attempt to close open mesh parts

This commit is contained in:
Andrew Meadows 2016-05-23 11:31:58 -07:00
parent f8e2cf8064
commit 0647f5b2d0
3 changed files with 174 additions and 73 deletions

View file

@ -9,6 +9,7 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <unordered_map>
#include <QVector>
#include "VHACDUtil.h"
@ -49,7 +50,7 @@ bool vhacd::VHACDUtil::loadFBX(const QString filename, FBXGeometry& result) {
reSortFBXGeometryMeshes(result);
} catch (const QString& error) {
qDebug() << "Error reading " << filename << ": " << error;
qDebug() << "Error reading" << filename << ":" << error;
return false;
}
@ -57,13 +58,12 @@ bool vhacd::VHACDUtil::loadFBX(const QString filename, FBXGeometry& result) {
}
unsigned int getTrianglesInMeshPart(const FBXMeshPart &meshPart, std::vector<int>& triangles) {
void getTrianglesInMeshPart(const FBXMeshPart &meshPart, std::vector<int>& triangles) {
// append all the triangles (and converted quads) from this mesh-part to triangles
std::vector<int> meshPartTriangles = meshPart.triangleIndices.toStdVector();
triangles.insert(triangles.end(), meshPartTriangles.begin(), meshPartTriangles.end());
// convert quads to triangles
unsigned int triangleCount = meshPart.triangleIndices.size() / 3;
unsigned int quadCount = meshPart.quadIndices.size() / 4;
for (unsigned int i = 0; i < quadCount; i++) {
unsigned int p0Index = meshPart.quadIndices[i * 4];
@ -77,10 +77,7 @@ unsigned int getTrianglesInMeshPart(const FBXMeshPart &meshPart, std::vector<int
triangles.push_back(p0Index);
triangles.push_back(p2Index);
triangles.push_back(p3Index);
triangleCount += 2;
}
return triangleCount;
}
@ -177,41 +174,140 @@ AABox getAABoxForMeshPart(const FBXMesh& mesh, const FBXMeshPart &meshPart) {
return aaBox;
}
struct TriangleEdge {
int indexA { -1 };
int indexB { -1 };
TriangleEdge() {}
TriangleEdge(int A, int B) : indexA(A), indexB(B) {}
bool operator==(const TriangleEdge& other) const {
return indexA == other.indexA && indexB == other.indexB;
}
void sortIndices() {
if (indexB < indexA) {
int t = indexA;
indexA = indexB;
indexB = t;
}
}
};
namespace std {
template <>
struct hash<TriangleEdge> {
std::size_t operator()(const TriangleEdge& edge) const {
return (hash<int>()(edge.indexA) ^ (hash<int>()(edge.indexB) << 1));
}
};
}
// returns false if any edge has only one adjacent triangle
bool isClosedManifold(const std::vector<int>& triangles) {
using EdgeList = std::unordered_map<TriangleEdge, int>;
EdgeList edges;
// count the triangles for each edge
for (size_t i = 0; i < triangles.size(); i += 3) {
TriangleEdge edge;
for (int j = 0; j < 3; ++j) {
edge.indexA = triangles[(int)i + j];
edge.indexB = triangles[i + ((j + 1) % 3)];
edge.sortIndices();
EdgeList::iterator edgeEntry = edges.find(edge);
if (edgeEntry == edges.end()) {
edges.insert(std::pair<TriangleEdge, int>(edge, 1));
} else {
edgeEntry->second += 1;
}
}
}
// scan for outside edge
for (auto& edgeEntry : edges) {
if (edgeEntry.second == 1) {
return false;
}
}
return true;
}
void getConvexResults(VHACD::IVHACD* convexifier, FBXMesh& resultMesh) {
// Number of hulls for this input meshPart
unsigned int numHulls = convexifier->GetNConvexHulls();
qDebug() << " hulls =" << numHulls;
// create an output meshPart for each convex hull
for (unsigned int j = 0; j < numHulls; j++) {
VHACD::IVHACD::ConvexHull hull;
convexifier->GetConvexHull(j, hull);
resultMesh.parts.append(FBXMeshPart());
FBXMeshPart& resultMeshPart = resultMesh.parts.last();
int hullIndexStart = resultMesh.vertices.size();
for (unsigned int i = 0; i < hull.m_nPoints; i++) {
float x = hull.m_points[i * 3];
float y = hull.m_points[i * 3 + 1];
float z = hull.m_points[i * 3 + 2];
resultMesh.vertices.append(glm::vec3(x, y, z));
}
for (unsigned int i = 0; i < hull.m_nTriangles; i++) {
int index0 = hull.m_triangles[i * 3] + hullIndexStart;
int index1 = hull.m_triangles[i * 3 + 1] + hullIndexStart;
int index2 = hull.m_triangles[i * 3 + 2] + hullIndexStart;
resultMeshPart.triangleIndices.append(index0);
resultMeshPart.triangleIndices.append(index1);
resultMeshPart.triangleIndices.append(index2);
}
qDebug() << " hull" << j << " vertices =" << hull.m_nPoints
<< " triangles =" << hull.m_nTriangles
<< " FBXMeshVertices =" << resultMesh.vertices.size();
}
}
float computeDt(uint64_t start) {
return (float)(usecTimestampNow() - start) / 1.0e6f;
}
bool vhacd::VHACDUtil::computeVHACD(FBXGeometry& geometry,
VHACD::IVHACD::Parameters params,
FBXGeometry& result,
int startPartIndex,
int endPartIndex,
float minimumMeshSize, float maximumMeshSize) {
qDebug() << "num meshes =" << geometry.meshes.size();
qDebug() << "meshes =" << geometry.meshes.size();
// count the mesh-parts
int numParts = 0;
foreach (const FBXMesh& mesh, geometry.meshes) {
numParts += mesh.parts.size();
}
qDebug() << "total parts =" << numParts;
VHACD::IVHACD * interfaceVHACD = VHACD::CreateVHACD();
if (startPartIndex < 0) {
startPartIndex = 0;
}
if (endPartIndex < 0) {
endPartIndex = numParts;
}
qDebug() << "num parts of interest =" << (endPartIndex - startPartIndex);
VHACD::IVHACD * convexifier = VHACD::CreateVHACD();
result.meshExtents.reset();
result.meshes.append(FBXMesh());
FBXMesh &resultMesh = result.meshes.last();
int meshIndex = 0;
int partIndex = 0;
int validPartsFound = 0;
foreach (const FBXMesh& mesh, geometry.meshes) {
// find duplicate points
int numDupes = 0;
std::vector<int> dupeIndexMap;
dupeIndexMap.reserve(mesh.vertices.size());
for (int i = 0; i < mesh.vertices.size(); ++i) {
dupeIndexMap.push_back(i);
for (int j = 0; j < i; ++j) {
float distance = glm::distance(mesh.vertices[i], mesh.vertices[j]);
if (distance < 0.0001f) {
dupeIndexMap[i] = j;
++numDupes;
break;
}
}
}
// each mesh has its own transform to move it to model-space
std::vector<glm::vec3> vertices;
foreach (glm::vec3 vertex, mesh.vertices) {
@ -224,87 +320,93 @@ bool vhacd::VHACDUtil::computeVHACD(FBXGeometry& geometry,
<< " vertices =" << numVertices;
++meshIndex;
std::vector<int> openParts;
int partIndex = 0;
foreach (const FBXMeshPart &meshPart, mesh.parts) {
if (partIndex < startPartIndex || partIndex >= endPartIndex) {
std::vector<int> triangles;
getTrianglesInMeshPart(meshPart, triangles);
// only process meshes with triangles
if (triangles.size() <= 0) {
qDebug() << " skip part" << partIndex << "(zero triangles)";
++partIndex;
continue;
}
std::vector<int> triangles;
unsigned int triangleCount = getTrianglesInMeshPart(meshPart, triangles);
// only process meshes with triangles
if (triangles.size() <= 0) {
qDebug() << " part" << partIndex << ":";
qDebug() << " skip (zero triangles)";
++partIndex;
continue;
// collapse dupe indices
for (auto& i : triangles) {
i = dupeIndexMap[i];
}
AABox aaBox = getAABoxForMeshPart(mesh, meshPart);
const float largestDimension = aaBox.getLargestDimension();
qDebug() << " part" << partIndex << ": "
<< " triangles =" << triangleCount
<< " largestDimension =" << largestDimension;
if (largestDimension < minimumMeshSize) {
qDebug() << " skip (too small)";
qDebug() << " skip part" << partIndex << ": dimension =" << largestDimension << "(too small)";
++partIndex;
continue;
}
if (maximumMeshSize > 0.0f && largestDimension > maximumMeshSize) {
qDebug() << " skip (too large)";
qDebug() << " skip part" << partIndex << ": dimension =" << largestDimension << "(too large)";
++partIndex;
continue;
}
// figure out if the mesh is a closed manifold or not
bool closed = isClosedManifold(triangles);
if (closed) {
unsigned int triangleCount = triangles.size() / 3;
qDebug() << " process closed part" << partIndex << ": "
<< " triangles =" << triangleCount;
// compute approximate convex decomposition
bool success = interfaceVHACD->Compute(&vertices[0].x, 3, (uint)numVertices, &triangles[0], 3, triangleCount, params);
if (!success){
qDebug() << " failed to convexify";
++partIndex;
continue;
}
// Number of hulls for this input meshPart
unsigned int nConvexHulls = interfaceVHACD->GetNConvexHulls();
// create an output meshPart for each convex hull
for (unsigned int j = 0; j < nConvexHulls; j++) {
VHACD::IVHACD::ConvexHull hull;
interfaceVHACD->GetConvexHull(j, hull);
resultMesh.parts.append(FBXMeshPart());
FBXMeshPart &resultMeshPart = resultMesh.parts.last();
int hullIndexStart = resultMesh.vertices.size();
for (unsigned int i = 0; i < hull.m_nPoints; i++) {
float x = hull.m_points[i * 3];
float y = hull.m_points[i * 3 + 1];
float z = hull.m_points[i * 3 + 2];
resultMesh.vertices.append(glm::vec3(x, y, z));
}
for (unsigned int i = 0; i < hull.m_nTriangles; i++) {
int index0 = hull.m_triangles[i * 3] + hullIndexStart;
int index1 = hull.m_triangles[i * 3 + 1] + hullIndexStart;
int index2 = hull.m_triangles[i * 3 + 2] + hullIndexStart;
resultMeshPart.triangleIndices.append(index0);
resultMeshPart.triangleIndices.append(index1);
resultMeshPart.triangleIndices.append(index2);
// compute approximate convex decomposition
bool success = convexifier->Compute(&vertices[0].x, 3, (uint)numVertices, &triangles[0], 3, triangleCount, params);
if (success) {
getConvexResults(convexifier, resultMesh);
} else {
qDebug() << " failed to convexify";
}
} else {
qDebug() << " postpone open part" << partIndex;
openParts.push_back(partIndex);
}
++partIndex;
++validPartsFound;
}
if (! openParts.empty()) {
// combine open meshes in an attempt to produce a closed mesh
std::vector<int> triangles;
for (auto index : openParts) {
const FBXMeshPart &meshPart = mesh.parts[index];
getTrianglesInMeshPart(meshPart, triangles);
}
// collapse dupe indices
for (auto& i : triangles) {
i = dupeIndexMap[i];
}
// this time we don't care if the parts are close or not
unsigned int triangleCount = triangles.size() / 3;
qDebug() << " process remaining open parts =" << openParts.size() << ": "
<< " triangles =" << triangleCount;
// compute approximate convex decomposition
bool success = convexifier->Compute(&vertices[0].x, 3, (uint)numVertices, &triangles[0], 3, triangleCount, params);
if (success) {
getConvexResults(convexifier, resultMesh);
} else {
qDebug() << " failed to convexify";
}
}
}
//release memory
interfaceVHACD->Clean();
interfaceVHACD->Release();
convexifier->Clean();
convexifier->Release();
return validPartsFound > 0;
}

View file

@ -34,7 +34,6 @@ namespace vhacd {
bool computeVHACD(FBXGeometry& geometry,
VHACD::IVHACD::Parameters params,
FBXGeometry& result,
int startPartIndex, int endPartIndex,
float minimumMeshSize, float maximumMeshSize);
~VHACDUtil();
};

View file

@ -356,7 +356,7 @@ VHACDUtilApp::VHACDUtilApp(int argc, char* argv[]) :
begin = std::chrono::high_resolution_clock::now();
FBXGeometry result;
bool success = vUtil.computeVHACD(fbx, params, result, startMeshIndex, endMeshIndex, minimumMeshSize, maximumMeshSize);
bool success = vUtil.computeVHACD(fbx, params, result, minimumMeshSize, maximumMeshSize);
end = std::chrono::high_resolution_clock::now();
auto computeDuration = std::chrono::duration_cast<std::chrono::nanoseconds>(end - begin).count();