUM_AVATAR_JOINTS ];
};
#endif

View file

@ -15,8 +15,8 @@
const float WORLD_SIZE = 10.0;
#define PI 3.14159265
#define PIf 3.14159265f
#define GRAVITY_EARTH 9.80665f;
const float GRAVITY_EARTH = 9.80665f;
const float EDGE_SIZE_GROUND_PLANE = 20.f;
#endif

View file

@ -10,6 +10,7 @@
#define __hifi__SharedUtil__
#include <stdint.h>
#include <unistd.h>
#include <math.h>
#ifdef _WIN32