Breaking up overlay into rendering and compositing classes

This commit is contained in:
Brad Davis 2015-06-13 17:36:08 -07:00
parent e44b21ee0b
commit 00d8fe75ab
20 changed files with 1032 additions and 952 deletions

View file

@ -333,8 +333,6 @@ Application::Application(int& argc, char** argv, QElapsedTimer &startup_time) :
_cursorVisible(true),
_lastMouseMove(usecTimestampNow()),
_lastMouseMoveWasSimulated(false),
_touchAvgX(0.0f),
_touchAvgY(0.0f),
_isTouchPressed(false),
_mousePressed(false),
_enableProcessOctreeThread(true),
@ -840,7 +838,7 @@ void Application::initializeUi() {
VrMenu::executeQueuedLambdas();
offscreenUi->setMouseTranslator([this](const QPointF& p){
if (OculusManager::isConnected()) {
glm::vec2 pos = _applicationOverlay.screenToOverlay(toGlm(p));
glm::vec2 pos = _compositor.screenToOverlay(toGlm(p));
return QPointF(pos.x, pos.y);
}
return QPointF(p);
@ -950,7 +948,7 @@ void Application::paintGL() {
glPushMatrix();
glLoadIdentity();
displaySide(&renderArgs, _myCamera);
_applicationOverlay.displayOverlayTexture(&renderArgs);
_compositor.displayOverlayTexture(&renderArgs);
glPopMatrix();
renderArgs._renderMode = RenderArgs::MIRROR_RENDER_MODE;
@ -1551,8 +1549,7 @@ void Application::mousePressEvent(QMouseEvent* event, unsigned int deviceID) {
_keyboardMouseDevice.mousePressEvent(event);
if (event->button() == Qt::LeftButton) {
_mouseDragStartedX = getTrueMouseX();
_mouseDragStartedY = getTrueMouseY();
_mouseDragStarted = getTrueMouse();
_mousePressed = true;
if (mouseOnScreen()) {
@ -1654,22 +1651,18 @@ void Application::touchUpdateEvent(QTouchEvent* event) {
bool validTouch = false;
if (activeWindow() == _window) {
const QList<QTouchEvent::TouchPoint>& tPoints = event->touchPoints();
_touchAvgX = 0.0f;
_touchAvgY = 0.0f;
_touchAvg = vec2();
int numTouches = tPoints.count();
if (numTouches > 1) {
for (int i = 0; i < numTouches; ++i) {
_touchAvgX += tPoints[i].pos().x();
_touchAvgY += tPoints[i].pos().y();
_touchAvg += toGlm(tPoints[i].pos());
}
_touchAvgX /= (float)(numTouches);
_touchAvgY /= (float)(numTouches);
_touchAvg /= (float)(numTouches);
validTouch = true;
}
}
if (!_isTouchPressed) {
_touchDragStartedAvgX = _touchAvgX;
_touchDragStartedAvgY = _touchAvgY;
_touchDragStartedAvg = _touchAvg;
}
_isTouchPressed = validTouch;
}
@ -1705,8 +1698,7 @@ void Application::touchEndEvent(QTouchEvent* event) {
_keyboardMouseDevice.touchEndEvent(event);
// put any application specific touch behavior below here..
_touchDragStartedAvgX = _touchAvgX;
_touchDragStartedAvgY = _touchAvgY;
_touchDragStartedAvg = _touchAvg;
_isTouchPressed = false;
}
@ -1855,9 +1847,9 @@ void Application::setFullscreen(bool fullscreen) {
Menu::getInstance()->getActionForOption(MenuOption::Fullscreen)->setChecked(fullscreen);
}
// The following code block is useful on platforms that can have a visible
// app menu in a fullscreen window. However the OSX mechanism hides the
// application menu for fullscreen apps, so the check is not required.
// The following code block is useful on platforms that can have a visible
// app menu in a fullscreen window. However the OSX mechanism hides the
// application menu for fullscreen apps, so the check is not required.
#ifndef Q_OS_MAC
if (Menu::getInstance()->isOptionChecked(MenuOption::EnableVRMode)) {
if (fullscreen) {
@ -1927,11 +1919,6 @@ void Application::setEnableVRMode(bool enableVRMode) {
OculusManager::recalibrate();
} else {
OculusManager::abandonCalibration();
_mirrorCamera.setHmdPosition(glm::vec3());
_mirrorCamera.setHmdRotation(glm::quat());
_myCamera.setHmdPosition(glm::vec3());
_myCamera.setHmdRotation(glm::quat());
}
resizeGL();
@ -1943,44 +1930,34 @@ void Application::setLowVelocityFilter(bool lowVelocityFilter) {
bool Application::mouseOnScreen() const {
if (OculusManager::isConnected()) {
return getMouseX() >= 0 && getMouseX() <= _glWidget->getDeviceWidth() &&
getMouseY() >= 0 && getMouseY() <= _glWidget->getDeviceHeight();
ivec2 mouse = getMouse();
if (!glm::all(glm::greaterThanEqual(mouse, ivec2()))) {
return false;
}
ivec2 size = toGlm(_glWidget->getDeviceSize());
if (!glm::all(glm::lessThanEqual(mouse, size))) {
return false;
}
}
return true;
}
int Application::getMouseX() const {
ivec2 Application::getMouse() const {
if (OculusManager::isConnected()) {
glm::vec2 pos = _applicationOverlay.screenToOverlay(glm::vec2(getTrueMouseX(), getTrueMouseY()));
return pos.x;
return _compositor.screenToOverlay(getTrueMouse());
}
return getTrueMouseX();
return getTrueMouse();
}
int Application::getMouseY() const {
ivec2 Application::getMouseDragStarted() const {
if (OculusManager::isConnected()) {
glm::vec2 pos = _applicationOverlay.screenToOverlay(glm::vec2(getTrueMouseX(), getTrueMouseY()));
return pos.y;
return _compositor.screenToOverlay(getTrueMouseDragStarted());
}
return getTrueMouseY();
return getTrueMouseDragStarted();
}
int Application::getMouseDragStartedX() const {
if (OculusManager::isConnected()) {
glm::vec2 pos = _applicationOverlay.screenToOverlay(glm::vec2(getTrueMouseDragStartedX(),
getTrueMouseDragStartedY()));
return pos.x;
}
return getTrueMouseDragStartedX();
}
int Application::getMouseDragStartedY() const {
if (OculusManager::isConnected()) {
glm::vec2 pos = _applicationOverlay.screenToOverlay(glm::vec2(getTrueMouseDragStartedX(),
getTrueMouseDragStartedY()));
return pos.y;
}
return getTrueMouseDragStartedY();
ivec2 Application::getTrueMouseDragStarted() const {
return _mouseDragStarted;
}
FaceTracker* Application::getActiveFaceTracker() {
@ -3127,7 +3104,7 @@ PickRay Application::computePickRay(float x, float y) const {
y /= size.y;
PickRay result;
if (isHMDMode()) {
getApplicationOverlay().computeHmdPickRay(glm::vec2(x, y), result.origin, result.direction);
getApplicationCompositor().computeHmdPickRay(glm::vec2(x, y), result.origin, result.direction);
} else {
if (QThread::currentThread() == activeRenderingThread) {
getDisplayViewFrustum()->computePickRay(x, y, result.origin, result.direction);
@ -4809,12 +4786,8 @@ QSize Application::getDeviceSize() const {
return _glWidget->getDeviceSize();
}
int Application::getTrueMouseX() const {
return _glWidget->mapFromGlobal(QCursor::pos()).x();
}
int Application::getTrueMouseY() const {
return _glWidget->mapFromGlobal(QCursor::pos()).y();
ivec2 Application::getTrueMouse() const {
return toGlm(_glWidget->mapFromGlobal(QCursor::pos()));
}
bool Application::isThrottleRendering() const {
@ -4844,3 +4817,18 @@ qreal Application::getDevicePixelRatio() {
return _window ? _window->windowHandle()->devicePixelRatio() : 1.0;
}
mat4 Application::getEyeProjection(int eye) const {
if (isHMDMode()) {
return OculusManager::getEyeProjection(eye);
}
return _viewFrustum.getProjection();
}
mat4 Application::getEyePose(int eye) const {
if (isHMDMode()) {
return OculusManager::getEyePose(eye);
}
return mat4();
}

View file

@ -69,6 +69,7 @@
#include "ui/UpdateDialog.h"
#include "ui/overlays/Overlays.h"
#include "ui/ApplicationOverlay.h"
#include "ui/ApplicationCompositor.h"
#include "ui/RunningScriptsWidget.h"
#include "ui/ToolWindow.h"
#include "ui/UserInputMapper.h"
@ -222,15 +223,21 @@ public:
const glm::vec3& getMouseRayOrigin() const { return _mouseRayOrigin; }
const glm::vec3& getMouseRayDirection() const { return _mouseRayDirection; }
bool mouseOnScreen() const;
int getMouseX() const;
int getMouseY() const;
glm::ivec2 getTrueMousePosition() const;
int getTrueMouseX() const;
int getTrueMouseY() const;
int getMouseDragStartedX() const;
int getMouseDragStartedY() const;
int getTrueMouseDragStartedX() const { return _mouseDragStartedX; }
int getTrueMouseDragStartedY() const { return _mouseDragStartedY; }
ivec2 getMouse() const;
ivec2 getTrueMouse() const;
ivec2 getMouseDragStarted() const;
ivec2 getTrueMouseDragStarted() const;
// TODO get rid of these and use glm types directly
int getMouseX() const { return getMouse().x; }
int getMouseY() const { return getMouse().y; }
int getTrueMouseX() const { return getTrueMouse().x; }
int getTrueMouseY() const { return getTrueMouse().y; }
int getMouseDragStartedX() const { return getMouseDragStarted().x; }
int getMouseDragStartedY() const { return getMouseDragStarted().y; }
int getTrueMouseDragStartedX() const { return getTrueMouseDragStarted().x; }
int getTrueMouseDragStartedY() const { return getTrueMouseDragStarted().y; }
bool getLastMouseMoveWasSimulated() const { return _lastMouseMoveWasSimulated; }
FaceTracker* getActiveFaceTracker();
@ -239,6 +246,8 @@ public:
QSystemTrayIcon* getTrayIcon() { return _trayIcon; }
ApplicationOverlay& getApplicationOverlay() { return _applicationOverlay; }
const ApplicationOverlay& getApplicationOverlay() const { return _applicationOverlay; }
ApplicationCompositor& getApplicationCompositor() { return _compositor; }
const ApplicationCompositor& getApplicationCompositor() const { return _compositor; }
Overlays& getOverlays() { return _overlays; }
float getFps() const { return _fps; }
@ -333,6 +342,9 @@ public:
bool isHMDMode() const;
glm::quat getHeadOrientation() const;
glm::vec3 getHeadPosition() const;
glm::mat4 getHeadPose() const;
glm::mat4 getEyePose(int eye) const;
glm::mat4 getEyeProjection(int eye) const;
QRect getDesirableApplicationGeometry();
RunningScriptsWidget* getRunningScriptsWidget() { return _runningScriptsWidget; }
@ -584,18 +596,17 @@ private:
Environment _environment;
bool _cursorVisible;
int _mouseDragStartedX;
int _mouseDragStartedY;
ivec2 _mouseDragStarted;
quint64 _lastMouseMove;
bool _lastMouseMoveWasSimulated;
glm::vec3 _mouseRayOrigin;
glm::vec3 _mouseRayDirection;
float _touchAvgX;
float _touchAvgY;
float _touchDragStartedAvgX;
float _touchDragStartedAvgY;
vec2 _touchAvg;
vec2 _touchDragStartedAvg;
bool _isTouchPressed; // true if multitouch has been pressed (clear when finished)
bool _mousePressed; // true if mouse has been pressed (clear when finished)
@ -676,6 +687,7 @@ private:
Overlays _overlays;
ApplicationOverlay _applicationOverlay;
ApplicationCompositor _compositor;
};
#endif // hifi_Application_h

View file

@ -49,8 +49,6 @@ Camera::Camera() :
_mode(CAMERA_MODE_THIRD_PERSON),
_position(0.0f, 0.0f, 0.0f),
_projection(glm::perspective(glm::radians(DEFAULT_FIELD_OF_VIEW_DEGREES), 16.0f/9.0f, DEFAULT_NEAR_CLIP, DEFAULT_FAR_CLIP)),
_hmdPosition(),
_hmdRotation(),
_isKeepLookingAt(false),
_lookingAt(0.0f, 0.0f, 0.0f)
{
@ -74,20 +72,6 @@ void Camera::setRotation(const glm::quat& rotation) {
}
}
void Camera::setHmdPosition(const glm::vec3& hmdPosition) {
_hmdPosition = hmdPosition;
if (_isKeepLookingAt) {
lookAt(_lookingAt);
}
}
void Camera::setHmdRotation(const glm::quat& hmdRotation) {
_hmdRotation = hmdRotation;
if (_isKeepLookingAt) {
lookAt(_lookingAt);
}
}
void Camera::setMode(CameraMode mode) {
_mode = mode;
emit modeUpdated(modeToString(mode));

View file

@ -45,26 +45,22 @@ public:
void setRotation(const glm::quat& rotation);
void setProjection(const glm::mat4 & projection);
void setHmdPosition(const glm::vec3& hmdPosition);
void setHmdRotation(const glm::quat& hmdRotation);
void setMode(CameraMode m);
glm::quat getRotation() const { return _rotation * _hmdRotation; }
glm::quat getRotation() const { return _rotation; }
const glm::mat4& getProjection() const { return _projection; }
const glm::vec3& getHmdPosition() const { return _hmdPosition; }
const glm::quat& getHmdRotation() const { return _hmdRotation; }
CameraMode getMode() const { return _mode; }
public slots:
QString getModeString() const;
void setModeString(const QString& mode);
glm::vec3 getPosition() const { return _position + _hmdPosition; }
glm::vec3 getPosition() const { return _position; }
void setPosition(const glm::vec3& position);
void setOrientation(const glm::quat& orientation) { setRotation(orientation); }
glm::quat getOrientation() const { return getRotation(); }
void setOrientation(const glm::quat& orientation) { setRotation(orientation); }
PickRay computePickRay(float x, float y);
// These only work on independent cameras
@ -86,8 +82,6 @@ private:
glm::vec3 _position;
glm::quat _rotation;
glm::mat4 _projection;
glm::vec3 _hmdPosition;
glm::quat _hmdRotation;
bool _isKeepLookingAt;
glm::vec3 _lookingAt;
};

View file

@ -14,7 +14,7 @@
#include <DependencyManager.h>
#include <GeometryCache.h>
#include <QOpenGLTexture>
#include <gpu/Texture.h>
class AudioToolBox : public Dependency {
SINGLETON_DEPENDENCY

View file

@ -1559,7 +1559,6 @@ void MyAvatar::renderLaserPointers() {
//Gets the tip position for the laser pointer
glm::vec3 MyAvatar::getLaserPointerTipPosition(const PalmData* palm) {
const ApplicationOverlay& applicationOverlay = Application::getInstance()->getApplicationOverlay();
glm::vec3 direction = glm::normalize(palm->getTipPosition() - palm->getPosition());
glm::vec3 position = palm->getPosition();
@ -1568,7 +1567,8 @@ glm::vec3 MyAvatar::getLaserPointerTipPosition(const PalmData* palm) {
glm::vec3 result;
if (applicationOverlay.calculateRayUICollisionPoint(position, direction, result)) {
const auto& compositor = Application::getInstance()->getApplicationCompositor();
if (compositor.calculateRayUICollisionPoint(position, direction, result)) {
return result;
}

View file

@ -104,7 +104,9 @@ bool OculusManager::_eyePerFrameMode = false;
ovrEyeType OculusManager::_lastEyeRendered = ovrEye_Count;
ovrSizei OculusManager::_recommendedTexSize = { 0, 0 };
float OculusManager::_offscreenRenderScale = 1.0;
static glm::mat4 _eyeProjections[ovrEye_Count];
static glm::mat4 _combinedProjection;
static ovrPosef _eyeRenderPoses[ovrEye_Count];
void OculusManager::initSdk() {
ovr_Initialize();
@ -173,9 +175,15 @@ void OculusManager::connect() {
_eyeTextures[eye].Header.API = ovrRenderAPI_OpenGL;
_eyeTextures[eye].Header.TextureSize = _renderTargetSize;
_eyeTextures[eye].Header.RenderViewport.Pos = { 0, 0 };
ovrMatrix4f eyeProjection = ovrMatrix4f_Projection(_ovrHmd->MaxEyeFov[eye], DEFAULT_NEAR_CLIP, DEFAULT_FAR_CLIP, ovrProjection_RightHanded);
_eyeProjections[eye] = toGlm(eyeProjection);
});
_eyeTextures[ovrEye_Right].Header.RenderViewport.Pos.x = _recommendedTexSize.w;
ovrFovPort combinedFov = _ovrHmd->MaxEyeFov[0];
combinedFov.RightTan = _ovrHmd->MaxEyeFov[1].RightTan;
_combinedProjection = toGlm(ovrMatrix4f_Projection(combinedFov, DEFAULT_NEAR_CLIP, DEFAULT_FAR_CLIP, ovrProjection_RightHanded));
ovrHmd_SetEnabledCaps(_ovrHmd, ovrHmdCap_LowPersistence | ovrHmdCap_DynamicPrediction);
ovrHmd_ConfigureTracking(_ovrHmd, ovrTrackingCap_Orientation | ovrTrackingCap_Position |
@ -566,7 +574,6 @@ void OculusManager::display(QGLWidget * glCanvas, RenderArgs* renderArgs, const
ovrPosef eyePoses[ovrEye_Count];
ovrHmd_GetEyePoses(_ovrHmd, _frameIndex, eyeOffsets, eyePoses, nullptr);
ovrHmd_BeginFrame(_ovrHmd, _frameIndex);
static ovrPosef eyeRenderPose[ovrEye_Count];
//Render each eye into an fbo
for_each_eye(_ovrHmd, [&](ovrEyeType eye){
// If we're in eye-per-frame mode, only render one eye
@ -576,29 +583,17 @@ void OculusManager::display(QGLWidget * glCanvas, RenderArgs* renderArgs, const
return;
}
_lastEyeRendered = _activeEye = eye;
eyeRenderPose[eye] = eyePoses[eye];
_eyeRenderPoses[eye] = eyePoses[eye];
// Set the camera rotation for this eye
orientation.x = eyeRenderPose[eye].Orientation.x;
orientation.y = eyeRenderPose[eye].Orientation.y;
orientation.z = eyeRenderPose[eye].Orientation.z;
orientation.w = eyeRenderPose[eye].Orientation.w;
// Update the application camera with the latest HMD position
whichCamera.setHmdPosition(trackerPosition);
whichCamera.setHmdRotation(orientation);
vec3 eyePosition = toGlm(_eyeRenderPoses[eye].Position);
eyePosition = whichCamera.getRotation() * eyePosition;
quat eyeRotation = toGlm(_eyeRenderPoses[eye].Orientation);
// Update our camera to what the application camera is doing
_camera->setRotation(whichCamera.getRotation());
_camera->setPosition(whichCamera.getPosition());
_camera->setRotation(whichCamera.getRotation() * eyeRotation);
_camera->setPosition(whichCamera.getPosition() + eyePosition);
configureCamera(*_camera);
// Store the latest left and right eye render locations for things that need to know
glm::vec3 thisEyePosition = position + trackerPosition +
(bodyOrientation * glm::quat(orientation.x, orientation.y, orientation.z, orientation.w) *
glm::vec3(_eyeRenderDesc[eye].HmdToEyeViewOffset.x, _eyeRenderDesc[eye].HmdToEyeViewOffset.y, _eyeRenderDesc[eye].HmdToEyeViewOffset.z));
_eyePositions[eye] = thisEyePosition;
_camera->update(1.0f / Application::getInstance()->getFps());
glMatrixMode(GL_PROJECTION);
@ -615,7 +610,8 @@ void OculusManager::display(QGLWidget * glCanvas, RenderArgs* renderArgs, const
renderArgs->_renderSide = RenderArgs::MONO;
qApp->displaySide(renderArgs, *_camera, false);
qApp->getApplicationOverlay().displayOverlayTextureHmd(renderArgs, *_camera);
//qApp->getApplicationCompositor().displayOverlayTexture(renderArgs);
qApp->getApplicationCompositor().displayOverlayTextureHmd(renderArgs, eye);
});
_activeEye = ovrEye_Count;
@ -661,7 +657,7 @@ void OculusManager::display(QGLWidget * glCanvas, RenderArgs* renderArgs, const
glClear(GL_COLOR_BUFFER_BIT);
glBindTexture(GL_TEXTURE_2D, gpu::GLBackend::getTextureID(finalFbo->getRenderBuffer(0)));
//Renders the distorted mesh onto the screen
renderDistortionMesh(eyeRenderPose);
renderDistortionMesh(_eyeRenderPoses);
glBindTexture(GL_TEXTURE_2D, 0);
#endif
glCanvas->swapBuffers();
@ -877,3 +873,10 @@ int OculusManager::getHMDScreen() {
return hmdScreenIndex;
}
mat4 OculusManager::getEyeProjection(int eye) {
return _eyeProjections[eye];
}
mat4 OculusManager::getEyePose(int eye) {
return toGlm(_eyeRenderPoses[eye]);
}

View file

@ -81,6 +81,9 @@ public:
static glm::vec3 getRightEyePosition() { return _eyePositions[ovrEye_Right]; }
static int getHMDScreen();
static glm::mat4 getEyeProjection(int eye);
static glm::mat4 getEyePose(int eye);
private:
static void initSdk();

View file

@ -489,7 +489,7 @@ void SixenseManager::emulateMouse(PalmData* palm, int index) {
if (Menu::getInstance()->isOptionChecked(MenuOption::SixenseLasers)
|| Menu::getInstance()->isOptionChecked(MenuOption::EnableVRMode)) {
pos = qApp->getApplicationOverlay().getPalmClickLocation(palm);
pos = qApp->getApplicationCompositor().getPalmClickLocation(palm);
} else {
// Get directon relative to avatar orientation
glm::vec3 direction = glm::inverse(avatar->getOrientation()) * palm->getFingerDirection();

View file

@ -120,7 +120,7 @@ void TV3DManager::display(RenderArgs* renderArgs, Camera& whichCamera) {
glLoadIdentity();
renderArgs->_renderSide = RenderArgs::MONO;
qApp->displaySide(renderArgs, eyeCamera, false);
qApp->getApplicationOverlay().displayOverlayTexture(renderArgs);
qApp->getApplicationCompositor().displayOverlayTexture(renderArgs);
_activeEye = NULL;
}, [&]{
// render right side view

View file

@ -25,9 +25,9 @@ bool HMDScriptingInterface::getHUDLookAtPosition3D(glm::vec3& result) const {
glm::vec3 direction = orientation * glm::vec3(0.0f, 0.0f, -1.0f);
ApplicationOverlay& applicationOverlay = Application::getInstance()->getApplicationOverlay();
const auto& compositor = Application::getInstance()->getApplicationCompositor();
return applicationOverlay.calculateRayUICollisionPoint(position, direction, result);
return compositor.calculateRayUICollisionPoint(position, direction, result);
}
QScriptValue HMDScriptingInterface::getHUDLookAtPosition2D(QScriptContext* context, QScriptEngine* engine) {
@ -40,7 +40,7 @@ QScriptValue HMDScriptingInterface::getHUDLookAtPosition2D(QScriptContext* conte
glm::vec3 direction = glm::inverse(myAvatar->getOrientation()) * (hudIntersection - sphereCenter);
glm::quat rotation = ::rotationBetween(glm::vec3(0.0f, 0.0f, -1.0f), direction);
glm::vec3 eulers = ::safeEulerAngles(rotation);
return qScriptValueFromValue<glm::vec2>(engine, Application::getInstance()->getApplicationOverlay()
return qScriptValueFromValue<glm::vec2>(engine, Application::getInstance()->getApplicationCompositor()
.sphericalToOverlay(glm::vec2(eulers.y, -eulers.x)));
}
return QScriptValue::NullValue;

View file

@ -27,11 +27,11 @@ public:
static QScriptValue getHUDLookAtPosition3D(QScriptContext* context, QScriptEngine* engine);
public slots:
void toggleMagnifier() { Application::getInstance()->getApplicationOverlay().toggleMagnifier(); };
void toggleMagnifier() { Application::getInstance()->getApplicationCompositor().toggleMagnifier(); };
private:
HMDScriptingInterface() {};
bool getMagnifier() const { return Application::getInstance()->getApplicationOverlay().hasMagnifier(); };
bool getMagnifier() const { return Application::getInstance()->getApplicationCompositor().hasMagnifier(); };
bool isHMDMode() const { return Application::getInstance()->isHMDMode(); }
bool getHUDLookAtPosition3D(glm::vec3& result) const;

View file

@ -0,0 +1,757 @@
//
// ApplicationCompositor.cpp
// interface/src/ui/overlays
//
// Created by Benjamin Arnold on 5/27/14.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "InterfaceConfig.h"
#include "ApplicationCompositor.h"
#include <glm/gtc/type_ptr.hpp>
#include <avatar/AvatarManager.h>
#include <DeferredLightingEffect.h>
#include <gpu/GLBackend.h>
#include <gpu/Texture.h>
#include <OffscreenUi.h>
#include <CursorManager.h>
#include <PerfStat.h>
#include "AudioClient.h"
#include "audio/AudioIOStatsRenderer.h"
#include "audio/AudioScope.h"
#include "audio/AudioToolBox.h"
#include "Application.h"
#include "devices/CameraToolBox.h"
#include "Util.h"
#include "ui/Stats.h"
#include "../../libraries/render-utils/standardTransformPNTC_vert.h"
#include "../../libraries/render-utils/standardDrawTexture_frag.h"
// Used to animate the magnification windows
static const float MAG_SPEED = 0.08f;
static const quint64 MSECS_TO_USECS = 1000ULL;
static const float WHITE_TEXT[] = { 0.93f, 0.93f, 0.93f };
static const float RETICLE_COLOR[] = { 0.0f, 198.0f / 255.0f, 244.0f / 255.0f };
static const float reticleSize = TWO_PI / 100.0f;
static const float CONNECTION_STATUS_BORDER_COLOR[] = { 1.0f, 0.0f, 0.0f };
static const float CONNECTION_STATUS_BORDER_LINE_WIDTH = 4.0f;
static const float CURSOR_PIXEL_SIZE = 32.0f;
static const float MOUSE_PITCH_RANGE = 1.0f * PI;
static const float MOUSE_YAW_RANGE = 0.5f * TWO_PI;
static const glm::vec2 MOUSE_RANGE(MOUSE_YAW_RANGE, MOUSE_PITCH_RANGE);
static gpu::BufferPointer _hemiVertices;
static gpu::BufferPointer _hemiIndices;
static int _hemiIndexCount{ 0 };
// Return a point's cartesian coordinates on a sphere from pitch and yaw
glm::vec3 getPoint(float yaw, float pitch) {
return glm::vec3(glm::cos(-pitch) * (-glm::sin(yaw)),
glm::sin(-pitch),
glm::cos(-pitch) * (-glm::cos(yaw)));
}
//Checks if the given ray intersects the sphere at the origin. result will store a multiplier that should
//be multiplied by dir and added to origin to get the location of the collision
bool raySphereIntersect(const glm::vec3 &dir, const glm::vec3 &origin, float r, float* result)
{
//Source: http://wiki.cgsociety.org/index.php/Ray_Sphere_Intersection
//Compute A, B and C coefficients
float a = glm::dot(dir, dir);
float b = 2 * glm::dot(dir, origin);
float c = glm::dot(origin, origin) - (r * r);
//Find discriminant
float disc = b * b - 4 * a * c;
// if discriminant is negative there are no real roots, so return
// false as ray misses sphere
if (disc < 0) {
return false;
}
// compute q as described above
float distSqrt = sqrtf(disc);
float q;
if (b < 0) {
q = (-b - distSqrt) / 2.0;
} else {
q = (-b + distSqrt) / 2.0;
}
// compute t0 and t1
float t0 = q / a;
float t1 = c / q;
// make sure t0 is smaller than t1
if (t0 > t1) {
// if t0 is bigger than t1 swap them around
float temp = t0;
t0 = t1;
t1 = temp;
}
// if t1 is less than zero, the object is in the ray's negative direction
// and consequently the ray misses the sphere
if (t1 < 0) {
return false;
}
// if t0 is less than zero, the intersection point is at t1
if (t0 < 0) {
*result = t1;
return true;
} else { // else the intersection point is at t0
*result = t0;
return true;
}
}
ApplicationCompositor::ApplicationCompositor() {
memset(_reticleActive, 0, sizeof(_reticleActive));
memset(_magActive, 0, sizeof(_reticleActive));
memset(_magSizeMult, 0, sizeof(_magSizeMult));
auto geometryCache = DependencyManager::get<GeometryCache>();
_reticleQuad = geometryCache->allocateID();
_magnifierQuad = geometryCache->allocateID();
_audioRedQuad = geometryCache->allocateID();
_audioGreenQuad = geometryCache->allocateID();
_audioBlueQuad = geometryCache->allocateID();
_domainStatusBorder = geometryCache->allocateID();
_magnifierBorder = geometryCache->allocateID();
}
ApplicationCompositor::~ApplicationCompositor() {
}
void ApplicationCompositor::bindCursorTexture(gpu::Batch& batch, uint8_t cursorIndex) {
auto& cursorManager = Cursor::Manager::instance();
auto cursor = cursorManager.getCursor(cursorIndex);
auto iconId = cursor->getIcon();
if (!_cursors.count(iconId)) {
auto iconPath = cursorManager.getIconImage(cursor->getIcon());
_cursors[iconId] = DependencyManager::get<TextureCache>()->
getImageTexture(iconPath);
}
batch.setUniformTexture(0, _cursors[iconId]);
}
// Draws the FBO texture for the screen
void ApplicationCompositor::displayOverlayTexture(RenderArgs* renderArgs) {
if (_alpha == 0.0f) {
return;
}
GLuint texture = qApp->getApplicationOverlay().getOverlayTexture();
if (!texture) {
return;
}
renderArgs->_context->syncCache();
auto geometryCache = DependencyManager::get<GeometryCache>();
gpu::Batch batch;
geometryCache->useSimpleDrawPipeline(batch);
batch.setModelTransform(Transform());
batch.setViewTransform(Transform());
batch.setProjectionTransform(mat4());
batch._glBindTexture(GL_TEXTURE_2D, texture);
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
geometryCache->renderUnitQuad(batch, vec4(vec3(1), _alpha));
// Doesn't actually render
renderPointers();
//draw the mouse pointer
vec2 canvasSize = qApp->getCanvasSize();
// Get the mouse coordinates and convert to NDC [-1, 1]
vec2 mousePosition = vec2(qApp->getMouse());
mousePosition /= canvasSize;
mousePosition *= 2.0f;
mousePosition -= 1.0f;
mousePosition.y *= -1.0f;
Transform model;
model.setTranslation(vec3(mousePosition, 0));
vec2 mouseSize = CURSOR_PIXEL_SIZE / canvasSize;
model.setScale(vec3(mouseSize, 1.0f));
batch.setModelTransform(model);
bindCursorTexture(batch);
vec4 reticleColor = { RETICLE_COLOR[0], RETICLE_COLOR[1], RETICLE_COLOR[2], 1.0f };
geometryCache->renderUnitQuad(batch, vec4(1));
renderArgs->_context->render(batch);
}
vec2 getPolarCoordinates(const PalmData& palm) {
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
auto avatarOrientation = myAvatar->getOrientation();
auto eyePos = myAvatar->getDefaultEyePosition();
glm::vec3 tip = myAvatar->getLaserPointerTipPosition(&palm);
// Direction of the tip relative to the eye
glm::vec3 tipDirection = tip - eyePos;
// orient into avatar space
tipDirection = glm::inverse(avatarOrientation) * tipDirection;
// Normalize for trig functions
tipDirection = glm::normalize(tipDirection);
// Convert to polar coordinates
glm::vec2 polar(glm::atan(tipDirection.x, -tipDirection.z), glm::asin(tipDirection.y));
return polar;
}
// Draws the FBO texture for Oculus rift.
void ApplicationCompositor::displayOverlayTextureHmd(RenderArgs* renderArgs, int eye) {
if (_alpha == 0.0f) {
return;
}
GLuint texture = qApp->getApplicationOverlay().getOverlayTexture();
if (!texture) {
return;
}
renderArgs->_context->syncCache();
auto geometryCache = DependencyManager::get<GeometryCache>();
gpu::Batch batch;
DependencyManager::get<GeometryCache>()->useSimpleDrawPipeline(batch);
batch._glDisable(GL_DEPTH_TEST);
batch._glDisable(GL_CULL_FACE);
batch._glBindTexture(GL_TEXTURE_2D, texture);
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
batch.setViewTransform(Transform());
batch.setProjectionTransform(qApp->getEyeProjection(eye));
mat4 eyePose = qApp->getEyePose(eye);
glm::mat4 overlayXfm = glm::inverse(eyePose);
batch.setModelTransform(overlayXfm);
drawSphereSection(batch);
// Doesn't actually render
renderPointers();
vec3 reticleScale = vec3(Cursor::Manager::instance().getScale() * reticleSize);
bindCursorTexture(batch);
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
//Controller Pointers
for (int i = 0; i < (int)myAvatar->getHand()->getNumPalms(); i++) {
PalmData& palm = myAvatar->getHand()->getPalms()[i];
if (palm.isActive()) {
glm::vec2 polar = getPolarCoordinates(palm);
// Convert to quaternion
mat4 pointerXfm = glm::mat4_cast(quat(vec3(polar.y, -polar.x, 0.0f))) * glm::translate(mat4(), vec3(0, 0, -1));
mat4 reticleXfm = overlayXfm * pointerXfm;
reticleXfm = glm::scale(reticleXfm, reticleScale);
batch.setModelTransform(reticleXfm);
// Render reticle at location
geometryCache->renderUnitQuad(batch, glm::vec4(1), _reticleQuad);
}
}
//Mouse Pointer
if (_reticleActive[MOUSE]) {
glm::vec2 projection = screenToSpherical(glm::vec2(_reticlePosition[MOUSE].x(),
_reticlePosition[MOUSE].y()));
mat4 pointerXfm = glm::mat4_cast(quat(vec3(-projection.y, projection.x, 0.0f))) * glm::translate(mat4(), vec3(0, 0, -1));
mat4 reticleXfm = overlayXfm * pointerXfm;
reticleXfm = glm::scale(reticleXfm, reticleScale);
batch.setModelTransform(reticleXfm);
geometryCache->renderUnitQuad(batch, glm::vec4(1), _reticleQuad);
}
renderArgs->_context->render(batch);
}
void ApplicationCompositor::computeHmdPickRay(glm::vec2 cursorPos, glm::vec3& origin, glm::vec3& direction) const {
cursorPos *= qApp->getCanvasSize();
const glm::vec2 projection = screenToSpherical(cursorPos);
// The overlay space orientation of the mouse coordinates
const glm::quat orientation(glm::vec3(-projection.y, projection.x, 0.0f));
// FIXME We now have the direction of the ray FROM THE DEFAULT HEAD POSE.
// Now we need to account for the actual camera position relative to the overlay
glm::vec3 overlaySpaceDirection = glm::normalize(orientation * IDENTITY_FRONT);
// We need the RAW camera orientation and position, because this is what the overlay is
// rendered relative to
const glm::vec3 overlayPosition = qApp->getCamera()->getPosition();
const glm::quat overlayOrientation = qApp->getCamera()->getRotation();
// Intersection UI overlay space
glm::vec3 worldSpaceDirection = overlayOrientation * overlaySpaceDirection;
glm::vec3 intersectionWithUi = glm::normalize(worldSpaceDirection) * _oculusUIRadius;
intersectionWithUi += overlayPosition;
// Intersection in world space
origin = overlayPosition;
direction = glm::normalize(intersectionWithUi - origin);
}
//Caculate the click location using one of the sixense controllers. Scale is not applied
QPoint ApplicationCompositor::getPalmClickLocation(const PalmData *palm) const {
QPoint rv;
auto canvasSize = qApp->getCanvasSize();
if (qApp->isHMDMode()) {
glm::vec2 polar = getPolarCoordinates(*palm);
glm::vec2 point = sphericalToScreen(-polar);
rv.rx() = point.x;
rv.ry() = point.y;
} else {
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
glm::dmat4 projection;
qApp->getProjectionMatrix(&projection);
glm::quat invOrientation = glm::inverse(myAvatar->getOrientation());
glm::vec3 eyePos = myAvatar->getDefaultEyePosition();
glm::vec3 tip = myAvatar->getLaserPointerTipPosition(palm);
glm::vec3 tipPos = invOrientation * (tip - eyePos);
glm::vec4 clipSpacePos = glm::vec4(projection * glm::dvec4(tipPos, 1.0));
glm::vec3 ndcSpacePos;
if (clipSpacePos.w != 0) {
ndcSpacePos = glm::vec3(clipSpacePos) / clipSpacePos.w;
}
rv.setX(((ndcSpacePos.x + 1.0) / 2.0) * canvasSize.x);
rv.setY((1.0 - ((ndcSpacePos.y + 1.0) / 2.0)) * canvasSize.y);
}
return rv;
}
//Finds the collision point of a world space ray
bool ApplicationCompositor::calculateRayUICollisionPoint(const glm::vec3& position, const glm::vec3& direction, glm::vec3& result) const {
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
glm::quat inverseOrientation = glm::inverse(myAvatar->getOrientation());
glm::vec3 relativePosition = inverseOrientation * (position - myAvatar->getDefaultEyePosition());
glm::vec3 relativeDirection = glm::normalize(inverseOrientation * direction);
float t;
if (raySphereIntersect(relativeDirection, relativePosition, _oculusUIRadius * myAvatar->getScale(), &t)){
result = position + direction * t;
return true;
}
return false;
}
//Renders optional pointers
void ApplicationCompositor::renderPointers() {
//glEnable(GL_TEXTURE_2D);
//glEnable(GL_BLEND);
//glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
//glActiveTexture(GL_TEXTURE0);
//bindCursorTexture();
if (qApp->isHMDMode() && !qApp->getLastMouseMoveWasSimulated() && !qApp->isMouseHidden()) {
//If we are in oculus, render reticle later
if (_lastMouseMove == 0) {
_lastMouseMove = usecTimestampNow();
}
QPoint position = QPoint(qApp->getTrueMouseX(), qApp->getTrueMouseY());
static const int MAX_IDLE_TIME = 3;
if (_reticlePosition[MOUSE] != position) {
_lastMouseMove = usecTimestampNow();
} else if (usecTimestampNow() - _lastMouseMove > MAX_IDLE_TIME * USECS_PER_SECOND) {
//float pitch = 0.0f, yaw = 0.0f, roll = 0.0f; // radians
//OculusManager::getEulerAngles(yaw, pitch, roll);
glm::quat orientation = qApp->getHeadOrientation(); // (glm::vec3(pitch, yaw, roll));
glm::vec3 result;
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
if (calculateRayUICollisionPoint(myAvatar->getEyePosition(),
myAvatar->getOrientation() * orientation * IDENTITY_FRONT,
result)) {
glm::vec3 lookAtDirection = glm::inverse(myAvatar->getOrientation()) * (result - myAvatar->getDefaultEyePosition());
glm::vec2 spericalPos = directionToSpherical(glm::normalize(lookAtDirection));
glm::vec2 screenPos = sphericalToScreen(spericalPos);
position = QPoint(screenPos.x, screenPos.y);
// FIXME
//glCanvas->cursor().setPos(glCanvas->mapToGlobal(position));
} else {
qDebug() << "No collision point";
}
}
_reticlePosition[MOUSE] = position;
_reticleActive[MOUSE] = true;
_magActive[MOUSE] = _magnifier;
_reticleActive[LEFT_CONTROLLER] = false;
_reticleActive[RIGHT_CONTROLLER] = false;
} else if (qApp->getLastMouseMoveWasSimulated() && Menu::getInstance()->isOptionChecked(MenuOption::SixenseMouseInput)) {
_lastMouseMove = 0;
//only render controller pointer if we aren't already rendering a mouse pointer
_reticleActive[MOUSE] = false;
_magActive[MOUSE] = false;
renderControllerPointers();
}
//glBindTexture(GL_TEXTURE_2D, 0);
//glDisable(GL_TEXTURE_2D);
}
void ApplicationCompositor::renderControllerPointers() {
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
//Static variables used for storing controller state
static quint64 pressedTime[NUMBER_OF_RETICLES] = { 0ULL, 0ULL, 0ULL };
static bool isPressed[NUMBER_OF_RETICLES] = { false, false, false };
static bool stateWhenPressed[NUMBER_OF_RETICLES] = { false, false, false };
const HandData* handData = DependencyManager::get<AvatarManager>()->getMyAvatar()->getHandData();
for (unsigned int palmIndex = 2; palmIndex < 4; palmIndex++) {
const int index = palmIndex - 1;
const PalmData* palmData = NULL;
if (palmIndex >= handData->getPalms().size()) {
return;
}
if (handData->getPalms()[palmIndex].isActive()) {
palmData = &handData->getPalms()[palmIndex];
} else {
continue;
}
int controllerButtons = palmData->getControllerButtons();
//Check for if we should toggle or drag the magnification window
if (controllerButtons & BUTTON_3) {
if (isPressed[index] == false) {
//We are now dragging the window
isPressed[index] = true;
//set the pressed time in us
pressedTime[index] = usecTimestampNow();
stateWhenPressed[index] = _magActive[index];
}
} else if (isPressed[index]) {
isPressed[index] = false;
//If the button was only pressed for < 250 ms
//then disable it.
const int MAX_BUTTON_PRESS_TIME = 250 * MSECS_TO_USECS;
if (usecTimestampNow() < pressedTime[index] + MAX_BUTTON_PRESS_TIME) {
_magActive[index] = !stateWhenPressed[index];
}
}
//if we have the oculus, we should make the cursor smaller since it will be
//magnified
if (qApp->isHMDMode()) {
QPoint point = getPalmClickLocation(palmData);
_reticlePosition[index] = point;
//When button 2 is pressed we drag the mag window
if (isPressed[index]) {
_magActive[index] = true;
}
// If oculus is enabled, we draw the crosshairs later
continue;
}
auto canvasSize = qApp->getCanvasSize();
int mouseX, mouseY;
if (Menu::getInstance()->isOptionChecked(MenuOption::SixenseLasers)) {
QPoint res = getPalmClickLocation(palmData);
mouseX = res.x();
mouseY = res.y();
} else {
// Get directon relative to avatar orientation
glm::vec3 direction = glm::inverse(myAvatar->getOrientation()) * palmData->getFingerDirection();
// Get the angles, scaled between (-0.5,0.5)
float xAngle = (atan2(direction.z, direction.x) + M_PI_2);
float yAngle = 0.5f - ((atan2(direction.z, direction.y) + M_PI_2));
// Get the pixel range over which the xAngle and yAngle are scaled
float cursorRange = canvasSize.x * SixenseManager::getInstance().getCursorPixelRangeMult();
mouseX = (canvasSize.x / 2.0f + cursorRange * xAngle);
mouseY = (canvasSize.y / 2.0f + cursorRange * yAngle);
}
//If the cursor is out of the screen then don't render it
if (mouseX < 0 || mouseX >= (int)canvasSize.x || mouseY < 0 || mouseY >= (int)canvasSize.y) {
_reticleActive[index] = false;
continue;
}
_reticleActive[index] = true;
const float reticleSize = 40.0f;
mouseX -= reticleSize / 2.0f;
mouseY += reticleSize / 2.0f;
glm::vec2 topLeft(mouseX, mouseY);
glm::vec2 bottomRight(mouseX + reticleSize, mouseY - reticleSize);
glm::vec2 texCoordTopLeft(0.0f, 0.0f);
glm::vec2 texCoordBottomRight(1.0f, 1.0f);
DependencyManager::get<GeometryCache>()->renderQuad(topLeft, bottomRight, texCoordTopLeft, texCoordBottomRight,
glm::vec4(RETICLE_COLOR[0], RETICLE_COLOR[1], RETICLE_COLOR[2], 1.0f));
}
}
//Renders a small magnification of the currently bound texture at the coordinates
void ApplicationCompositor::renderMagnifier(const glm::vec2& magPos, float sizeMult, bool showBorder) {
if (!_magnifier) {
return;
}
auto canvasSize = qApp->getCanvasSize();
const int widgetWidth = canvasSize.x;
const int widgetHeight = canvasSize.y;
const float halfWidth = (MAGNIFY_WIDTH / _textureAspectRatio) * sizeMult / 2.0f;
const float halfHeight = MAGNIFY_HEIGHT * sizeMult / 2.0f;
// Magnification Texture Coordinates
const float magnifyULeft = (magPos.x - halfWidth) / (float)widgetWidth;
const float magnifyURight = (magPos.x + halfWidth) / (float)widgetWidth;
const float magnifyVTop = 1.0f - (magPos.y - halfHeight) / (float)widgetHeight;
const float magnifyVBottom = 1.0f - (magPos.y + halfHeight) / (float)widgetHeight;
const float newHalfWidth = halfWidth * MAGNIFY_MULT;
const float newHalfHeight = halfHeight * MAGNIFY_MULT;
//Get yaw / pitch value for the corners
const glm::vec2 topLeftYawPitch = overlayToSpherical(glm::vec2(magPos.x - newHalfWidth,
magPos.y - newHalfHeight));
const glm::vec2 bottomRightYawPitch = overlayToSpherical(glm::vec2(magPos.x + newHalfWidth,
magPos.y + newHalfHeight));
const glm::vec3 bottomLeft = getPoint(topLeftYawPitch.x, bottomRightYawPitch.y);
const glm::vec3 bottomRight = getPoint(bottomRightYawPitch.x, bottomRightYawPitch.y);
const glm::vec3 topLeft = getPoint(topLeftYawPitch.x, topLeftYawPitch.y);
const glm::vec3 topRight = getPoint(bottomRightYawPitch.x, topLeftYawPitch.y);
auto geometryCache = DependencyManager::get<GeometryCache>();
if (bottomLeft != _previousMagnifierBottomLeft || bottomRight != _previousMagnifierBottomRight
|| topLeft != _previousMagnifierTopLeft || topRight != _previousMagnifierTopRight) {
QVector<glm::vec3> border;
border << topLeft;
border << bottomLeft;
border << bottomRight;
border << topRight;
border << topLeft;
geometryCache->updateVertices(_magnifierBorder, border, glm::vec4(1.0f, 0.0f, 0.0f, _alpha));
_previousMagnifierBottomLeft = bottomLeft;
_previousMagnifierBottomRight = bottomRight;
_previousMagnifierTopLeft = topLeft;
_previousMagnifierTopRight = topRight;
}
glPushMatrix(); {
if (showBorder) {
glDisable(GL_TEXTURE_2D);
glLineWidth(1.0f);
//Outer Line
geometryCache->renderVertices(gpu::LINE_STRIP, _magnifierBorder);
glEnable(GL_TEXTURE_2D);
}
glm::vec4 magnifierColor = { 1.0f, 1.0f, 1.0f, _alpha };
DependencyManager::get<GeometryCache>()->renderQuad(bottomLeft, bottomRight, topRight, topLeft,
glm::vec2(magnifyULeft, magnifyVBottom),
glm::vec2(magnifyURight, magnifyVBottom),
glm::vec2(magnifyURight, magnifyVTop),
glm::vec2(magnifyULeft, magnifyVTop),
magnifierColor, _magnifierQuad);
} glPopMatrix();
}
void ApplicationCompositor::buildHemiVertices(
const float fov, const float aspectRatio, const int slices, const int stacks) {
static float textureFOV = 0.0f, textureAspectRatio = 1.0f;
if (textureFOV == fov && textureAspectRatio == aspectRatio) {
return;
}
textureFOV = fov;
textureAspectRatio = aspectRatio;
auto geometryCache = DependencyManager::get<GeometryCache>();
_hemiVertices = gpu::BufferPointer(new gpu::Buffer());
_hemiIndices = gpu::BufferPointer(new gpu::Buffer());
if (fov >= PI) {
qDebug() << "TexturedHemisphere::buildVBO(): FOV greater or equal than Pi will create issues";
}
//UV mapping source: http://www.mvps.org/directx/articles/spheremap.htm
vec3 pos;
vec2 uv;
// Compute vertices positions and texture UV coordinate
// Create and write to buffer
for (int i = 0; i < stacks; i++) {
uv.y = (float)i / (float)(stacks - 1); // First stack is 0.0f, last stack is 1.0f
// abs(theta) <= fov / 2.0f
float pitch = -fov * (uv.y - 0.5f);
for (int j = 0; j < slices; j++) {
uv.x = (float)j / (float)(slices - 1); // First slice is 0.0f, last slice is 1.0f
// abs(phi) <= fov * aspectRatio / 2.0f
float yaw = -fov * aspectRatio * (uv.x - 0.5f);
pos = getPoint(yaw, pitch);
static const vec4 color(1);
_hemiVertices->append(sizeof(pos), (gpu::Byte*)&pos);
_hemiVertices->append(sizeof(vec2), (gpu::Byte*)&uv);
_hemiVertices->append(sizeof(vec4), (gpu::Byte*)&color);
}
}
// Compute number of indices needed
static const int VERTEX_PER_TRANGLE = 3;
static const int TRIANGLE_PER_RECTANGLE = 2;
int numberOfRectangles = (slices - 1) * (stacks - 1);
_hemiIndexCount = numberOfRectangles * TRIANGLE_PER_RECTANGLE * VERTEX_PER_TRANGLE;
// Compute indices order
std::vector<GLushort> indices;
for (int i = 0; i < stacks - 1; i++) {
for (int j = 0; j < slices - 1; j++) {
GLushort bottomLeftIndex = i * slices + j;
GLushort bottomRightIndex = bottomLeftIndex + 1;
GLushort topLeftIndex = bottomLeftIndex + slices;
GLushort topRightIndex = topLeftIndex + 1;
// FIXME make a z-order curve for better vertex cache locality
indices.push_back(topLeftIndex);
indices.push_back(bottomLeftIndex);
indices.push_back(topRightIndex);
indices.push_back(topRightIndex);
indices.push_back(bottomLeftIndex);
indices.push_back(bottomRightIndex);
}
}
_hemiIndices->append(sizeof(GLushort) * indices.size(), (gpu::Byte*)&indices[0]);
}
void ApplicationCompositor::drawSphereSection(gpu::Batch& batch) {
buildHemiVertices(_textureFov, _textureAspectRatio, 80, 80);
static const int VERTEX_DATA_SLOT = 0;
static const int TEXTURE_DATA_SLOT = 1;
static const int COLOR_DATA_SLOT = 2;
gpu::Stream::FormatPointer streamFormat(new gpu::Stream::Format()); // 1 for everyone
streamFormat->setAttribute(gpu::Stream::POSITION, VERTEX_DATA_SLOT, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
streamFormat->setAttribute(gpu::Stream::TEXCOORD, TEXTURE_DATA_SLOT, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV));
streamFormat->setAttribute(gpu::Stream::COLOR, COLOR_DATA_SLOT, gpu::Element(gpu::VEC4, gpu::FLOAT, gpu::RGBA));
batch.setInputFormat(streamFormat);
static const int VERTEX_STRIDE = sizeof(vec3) + sizeof(vec2) + sizeof(vec4);
gpu::BufferView posView(_hemiVertices, 0, _hemiVertices->getSize(), VERTEX_STRIDE, streamFormat->getAttributes().at(gpu::Stream::POSITION)._element);
gpu::BufferView uvView(_hemiVertices, sizeof(vec3), _hemiVertices->getSize(), VERTEX_STRIDE, streamFormat->getAttributes().at(gpu::Stream::TEXCOORD)._element);
gpu::BufferView colView(_hemiVertices, sizeof(vec3) + sizeof(vec2), _hemiVertices->getSize(), VERTEX_STRIDE, streamFormat->getAttributes().at(gpu::Stream::COLOR)._element);
batch.setInputBuffer(VERTEX_DATA_SLOT, posView);
batch.setInputBuffer(TEXTURE_DATA_SLOT, uvView);
batch.setInputBuffer(COLOR_DATA_SLOT, colView);
batch.setIndexBuffer(gpu::UINT16, _hemiIndices, 0);
batch.drawIndexed(gpu::TRIANGLES, _hemiIndexCount);
}
glm::vec2 ApplicationCompositor::directionToSpherical(const glm::vec3& direction) {
glm::vec2 result;
// Compute yaw
glm::vec3 normalProjection = glm::normalize(glm::vec3(direction.x, 0.0f, direction.z));
result.x = glm::acos(glm::dot(IDENTITY_FRONT, normalProjection));
if (glm::dot(IDENTITY_RIGHT, normalProjection) > 0.0f) {
result.x = -glm::abs(result.x);
} else {
result.x = glm::abs(result.x);
}
// Compute pitch
result.y = angleBetween(IDENTITY_UP, direction) - PI_OVER_TWO;
return result;
}
glm::vec3 ApplicationCompositor::sphericalToDirection(const glm::vec2& sphericalPos) {
glm::quat rotation(glm::vec3(sphericalPos.y, sphericalPos.x, 0.0f));
return rotation * IDENTITY_FRONT;
}
glm::vec2 ApplicationCompositor::screenToSpherical(const glm::vec2& screenPos) {
auto screenSize = qApp->getCanvasSize();
glm::vec2 result;
result.x = -(screenPos.x / screenSize.x - 0.5f);
result.y = (screenPos.y / screenSize.y - 0.5f);
result.x *= MOUSE_YAW_RANGE;
result.y *= MOUSE_PITCH_RANGE;
return result;
}
glm::vec2 ApplicationCompositor::sphericalToScreen(const glm::vec2& sphericalPos) {
glm::vec2 result = sphericalPos;
result.x *= -1.0;
result /= MOUSE_RANGE;
result += 0.5f;
result *= qApp->getCanvasSize();
return result;
}
glm::vec2 ApplicationCompositor::sphericalToOverlay(const glm::vec2& sphericalPos) const {
glm::vec2 result = sphericalPos;
result.x *= -1.0;
result /= _textureFov;
result.x /= _textureAspectRatio;
result += 0.5f;
result *= qApp->getCanvasSize();
return result;
}
glm::vec2 ApplicationCompositor::overlayToSpherical(const glm::vec2& overlayPos) const {
glm::vec2 result = overlayPos;
result /= qApp->getCanvasSize();
result -= 0.5f;
result *= _textureFov;
result.x *= _textureAspectRatio;
result.x *= -1.0f;
return result;
}
glm::vec2 ApplicationCompositor::screenToOverlay(const glm::vec2& screenPos) const {
return sphericalToOverlay(screenToSpherical(screenPos));
}
glm::vec2 ApplicationCompositor::overlayToScreen(const glm::vec2& overlayPos) const {
return sphericalToScreen(overlayToSpherical(overlayPos));
}

View file

@ -0,0 +1,118 @@
//
// Created by Bradley Austin Davis Arnold on 2015/06/13
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_ApplicationOverlayCompositor_h
#define hifi_ApplicationOverlayCompositor_h
#include <QObject>
#include <cstdint>
#include <GeometryCache.h>
#include <GLMHelpers.h>
#include <gpu/Batch.h>
#include <gpu/Texture.h>
class Camera;
class PalmData;
class RenderArgs;
const float MAGNIFY_WIDTH = 220.0f;
const float MAGNIFY_HEIGHT = 100.0f;
const float MAGNIFY_MULT = 2.0f;
const float DEFAULT_HMD_UI_ANGULAR_SIZE = 72.0f;
// Handles the drawing of the overlays to the screen
// TODO, move divide up the rendering, displaying and input handling
// facilities of this class
class ApplicationCompositor : public QObject {
Q_OBJECT
public:
ApplicationCompositor();
~ApplicationCompositor();
void displayOverlayTexture(RenderArgs* renderArgs);
void displayOverlayTextureHmd(RenderArgs* renderArgs, int eye);
QPoint getPalmClickLocation(const PalmData *palm) const;
bool calculateRayUICollisionPoint(const glm::vec3& position, const glm::vec3& direction, glm::vec3& result) const;
bool hasMagnifier() const { return _magnifier; }
void toggleMagnifier() { _magnifier = !_magnifier; }
float getHmdUIAngularSize() const { return _hmdUIAngularSize; }
void setHmdUIAngularSize(float hmdUIAngularSize) { _hmdUIAngularSize = hmdUIAngularSize; }
// Converter from one frame of reference to another.
// Frame of reference:
// Direction: Ray that represents the spherical values
// Screen: Position on the screen (x,y)
// Spherical: Pitch and yaw that gives the position on the sphere we project on (yaw,pitch)
// Overlay: Position on the overlay (x,y)
// (x,y) in Overlay are similar than (x,y) in Screen except they can be outside of the bound of te screen.
// This allows for picking outside of the screen projection in 3D.
glm::vec2 sphericalToOverlay(const glm::vec2 & sphericalPos) const;
glm::vec2 overlayToSpherical(const glm::vec2 & overlayPos) const;
glm::vec2 screenToOverlay(const glm::vec2 & screenPos) const;
glm::vec2 overlayToScreen(const glm::vec2 & overlayPos) const;
void computeHmdPickRay(glm::vec2 cursorPos, glm::vec3& origin, glm::vec3& direction) const;
GLuint getOverlayTexture();
static glm::vec2 directionToSpherical(const glm::vec3 & direction);
static glm::vec3 sphericalToDirection(const glm::vec2 & sphericalPos);
static glm::vec2 screenToSpherical(const glm::vec2 & screenPos);
static glm::vec2 sphericalToScreen(const glm::vec2 & sphericalPos);
private:
void displayOverlayTextureStereo(RenderArgs* renderArgs, float aspectRatio, float fov);
void bindCursorTexture(gpu::Batch& batch, uint8_t cursorId = 0);
void buildHemiVertices(const float fov, const float aspectRatio, const int slices, const int stacks);
void drawSphereSection(gpu::Batch& batch);
void renderPointers();
void renderMagnifier(const glm::vec2& magPos, float sizeMult, bool showBorder);
void renderControllerPointers();
void renderPointersOculus();
float _hmdUIAngularSize = DEFAULT_HMD_UI_ANGULAR_SIZE;
float _textureFov{ glm::radians(DEFAULT_HMD_UI_ANGULAR_SIZE) };
float _textureAspectRatio{ 1.0f };
int _hemiVerticesID{ GeometryCache::UNKNOWN_ID };
enum Reticles { MOUSE, LEFT_CONTROLLER, RIGHT_CONTROLLER, NUMBER_OF_RETICLES };
bool _reticleActive[NUMBER_OF_RETICLES];
QPoint _reticlePosition[NUMBER_OF_RETICLES];
bool _magActive[NUMBER_OF_RETICLES];
float _magSizeMult[NUMBER_OF_RETICLES];
quint64 _lastMouseMove{ 0 };
bool _magnifier{ true };
float _alpha{ 1.0f };
float _oculusUIRadius{ 1.0f };
QMap<uint16_t, gpu::TexturePointer> _cursors;
int _reticleQuad;
int _magnifierQuad;
int _audioRedQuad;
int _audioGreenQuad;
int _audioBlueQuad;
int _domainStatusBorder;
int _magnifierBorder;
int _previousBorderWidth{ -1 };
int _previousBorderHeight{ -1 };
glm::vec3 _previousMagnifierBottomLeft;
glm::vec3 _previousMagnifierBottomRight;
glm::vec3 _previousMagnifierTopLeft;
glm::vec3 _previousMagnifierTopRight;
};
#endif // hifi_ApplicationOverlayCompositor_h

View file

@ -36,114 +36,20 @@
#include "Util.h"
#include "ui/Stats.h"
#include "../../libraries/render-utils/standardTransformPNTC_vert.h"
#include "../../libraries/render-utils/standardDrawTexture_frag.h"
// Used to animate the magnification windows
const float MAG_SPEED = 0.08f;
const quint64 MSECS_TO_USECS = 1000ULL;
const float WHITE_TEXT[] = { 0.93f, 0.93f, 0.93f };
const float RETICLE_COLOR[] = { 0.0f, 198.0f / 255.0f, 244.0f / 255.0f };
const float reticleSize = TWO_PI / 100.0f;
const int AUDIO_METER_GAP = 5;
const int MUTE_ICON_PADDING = 10;
const float CONNECTION_STATUS_BORDER_COLOR[] = { 1.0f, 0.0f, 0.0f };
const float CONNECTION_STATUS_BORDER_LINE_WIDTH = 4.0f;
static const float MOUSE_PITCH_RANGE = 1.0f * PI;
static const float MOUSE_YAW_RANGE = 0.5f * TWO_PI;
static const glm::vec2 MOUSE_RANGE(MOUSE_YAW_RANGE, MOUSE_PITCH_RANGE);
// Return a point's cartesian coordinates on a sphere from pitch and yaw
glm::vec3 getPoint(float yaw, float pitch) {
return glm::vec3(glm::cos(-pitch) * (-glm::sin(yaw)),
glm::sin(-pitch),
glm::cos(-pitch) * (-glm::cos(yaw)));
}
//Checks if the given ray intersects the sphere at the origin. result will store a multiplier that should
//be multiplied by dir and added to origin to get the location of the collision
bool raySphereIntersect(const glm::vec3 &dir, const glm::vec3 &origin, float r, float* result)
{
//Source: http://wiki.cgsociety.org/index.php/Ray_Sphere_Intersection
//Compute A, B and C coefficients
float a = glm::dot(dir, dir);
float b = 2 * glm::dot(dir, origin);
float c = glm::dot(origin, origin) - (r * r);
//Find discriminant
float disc = b * b - 4 * a * c;
// if discriminant is negative there are no real roots, so return
// false as ray misses sphere
if (disc < 0) {
return false;
}
// compute q as described above
float distSqrt = sqrtf(disc);
float q;
if (b < 0) {
q = (-b - distSqrt) / 2.0;
} else {
q = (-b + distSqrt) / 2.0;
}
// compute t0 and t1
float t0 = q / a;
float t1 = c / q;
// make sure t0 is smaller than t1
if (t0 > t1) {
// if t0 is bigger than t1 swap them around
float temp = t0;
t0 = t1;
t1 = temp;
}
// if t1 is less than zero, the object is in the ray's negative direction
// and consequently the ray misses the sphere
if (t1 < 0) {
return false;
}
// if t0 is less than zero, the intersection point is at t1
if (t0 < 0) {
*result = t1;
return true;
} else { // else the intersection point is at t0
*result = t0;
return true;
}
}
ApplicationOverlay::ApplicationOverlay() :
_textureFov(glm::radians(DEFAULT_HMD_UI_ANGULAR_SIZE)),
_textureAspectRatio(1.0f),
_lastMouseMove(0),
_magnifier(true),
_alpha(1.0f),
_oculusUIRadius(1.0f),
_trailingAudioLoudness(0.0f),
_previousBorderWidth(-1),
_previousBorderHeight(-1),
_previousMagnifierBottomLeft(),
_previousMagnifierBottomRight(),
_previousMagnifierTopLeft(),
_previousMagnifierTopRight(),
_framebufferObject(nullptr)
{
memset(_reticleActive, 0, sizeof(_reticleActive));
memset(_magActive, 0, sizeof(_reticleActive));
memset(_magSizeMult, 0, sizeof(_magSizeMult));
auto geometryCache = DependencyManager::get<GeometryCache>();
_reticleQuad = geometryCache->allocateID();
_magnifierQuad = geometryCache->allocateID();
_audioRedQuad = geometryCache->allocateID();
_audioGreenQuad = geometryCache->allocateID();
_audioBlueQuad = geometryCache->allocateID();
@ -159,7 +65,7 @@ ApplicationOverlay::ApplicationOverlay() :
auto offscreenUi = DependencyManager::get<OffscreenUi>();
offscreenUi->lockTexture(textureId);
assert(!glGetError());
std::swap(_newUiTexture, textureId);
std::swap(_uiTexture, textureId);
if (textureId) {
offscreenUi->releaseTexture(textureId);
}
@ -172,13 +78,10 @@ ApplicationOverlay::~ApplicationOverlay() {
// Renders the overlays either to a texture or to the screen
void ApplicationOverlay::renderOverlay(RenderArgs* renderArgs) {
PerformanceWarning warn(Menu::getInstance()->isOptionChecked(MenuOption::PipelineWarnings), "ApplicationOverlay::displayOverlay()");
Overlays& overlays = qApp->getOverlays();
_textureFov = glm::radians(_hmdUIAngularSize);
glm::vec2 size = qApp->getCanvasSize();
_textureAspectRatio = aspect(size);
//Handle fading and deactivation/activation of UI
Overlays& overlays = qApp->getOverlays();
glm::vec2 size = qApp->getCanvasSize();
// TODO Handle fading and deactivation/activation of UI
// Render 2D overlay
glDisable(GL_DEPTH_TEST);
@ -210,10 +113,8 @@ void ApplicationOverlay::renderOverlay(RenderArgs* renderArgs) {
overlays.renderHUD(renderArgs);
renderPointers();
renderDomainConnectionStatusBorder();
if (_newUiTexture) {
if (_uiTexture) {
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
@ -221,7 +122,7 @@ void ApplicationOverlay::renderOverlay(RenderArgs* renderArgs) {
glEnable(GL_TEXTURE_2D);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glBindTexture(GL_TEXTURE_2D, _newUiTexture);
glBindTexture(GL_TEXTURE_2D, _uiTexture);
DependencyManager::get<GeometryCache>()->renderUnitQuad();
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
@ -241,472 +142,6 @@ void ApplicationOverlay::renderOverlay(RenderArgs* renderArgs) {
_framebufferObject->release();
}
gpu::PipelinePointer ApplicationOverlay::getDrawPipeline() {
if (!_standardDrawPipeline) {
auto vs = gpu::ShaderPointer(gpu::Shader::createVertex(std::string(standardTransformPNTC_vert)));
auto ps = gpu::ShaderPointer(gpu::Shader::createPixel(std::string(standardDrawTexture_frag)));
auto program = gpu::ShaderPointer(gpu::Shader::createProgram(vs, ps));
gpu::Shader::makeProgram((*program));
auto state = gpu::StatePointer(new gpu::State());
// enable decal blend
state->setBlendFunction(true, gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA);
_standardDrawPipeline.reset(gpu::Pipeline::create(program, state));
}
return _standardDrawPipeline;
}
void ApplicationOverlay::bindCursorTexture(gpu::Batch& batch, uint8_t cursorIndex) {
auto& cursorManager = Cursor::Manager::instance();
auto cursor = cursorManager.getCursor(cursorIndex);
auto iconId = cursor->getIcon();
if (!_cursors.count(iconId)) {
auto iconPath = cursorManager.getIconImage(cursor->getIcon());
_cursors[iconId] = DependencyManager::get<TextureCache>()->
getImageTexture(iconPath);
}
batch.setUniformTexture(0, _cursors[iconId]);
}
#define CURSOR_PIXEL_SIZE 32.0f
// Draws the FBO texture for the screen
void ApplicationOverlay::displayOverlayTexture(RenderArgs* renderArgs) {
if (_alpha == 0.0f || !_framebufferObject) {
return;
}
renderArgs->_context->syncCache();
gpu::Batch batch;
Transform model;
//DependencyManager::get<DeferredLightingEffect>()->bindSimpleProgram(batch, true);
batch.setPipeline(getDrawPipeline());
batch.setModelTransform(Transform());
batch.setProjectionTransform(mat4());
batch.setViewTransform(model);
batch._glBindTexture(GL_TEXTURE_2D, _framebufferObject->texture());
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
DependencyManager::get<GeometryCache>()->renderUnitQuad(batch, vec4(vec3(1), _alpha));
//draw the mouse pointer
glm::vec2 canvasSize = qApp->getCanvasSize();
// Get the mouse coordinates and convert to NDC [-1, 1]
vec2 mousePosition = vec2(qApp->getMouseX(), qApp->getMouseY());
mousePosition /= canvasSize;
mousePosition *= 2.0f;
mousePosition -= 1.0f;
mousePosition.y *= -1.0f;
model.setTranslation(vec3(mousePosition, 0));
glm::vec2 mouseSize = CURSOR_PIXEL_SIZE / canvasSize;
model.setScale(vec3(mouseSize, 1.0f));
batch.setModelTransform(model);
bindCursorTexture(batch);
glm::vec4 reticleColor = { RETICLE_COLOR[0], RETICLE_COLOR[1], RETICLE_COLOR[2], 1.0f };
DependencyManager::get<GeometryCache>()->renderUnitQuad(batch, vec4(1));
renderArgs->_context->render(batch);
}
static gpu::BufferPointer _hemiVertices;
static gpu::BufferPointer _hemiIndices;
static int _hemiIndexCount{ 0 };
glm::vec2 getPolarCoordinates(const PalmData& palm) {
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
auto avatarOrientation = myAvatar->getOrientation();
auto eyePos = myAvatar->getDefaultEyePosition();
glm::vec3 tip = myAvatar->getLaserPointerTipPosition(&palm);
// Direction of the tip relative to the eye
glm::vec3 tipDirection = tip - eyePos;
// orient into avatar space
tipDirection = glm::inverse(avatarOrientation) * tipDirection;
// Normalize for trig functions
tipDirection = glm::normalize(tipDirection);
// Convert to polar coordinates
glm::vec2 polar(glm::atan(tipDirection.x, -tipDirection.z), glm::asin(tipDirection.y));
return polar;
}
// Draws the FBO texture for Oculus rift.
void ApplicationOverlay::displayOverlayTextureHmd(RenderArgs* renderArgs, Camera& whichCamera) {
if (_alpha == 0.0f || !_framebufferObject) {
return;
}
renderArgs->_context->syncCache();
gpu::Batch batch;
batch.setPipeline(getDrawPipeline());
batch._glDisable(GL_DEPTH_TEST);
batch._glDisable(GL_CULL_FACE);
batch._glBindTexture(GL_TEXTURE_2D, _framebufferObject->texture());
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
batch._glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
batch.setProjectionTransform(whichCamera.getProjection());
batch.setViewTransform(Transform());
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
const quat& avatarOrientation = myAvatar->getOrientation();
quat hmdOrientation = qApp->getCamera()->getHmdRotation();
vec3 hmdPosition = glm::inverse(avatarOrientation) * qApp->getCamera()->getHmdPosition();
mat4 overlayXfm = glm::mat4_cast(glm::inverse(hmdOrientation)) * glm::translate(mat4(), -hmdPosition);
batch.setModelTransform(Transform(overlayXfm));
drawSphereSection(batch);
bindCursorTexture(batch);
auto geometryCache = DependencyManager::get<GeometryCache>();
vec3 reticleScale = vec3(Cursor::Manager::instance().getScale() * reticleSize);
//Controller Pointers
for (int i = 0; i < (int)myAvatar->getHand()->getNumPalms(); i++) {
PalmData& palm = myAvatar->getHand()->getPalms()[i];
if (palm.isActive()) {
glm::vec2 polar = getPolarCoordinates(palm);
// Convert to quaternion
mat4 pointerXfm = glm::mat4_cast(quat(vec3(polar.y, -polar.x, 0.0f))) * glm::translate(mat4(), vec3(0, 0, -1));
mat4 reticleXfm = overlayXfm * pointerXfm;
reticleXfm = glm::scale(reticleXfm, reticleScale);
batch.setModelTransform(reticleXfm);
// Render reticle at location
geometryCache->renderUnitQuad(batch, glm::vec4(1), _reticleQuad);
}
}
//Mouse Pointer
if (_reticleActive[MOUSE]) {
glm::vec2 projection = screenToSpherical(glm::vec2(_reticlePosition[MOUSE].x(),
_reticlePosition[MOUSE].y()));
mat4 pointerXfm = glm::mat4_cast(quat(vec3(-projection.y, projection.x, 0.0f))) * glm::translate(mat4(), vec3(0, 0, -1));
mat4 reticleXfm = overlayXfm * pointerXfm;
reticleXfm = glm::scale(reticleXfm, reticleScale);
batch.setModelTransform(reticleXfm);
geometryCache->renderUnitQuad(batch, glm::vec4(1), _reticleQuad);
}
renderArgs->_context->render(batch);
}
void ApplicationOverlay::computeHmdPickRay(glm::vec2 cursorPos, glm::vec3& origin, glm::vec3& direction) const {
cursorPos *= qApp->getCanvasSize();
const glm::vec2 projection = screenToSpherical(cursorPos);
// The overlay space orientation of the mouse coordinates
const glm::quat orientation(glm::vec3(-projection.y, projection.x, 0.0f));
// FIXME We now have the direction of the ray FROM THE DEFAULT HEAD POSE.
// Now we need to account for the actual camera position relative to the overlay
glm::vec3 overlaySpaceDirection = glm::normalize(orientation * IDENTITY_FRONT);
const glm::vec3& hmdPosition = qApp->getCamera()->getHmdPosition();
const glm::quat& hmdOrientation = qApp->getCamera()->getHmdRotation();
// We need the RAW camera orientation and position, because this is what the overlay is
// rendered relative to
const glm::vec3 overlayPosition = qApp->getCamera()->getPosition() - hmdPosition;
const glm::quat overlayOrientation = qApp->getCamera()->getRotation() * glm::inverse(hmdOrientation);
// Intersection UI overlay space
glm::vec3 worldSpaceDirection = overlayOrientation * overlaySpaceDirection;
glm::vec3 intersectionWithUi = glm::normalize(worldSpaceDirection) * _oculusUIRadius;
intersectionWithUi += overlayPosition;
// Intersection in world space
origin = overlayPosition + hmdPosition;
direction = glm::normalize(intersectionWithUi - origin);
}
//Caculate the click location using one of the sixense controllers. Scale is not applied
QPoint ApplicationOverlay::getPalmClickLocation(const PalmData *palm) const {
QPoint rv;
auto canvasSize = qApp->getCanvasSize();
if (qApp->isHMDMode()) {
glm::vec2 polar = getPolarCoordinates(*palm);
glm::vec2 point = sphericalToScreen(-polar);
rv.rx() = point.x;
rv.ry() = point.y;
} else {
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
glm::dmat4 projection;
qApp->getProjectionMatrix(&projection);
glm::quat invOrientation = glm::inverse(myAvatar->getOrientation());
glm::vec3 eyePos = myAvatar->getDefaultEyePosition();
glm::vec3 tip = myAvatar->getLaserPointerTipPosition(palm);
glm::vec3 tipPos = invOrientation * (tip - eyePos);
glm::vec4 clipSpacePos = glm::vec4(projection * glm::dvec4(tipPos, 1.0));
glm::vec3 ndcSpacePos;
if (clipSpacePos.w != 0) {
ndcSpacePos = glm::vec3(clipSpacePos) / clipSpacePos.w;
}
rv.setX(((ndcSpacePos.x + 1.0) / 2.0) * canvasSize.x);
rv.setY((1.0 - ((ndcSpacePos.y + 1.0) / 2.0)) * canvasSize.y);
}
return rv;
}
//Finds the collision point of a world space ray
bool ApplicationOverlay::calculateRayUICollisionPoint(const glm::vec3& position, const glm::vec3& direction, glm::vec3& result) const {
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
glm::quat inverseOrientation = glm::inverse(myAvatar->getOrientation());
glm::vec3 relativePosition = inverseOrientation * (position - myAvatar->getDefaultEyePosition());
glm::vec3 relativeDirection = glm::normalize(inverseOrientation * direction);
float t;
if (raySphereIntersect(relativeDirection, relativePosition, _oculusUIRadius * myAvatar->getScale(), &t)){
result = position + direction * t;
return true;
}
return false;
}
//Renders optional pointers
void ApplicationOverlay::renderPointers() {
//glEnable(GL_TEXTURE_2D);
//glEnable(GL_BLEND);
//glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
//glActiveTexture(GL_TEXTURE0);
//bindCursorTexture();
if (qApp->isHMDMode() && !qApp->getLastMouseMoveWasSimulated() && !qApp->isMouseHidden()) {
//If we are in oculus, render reticle later
if (_lastMouseMove == 0) {
_lastMouseMove = usecTimestampNow();
}
QPoint position = QPoint(qApp->getTrueMouseX(), qApp->getTrueMouseY());
static const int MAX_IDLE_TIME = 3;
if (_reticlePosition[MOUSE] != position) {
_lastMouseMove = usecTimestampNow();
} else if (usecTimestampNow() - _lastMouseMove > MAX_IDLE_TIME * USECS_PER_SECOND) {
//float pitch = 0.0f, yaw = 0.0f, roll = 0.0f; // radians
//OculusManager::getEulerAngles(yaw, pitch, roll);
glm::quat orientation = qApp->getHeadOrientation(); // (glm::vec3(pitch, yaw, roll));
glm::vec3 result;
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
if (calculateRayUICollisionPoint(myAvatar->getEyePosition(),
myAvatar->getOrientation() * orientation * IDENTITY_FRONT,
result)) {
glm::vec3 lookAtDirection = glm::inverse(myAvatar->getOrientation()) * (result - myAvatar->getDefaultEyePosition());
glm::vec2 spericalPos = directionToSpherical(glm::normalize(lookAtDirection));
glm::vec2 screenPos = sphericalToScreen(spericalPos);
position = QPoint(screenPos.x, screenPos.y);
// FIXME
//glCanvas->cursor().setPos(glCanvas->mapToGlobal(position));
} else {
qDebug() << "No collision point";
}
}
_reticlePosition[MOUSE] = position;
_reticleActive[MOUSE] = true;
_magActive[MOUSE] = _magnifier;
_reticleActive[LEFT_CONTROLLER] = false;
_reticleActive[RIGHT_CONTROLLER] = false;
} else if (qApp->getLastMouseMoveWasSimulated() && Menu::getInstance()->isOptionChecked(MenuOption::SixenseMouseInput)) {
_lastMouseMove = 0;
//only render controller pointer if we aren't already rendering a mouse pointer
_reticleActive[MOUSE] = false;
_magActive[MOUSE] = false;
renderControllerPointers();
}
//glBindTexture(GL_TEXTURE_2D, 0);
//glDisable(GL_TEXTURE_2D);
}
void ApplicationOverlay::renderControllerPointers() {
MyAvatar* myAvatar = DependencyManager::get<AvatarManager>()->getMyAvatar();
//Static variables used for storing controller state
static quint64 pressedTime[NUMBER_OF_RETICLES] = { 0ULL, 0ULL, 0ULL };
static bool isPressed[NUMBER_OF_RETICLES] = { false, false, false };
static bool stateWhenPressed[NUMBER_OF_RETICLES] = { false, false, false };
const HandData* handData = DependencyManager::get<AvatarManager>()->getMyAvatar()->getHandData();
for (unsigned int palmIndex = 2; palmIndex < 4; palmIndex++) {
const int index = palmIndex - 1;
const PalmData* palmData = NULL;
if (palmIndex >= handData->getPalms().size()) {
return;
}
if (handData->getPalms()[palmIndex].isActive()) {
palmData = &handData->getPalms()[palmIndex];
} else {
continue;
}
int controllerButtons = palmData->getControllerButtons();
//Check for if we should toggle or drag the magnification window
if (controllerButtons & BUTTON_3) {
if (isPressed[index] == false) {
//We are now dragging the window
isPressed[index] = true;
//set the pressed time in us
pressedTime[index] = usecTimestampNow();
stateWhenPressed[index] = _magActive[index];
}
} else if (isPressed[index]) {
isPressed[index] = false;
//If the button was only pressed for < 250 ms
//then disable it.
const int MAX_BUTTON_PRESS_TIME = 250 * MSECS_TO_USECS;
if (usecTimestampNow() < pressedTime[index] + MAX_BUTTON_PRESS_TIME) {
_magActive[index] = !stateWhenPressed[index];
}
}
//if we have the oculus, we should make the cursor smaller since it will be
//magnified
if (qApp->isHMDMode()) {
QPoint point = getPalmClickLocation(palmData);
_reticlePosition[index] = point;
//When button 2 is pressed we drag the mag window
if (isPressed[index]) {
_magActive[index] = true;
}
// If oculus is enabled, we draw the crosshairs later
continue;
}
auto canvasSize = qApp->getCanvasSize();
int mouseX, mouseY;
if (Menu::getInstance()->isOptionChecked(MenuOption::SixenseLasers)) {
QPoint res = getPalmClickLocation(palmData);
mouseX = res.x();
mouseY = res.y();
} else {
// Get directon relative to avatar orientation
glm::vec3 direction = glm::inverse(myAvatar->getOrientation()) * palmData->getFingerDirection();
// Get the angles, scaled between (-0.5,0.5)
float xAngle = (atan2(direction.z, direction.x) + M_PI_2);
float yAngle = 0.5f - ((atan2(direction.z, direction.y) + M_PI_2));
// Get the pixel range over which the xAngle and yAngle are scaled
float cursorRange = canvasSize.x * SixenseManager::getInstance().getCursorPixelRangeMult();
mouseX = (canvasSize.x / 2.0f + cursorRange * xAngle);
mouseY = (canvasSize.y / 2.0f + cursorRange * yAngle);
}
//If the cursor is out of the screen then don't render it
if (mouseX < 0 || mouseX >= (int)canvasSize.x || mouseY < 0 || mouseY >= (int)canvasSize.y) {
_reticleActive[index] = false;
continue;
}
_reticleActive[index] = true;
const float reticleSize = 40.0f;
mouseX -= reticleSize / 2.0f;
mouseY += reticleSize / 2.0f;
glm::vec2 topLeft(mouseX, mouseY);
glm::vec2 bottomRight(mouseX + reticleSize, mouseY - reticleSize);
glm::vec2 texCoordTopLeft(0.0f, 0.0f);
glm::vec2 texCoordBottomRight(1.0f, 1.0f);
DependencyManager::get<GeometryCache>()->renderQuad(topLeft, bottomRight, texCoordTopLeft, texCoordBottomRight,
glm::vec4(RETICLE_COLOR[0], RETICLE_COLOR[1], RETICLE_COLOR[2], 1.0f));
}
}
//Renders a small magnification of the currently bound texture at the coordinates
void ApplicationOverlay::renderMagnifier(glm::vec2 magPos, float sizeMult, bool showBorder) {
if (!_magnifier) {
return;
}
auto canvasSize = qApp->getCanvasSize();
const int widgetWidth = canvasSize.x;
const int widgetHeight = canvasSize.y;
const float halfWidth = (MAGNIFY_WIDTH / _textureAspectRatio) * sizeMult / 2.0f;
const float halfHeight = MAGNIFY_HEIGHT * sizeMult / 2.0f;
// Magnification Texture Coordinates
const float magnifyULeft = (magPos.x - halfWidth) / (float)widgetWidth;
const float magnifyURight = (magPos.x + halfWidth) / (float)widgetWidth;
const float magnifyVTop = 1.0f - (magPos.y - halfHeight) / (float)widgetHeight;
const float magnifyVBottom = 1.0f - (magPos.y + halfHeight) / (float)widgetHeight;
const float newHalfWidth = halfWidth * MAGNIFY_MULT;
const float newHalfHeight = halfHeight * MAGNIFY_MULT;
//Get yaw / pitch value for the corners
const glm::vec2 topLeftYawPitch = overlayToSpherical(glm::vec2(magPos.x - newHalfWidth,
magPos.y - newHalfHeight));
const glm::vec2 bottomRightYawPitch = overlayToSpherical(glm::vec2(magPos.x + newHalfWidth,
magPos.y + newHalfHeight));
const glm::vec3 bottomLeft = getPoint(topLeftYawPitch.x, bottomRightYawPitch.y);
const glm::vec3 bottomRight = getPoint(bottomRightYawPitch.x, bottomRightYawPitch.y);
const glm::vec3 topLeft = getPoint(topLeftYawPitch.x, topLeftYawPitch.y);
const glm::vec3 topRight = getPoint(bottomRightYawPitch.x, topLeftYawPitch.y);
auto geometryCache = DependencyManager::get<GeometryCache>();
if (bottomLeft != _previousMagnifierBottomLeft || bottomRight != _previousMagnifierBottomRight
|| topLeft != _previousMagnifierTopLeft || topRight != _previousMagnifierTopRight) {
QVector<glm::vec3> border;
border << topLeft;
border << bottomLeft;
border << bottomRight;
border << topRight;
border << topLeft;
geometryCache->updateVertices(_magnifierBorder, border, glm::vec4(1.0f, 0.0f, 0.0f, _alpha));
_previousMagnifierBottomLeft = bottomLeft;
_previousMagnifierBottomRight = bottomRight;
_previousMagnifierTopLeft = topLeft;
_previousMagnifierTopRight = topRight;
}
glPushMatrix(); {
if (showBorder) {
glDisable(GL_TEXTURE_2D);
glLineWidth(1.0f);
//Outer Line
geometryCache->renderVertices(gpu::LINE_STRIP, _magnifierBorder);
glEnable(GL_TEXTURE_2D);
}
glm::vec4 magnifierColor = { 1.0f, 1.0f, 1.0f, _alpha };
DependencyManager::get<GeometryCache>()->renderQuad(bottomLeft, bottomRight, topRight, topLeft,
glm::vec2(magnifyULeft, magnifyVBottom),
glm::vec2(magnifyURight, magnifyVBottom),
glm::vec2(magnifyURight, magnifyVTop),
glm::vec2(magnifyULeft, magnifyVTop),
magnifierColor, _magnifierQuad);
} glPopMatrix();
}
const int AUDIO_METER_GAP = 5;
const int MUTE_ICON_PADDING = 10;
void ApplicationOverlay::renderCameraToggle() {
if (Menu::getInstance()->isOptionChecked(MenuOption::NoFaceTracking)) {
return;
@ -915,101 +350,10 @@ void ApplicationOverlay::renderDomainConnectionStatusBorder() {
}
}
void ApplicationOverlay::buildHemiVertices(
const float fov, const float aspectRatio, const int slices, const int stacks) {
static float textureFOV = 0.0f, textureAspectRatio = 1.0f;
if (textureFOV == fov && textureAspectRatio == aspectRatio) {
return;
}
textureFOV = fov;
textureAspectRatio = aspectRatio;
auto geometryCache = DependencyManager::get<GeometryCache>();
_hemiVertices = gpu::BufferPointer(new gpu::Buffer());
_hemiIndices = gpu::BufferPointer(new gpu::Buffer());
if (fov >= PI) {
qDebug() << "TexturedHemisphere::buildVBO(): FOV greater or equal than Pi will create issues";
}
//UV mapping source: http://www.mvps.org/directx/articles/spheremap.htm
vec3 pos;
vec2 uv;
// Compute vertices positions and texture UV coordinate
// Create and write to buffer
for (int i = 0; i < stacks; i++) {
uv.y = (float)i / (float)(stacks - 1); // First stack is 0.0f, last stack is 1.0f
// abs(theta) <= fov / 2.0f
float pitch = -fov * (uv.y - 0.5f);
for (int j = 0; j < slices; j++) {
uv.x = (float)j / (float)(slices - 1); // First slice is 0.0f, last slice is 1.0f
// abs(phi) <= fov * aspectRatio / 2.0f
float yaw = -fov * aspectRatio * (uv.x - 0.5f);
pos = getPoint(yaw, pitch);
static const vec4 color(1);
_hemiVertices->append(sizeof(pos), (gpu::Byte*)&pos);
_hemiVertices->append(sizeof(vec2), (gpu::Byte*)&uv);
_hemiVertices->append(sizeof(vec4), (gpu::Byte*)&color);
}
}
// Compute number of indices needed
static const int VERTEX_PER_TRANGLE = 3;
static const int TRIANGLE_PER_RECTANGLE = 2;
int numberOfRectangles = (slices - 1) * (stacks - 1);
_hemiIndexCount = numberOfRectangles * TRIANGLE_PER_RECTANGLE * VERTEX_PER_TRANGLE;
// Compute indices order
std::vector<GLushort> indices;
for (int i = 0; i < stacks - 1; i++) {
for (int j = 0; j < slices - 1; j++) {
GLushort bottomLeftIndex = i * slices + j;
GLushort bottomRightIndex = bottomLeftIndex + 1;
GLushort topLeftIndex = bottomLeftIndex + slices;
GLushort topRightIndex = topLeftIndex + 1;
// FIXME make a z-order curve for better vertex cache locality
indices.push_back(topLeftIndex);
indices.push_back(bottomLeftIndex);
indices.push_back(topRightIndex);
indices.push_back(topRightIndex);
indices.push_back(bottomLeftIndex);
indices.push_back(bottomRightIndex);
}
}
_hemiIndices->append(sizeof(GLushort) * indices.size(), (gpu::Byte*)&indices[0]);
}
void ApplicationOverlay::drawSphereSection(gpu::Batch& batch) {
buildHemiVertices(_textureFov, _textureAspectRatio, 80, 80);
static const int VERTEX_DATA_SLOT = 0;
static const int TEXTURE_DATA_SLOT = 1;
static const int COLOR_DATA_SLOT = 2;
gpu::Stream::FormatPointer streamFormat(new gpu::Stream::Format()); // 1 for everyone
streamFormat->setAttribute(gpu::Stream::POSITION, VERTEX_DATA_SLOT, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
streamFormat->setAttribute(gpu::Stream::TEXCOORD, TEXTURE_DATA_SLOT, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV));
streamFormat->setAttribute(gpu::Stream::COLOR, COLOR_DATA_SLOT, gpu::Element(gpu::VEC4, gpu::FLOAT, gpu::RGBA));
batch.setInputFormat(streamFormat);
static const int VERTEX_STRIDE = sizeof(vec3) + sizeof(vec2) + sizeof(vec4);
gpu::BufferView posView(_hemiVertices, 0, _hemiVertices->getSize(), VERTEX_STRIDE, streamFormat->getAttributes().at(gpu::Stream::POSITION)._element);
gpu::BufferView uvView(_hemiVertices, sizeof(vec3), _hemiVertices->getSize(), VERTEX_STRIDE, streamFormat->getAttributes().at(gpu::Stream::TEXCOORD)._element);
gpu::BufferView colView(_hemiVertices, sizeof(vec3) + sizeof(vec2), _hemiVertices->getSize(), VERTEX_STRIDE, streamFormat->getAttributes().at(gpu::Stream::COLOR)._element);
batch.setInputBuffer(VERTEX_DATA_SLOT, posView);
batch.setInputBuffer(TEXTURE_DATA_SLOT, uvView);
batch.setInputBuffer(COLOR_DATA_SLOT, colView);
batch.setIndexBuffer(gpu::UINT16, _hemiIndices, 0);
batch.drawIndexed(gpu::TRIANGLES, _hemiIndexCount);
}
GLuint ApplicationOverlay::getOverlayTexture() {
if (!_framebufferObject) {
return 0;
}
return _framebufferObject->texture();
}
@ -1036,71 +380,3 @@ void ApplicationOverlay::buildFramebufferObject() {
glBindTexture(GL_TEXTURE_2D, 0);
}
glm::vec2 ApplicationOverlay::directionToSpherical(const glm::vec3& direction) {
glm::vec2 result;
// Compute yaw
glm::vec3 normalProjection = glm::normalize(glm::vec3(direction.x, 0.0f, direction.z));
result.x = glm::acos(glm::dot(IDENTITY_FRONT, normalProjection));
if (glm::dot(IDENTITY_RIGHT, normalProjection) > 0.0f) {
result.x = -glm::abs(result.x);
} else {
result.x = glm::abs(result.x);
}
// Compute pitch
result.y = angleBetween(IDENTITY_UP, direction) - PI_OVER_TWO;
return result;
}
glm::vec3 ApplicationOverlay::sphericalToDirection(const glm::vec2& sphericalPos) {
glm::quat rotation(glm::vec3(sphericalPos.y, sphericalPos.x, 0.0f));
return rotation * IDENTITY_FRONT;
}
glm::vec2 ApplicationOverlay::screenToSpherical(const glm::vec2& screenPos) {
auto screenSize = qApp->getCanvasSize();
glm::vec2 result;
result.x = -(screenPos.x / screenSize.x - 0.5f);
result.y = (screenPos.y / screenSize.y - 0.5f);
result.x *= MOUSE_YAW_RANGE;
result.y *= MOUSE_PITCH_RANGE;
return result;
}
glm::vec2 ApplicationOverlay::sphericalToScreen(const glm::vec2& sphericalPos) {
glm::vec2 result = sphericalPos;
result.x *= -1.0;
result /= MOUSE_RANGE;
result += 0.5f;
result *= qApp->getCanvasSize();
return result;
}
glm::vec2 ApplicationOverlay::sphericalToOverlay(const glm::vec2& sphericalPos) const {
glm::vec2 result = sphericalPos;
result.x *= -1.0;
result /= _textureFov;
result.x /= _textureAspectRatio;
result += 0.5f;
result *= qApp->getCanvasSize();
return result;
}
glm::vec2 ApplicationOverlay::overlayToSpherical(const glm::vec2& overlayPos) const {
glm::vec2 result = overlayPos;
result /= qApp->getCanvasSize();
result -= 0.5f;
result *= _textureFov;
result.x *= _textureAspectRatio;
result.x *= -1.0f;
return result;
}
glm::vec2 ApplicationOverlay::screenToOverlay(const glm::vec2& screenPos) const {
return sphericalToOverlay(screenToSpherical(screenPos));
}
glm::vec2 ApplicationOverlay::overlayToScreen(const glm::vec2& overlayPos) const {
return sphericalToScreen(overlayToSpherical(overlayPos));
}

View file

@ -13,16 +13,8 @@
#define hifi_ApplicationOverlay_h
#include <gpu/Texture.h>
class Camera;
class Overlays;
class QOpenGLFramebufferObject;
const float MAGNIFY_WIDTH = 220.0f;
const float MAGNIFY_HEIGHT = 100.0f;
const float MAGNIFY_MULT = 2.0f;
const float DEFAULT_HMD_UI_ANGULAR_SIZE = 72.0f;
// Handles the drawing of the overlays to the screen
// TODO, move divide up the rendering, displaying and input handling
// facilities of this class
@ -33,83 +25,19 @@ public:
~ApplicationOverlay();
void renderOverlay(RenderArgs* renderArgs);
void displayOverlayTexture(RenderArgs* renderArgs);
void displayOverlayTextureStereo(RenderArgs* renderArgs, Camera& whichCamera, float aspectRatio, float fov);
void displayOverlayTextureHmd(RenderArgs* renderArgs, Camera& whichCamera);
QPoint getPalmClickLocation(const PalmData *palm) const;
bool calculateRayUICollisionPoint(const glm::vec3& position, const glm::vec3& direction, glm::vec3& result) const;
bool hasMagnifier() const { return _magnifier; }
void toggleMagnifier() { _magnifier = !_magnifier; }
float getHmdUIAngularSize() const { return _hmdUIAngularSize; }
void setHmdUIAngularSize(float hmdUIAngularSize) { _hmdUIAngularSize = hmdUIAngularSize; }
// Converter from one frame of reference to another.
// Frame of reference:
// Direction: Ray that represents the spherical values
// Screen: Position on the screen (x,y)
// Spherical: Pitch and yaw that gives the position on the sphere we project on (yaw,pitch)
// Overlay: Position on the overlay (x,y)
// (x,y) in Overlay are similar than (x,y) in Screen except they can be outside of the bound of te screen.
// This allows for picking outside of the screen projection in 3D.
glm::vec2 sphericalToOverlay(const glm::vec2 & sphericalPos) const;
glm::vec2 overlayToSpherical(const glm::vec2 & overlayPos) const;
glm::vec2 screenToOverlay(const glm::vec2 & screenPos) const;
glm::vec2 overlayToScreen(const glm::vec2 & overlayPos) const;
void computeHmdPickRay(glm::vec2 cursorPos, glm::vec3& origin, glm::vec3& direction) const;
GLuint getOverlayTexture();
static glm::vec2 directionToSpherical(const glm::vec3 & direction);
static glm::vec3 sphericalToDirection(const glm::vec2 & sphericalPos);
static glm::vec2 screenToSpherical(const glm::vec2 & screenPos);
static glm::vec2 sphericalToScreen(const glm::vec2 & sphericalPos);
private:
void buildHemiVertices(const float fov, const float aspectRatio, const int slices, const int stacks);
void drawSphereSection(gpu::Batch& batch);
float _hmdUIAngularSize = DEFAULT_HMD_UI_ANGULAR_SIZE;
QOpenGLFramebufferObject* _framebufferObject;
void renderPointers();
void renderMagnifier(glm::vec2 magPos, float sizeMult, bool showBorder);
void renderControllerPointers();
void renderPointersOculus();
void renderAudioMeter();
void renderCameraToggle();
void renderStatsAndLogs();
void renderDomainConnectionStatusBorder();
void bindCursorTexture(gpu::Batch& batch, uint8_t cursorId = 0);
void buildFramebufferObject();
float _textureFov;
float _textureAspectRatio;
int _hemiVerticesID{ GeometryCache::UNKNOWN_ID };
enum Reticles { MOUSE, LEFT_CONTROLLER, RIGHT_CONTROLLER, NUMBER_OF_RETICLES };
bool _reticleActive[NUMBER_OF_RETICLES];
QPoint _reticlePosition[NUMBER_OF_RETICLES];
bool _magActive[NUMBER_OF_RETICLES];
float _magSizeMult[NUMBER_OF_RETICLES];
quint64 _lastMouseMove;
bool _magnifier;
float _alpha = 1.0f;
float _oculusUIRadius;
float _trailingAudioLoudness;
QMap<uint16_t, gpu::TexturePointer> _cursors;
GLuint _newUiTexture{ 0 };
GLuint _uiTexture{ 0 };
int _reticleQuad;
int _magnifierQuad;
int _audioRedQuad;
int _audioGreenQuad;
int _audioBlueQuad;
@ -119,15 +47,7 @@ private:
int _previousBorderWidth;
int _previousBorderHeight;
glm::vec3 _previousMagnifierBottomLeft;
glm::vec3 _previousMagnifierBottomRight;
glm::vec3 _previousMagnifierTopLeft;
glm::vec3 _previousMagnifierTopRight;
gpu::PipelinePointer _standardDrawPipeline;
gpu::PipelinePointer getDrawPipeline();
QOpenGLFramebufferObject* _framebufferObject;
};
#endif // hifi_ApplicationOverlay_h

View file

@ -175,7 +175,7 @@ void PreferencesDialog::loadPreferences() {
ui.maxOctreePPSSpin->setValue(qApp->getMaxOctreePacketsPerSecond());
ui.oculusUIAngularSizeSpin->setValue(qApp->getApplicationOverlay().getHmdUIAngularSize());
ui.oculusUIAngularSizeSpin->setValue(qApp->getApplicationCompositor().getHmdUIAngularSize());
SixenseManager& sixense = SixenseManager::getInstance();
ui.sixenseReticleMoveSpeedSpin->setValue(sixense.getReticleMoveSpeed());
@ -239,7 +239,7 @@ void PreferencesDialog::savePreferences() {
qApp->setMaxOctreePacketsPerSecond(ui.maxOctreePPSSpin->value());
qApp->getApplicationOverlay().setHmdUIAngularSize(ui.oculusUIAngularSizeSpin->value());
qApp->getApplicationCompositor().setHmdUIAngularSize(ui.oculusUIAngularSizeSpin->value());
SixenseManager& sixense = SixenseManager::getInstance();
sixense.setReticleMoveSpeed(ui.sixenseReticleMoveSpeedSpin->value());

View file

@ -258,7 +258,7 @@ void Overlays::deleteOverlay(unsigned int id) {
unsigned int Overlays::getOverlayAtPoint(const glm::vec2& point) {
glm::vec2 pointCopy = point;
if (qApp->isHMDMode()) {
pointCopy = qApp->getApplicationOverlay().screenToOverlay(point);
pointCopy = qApp->getApplicationCompositor().screenToOverlay(point);
}
QReadLocker lock(&_lock);

View file

@ -28,6 +28,9 @@
#include "RenderUtilsLogging.h"
#include "GeometryCache.h"
#include "standardTransformPNTC_vert.h"
#include "standardDrawTexture_frag.h"
//#define WANT_DEBUG
const int GeometryCache::UNKNOWN_ID = -1;
@ -1817,6 +1820,23 @@ QSharedPointer<Resource> GeometryCache::createResource(const QUrl& url, const QS
return geometry.staticCast<Resource>();
}
void GeometryCache::useSimpleDrawPipeline(gpu::Batch& batch) {
if (!_standardDrawPipeline) {
auto vs = gpu::ShaderPointer(gpu::Shader::createVertex(std::string(standardTransformPNTC_vert)));
auto ps = gpu::ShaderPointer(gpu::Shader::createPixel(std::string(standardDrawTexture_frag)));
auto program = gpu::ShaderPointer(gpu::Shader::createProgram(vs, ps));
gpu::Shader::makeProgram((*program));
auto state = gpu::StatePointer(new gpu::State());
// enable decal blend
state->setBlendFunction(true, gpu::State::SRC_ALPHA, gpu::State::BLEND_OP_ADD, gpu::State::INV_SRC_ALPHA);
_standardDrawPipeline.reset(gpu::Pipeline::create(program, state));
}
batch.setPipeline(_standardDrawPipeline);
}
const float NetworkGeometry::NO_HYSTERESIS = -1.0f;
NetworkGeometry::NetworkGeometry(const QUrl& url, const QSharedPointer<NetworkGeometry>& fallback, bool delayLoad,
@ -2385,3 +2405,4 @@ int NetworkMesh::getTranslucentPartCount(const FBXMesh& fbxMesh) const {
}
return count;
}

View file

@ -252,6 +252,9 @@ public:
/// \param delayLoad if true, don't load the geometry immediately; wait until load is first requested
QSharedPointer<NetworkGeometry> getGeometry(const QUrl& url, const QUrl& fallback = QUrl(), bool delayLoad = false);
/// Set a batch to the simple pipeline, returning the previous pipeline
void useSimpleDrawPipeline(gpu::Batch& batch);
protected:
virtual QSharedPointer<Resource> createResource(const QUrl& url,
@ -269,6 +272,7 @@ private:
int vertexSize;
};
gpu::PipelinePointer _standardDrawPipeline;
QHash<float, gpu::BufferPointer> _cubeVerticies;
QHash<Vec2Pair, gpu::BufferPointer> _cubeColors;
gpu::BufferPointer _wireCubeIndexBuffer;
@ -276,7 +280,7 @@ private:
QHash<float, gpu::BufferPointer> _solidCubeVertices;
QHash<Vec2Pair, gpu::BufferPointer> _solidCubeColors;
gpu::BufferPointer _solidCubeIndexBuffer;
class BatchItemDetails {
public:
static int population;