// // MyAvatar.cpp // interface/src/avatar // // Created by Mark Peng on 8/16/13. // Copyright 2012 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include #include #include #include #include #include #include #include #include #include #include #include #include "Application.h" #include "Audio.h" #include "Environment.h" #include "Menu.h" #include "MyAvatar.h" #include "Physics.h" #include "devices/Faceshift.h" #include "devices/OculusManager.h" #include "ui/TextRenderer.h" using namespace std; const glm::vec3 DEFAULT_UP_DIRECTION(0.0f, 1.0f, 0.0f); const float YAW_SPEED = 500.0f; // degrees/sec const float PITCH_SPEED = 100.0f; // degrees/sec const float COLLISION_RADIUS_SCALAR = 1.2f; // pertains to avatar-to-avatar collisions const float COLLISION_RADIUS_SCALE = 0.125f; const float DATA_SERVER_LOCATION_CHANGE_UPDATE_MSECS = 5.0f * 1000.0f; // TODO: normalize avatar speed for standard avatar size, then scale all motion logic // to properly follow avatar size. float DEFAULT_MOTOR_TIMESCALE = 0.25f; float MAX_AVATAR_SPEED = 300.0f; float MAX_MOTOR_SPEED = MAX_AVATAR_SPEED; MyAvatar::MyAvatar() : Avatar(), _mousePressed(false), _bodyPitchDelta(0.0f), _bodyRollDelta(0.0f), _shouldJump(false), _gravity(0.0f, -1.0f, 0.0f), _distanceToNearestAvatar(std::numeric_limits::max()), _wasPushing(false), _isPushing(false), _thrust(0.0f), _motorVelocity(0.0f), _motorTimescale(DEFAULT_MOTOR_TIMESCALE), _maxMotorSpeed(MAX_MOTOR_SPEED), _motionBehaviors(AVATAR_MOTION_DEFAULTS), _lastBodyPenetration(0.0f), _lastFloorContactPoint(0.0f), _lookAtTargetAvatar(), _shouldRender(true), _billboardValid(false), _oculusYawOffset(0.0f) { for (int i = 0; i < MAX_DRIVE_KEYS; i++) { _driveKeys[i] = 0.0f; } // update our location every 5 seconds in the data-server, assuming that we are authenticated with one QTimer* locationUpdateTimer = new QTimer(this); connect(locationUpdateTimer, &QTimer::timeout, this, &MyAvatar::updateLocationInDataServer); locationUpdateTimer->start(DATA_SERVER_LOCATION_CHANGE_UPDATE_MSECS); } MyAvatar::~MyAvatar() { _lookAtTargetAvatar.clear(); } void MyAvatar::reset() { // TODO? resurrect headMouse stuff? //_headMouseX = _glWidget->width() / 2; //_headMouseY = _glWidget->height() / 2; _skeletonModel.reset(); getHead()->reset(); getHand()->reset(); _oculusYawOffset = 0.0f; setVelocity(glm::vec3(0.0f)); setThrust(glm::vec3(0.0f)); setOrientation(glm::quat(glm::vec3(0.0f))); } void MyAvatar::update(float deltaTime) { Head* head = getHead(); head->relaxLean(deltaTime); updateFromGyros(deltaTime); if (Menu::getInstance()->isOptionChecked(MenuOption::MoveWithLean)) { // Faceshift drive is enabled, set the avatar drive based on the head position moveWithLean(); } // Update head mouse from faceshift if active Faceshift* faceshift = Application::getInstance()->getFaceshift(); if (faceshift->isActive()) { // TODO? resurrect headMouse stuff? //glm::vec3 headVelocity = faceshift->getHeadAngularVelocity(); //// sets how quickly head angular rotation moves the head mouse //const float HEADMOUSE_FACESHIFT_YAW_SCALE = 40.0f; //const float HEADMOUSE_FACESHIFT_PITCH_SCALE = 30.0f; //_headMouseX -= headVelocity.y * HEADMOUSE_FACESHIFT_YAW_SCALE; //_headMouseY -= headVelocity.x * HEADMOUSE_FACESHIFT_PITCH_SCALE; // //// Constrain head-driven mouse to edges of screen //_headMouseX = glm::clamp(_headMouseX, 0, _glWidget->width()); //_headMouseY = glm::clamp(_headMouseY, 0, _glWidget->height()); } // Get audio loudness data from audio input device Audio* audio = Application::getInstance()->getAudio(); head->setAudioLoudness(audio->getLastInputLoudness()); head->setAudioAverageLoudness(audio->getAudioAverageInputLoudness()); if (_motionBehaviors & AVATAR_MOTION_OBEY_ENVIRONMENTAL_GRAVITY) { setGravity(Application::getInstance()->getEnvironment()->getGravity(getPosition())); } simulate(deltaTime); } void MyAvatar::simulate(float deltaTime) { if (_scale != _targetScale) { float scale = (1.0f - SMOOTHING_RATIO) * _scale + SMOOTHING_RATIO * _targetScale; setScale(scale); Application::getInstance()->getCamera()->setScale(scale); } // update the movement of the hand and process handshaking with other avatars... updateHandMovementAndTouching(deltaTime); updateOrientation(deltaTime); float keyboardInput = fabsf(_driveKeys[FWD] - _driveKeys[BACK]) + fabsf(_driveKeys[RIGHT] - _driveKeys[LEFT]) + fabsf(_driveKeys[UP] - _driveKeys[DOWN]); bool walkingOnFloor = false; float gravityLength = glm::length(_gravity); if (gravityLength > EPSILON) { const CapsuleShape& boundingShape = _skeletonModel.getBoundingShape(); glm::vec3 startCap; boundingShape.getStartPoint(startCap); glm::vec3 bottomOfBoundingCapsule = startCap + (boundingShape.getRadius() / gravityLength) * _gravity; float fallThreshold = 2.f * deltaTime * gravityLength; walkingOnFloor = (glm::distance(bottomOfBoundingCapsule, _lastFloorContactPoint) < fallThreshold); } if (keyboardInput > 0.0f || glm::length2(_velocity) > 0.0f || glm::length2(_thrust) > 0.0f || ! walkingOnFloor) { // apply gravity _velocity += _scale * _gravity * (GRAVITY_EARTH * deltaTime); // update motor and thrust updateMotorFromKeyboard(deltaTime, walkingOnFloor); applyMotor(deltaTime); applyThrust(deltaTime); // update position if (glm::length2(_velocity) < EPSILON) { _velocity = glm::vec3(0.0f); } else { _position += _velocity * deltaTime; } } // update moving flag based on speed const float MOVING_SPEED_THRESHOLD = 0.01f; _moving = glm::length(_velocity) > MOVING_SPEED_THRESHOLD; updateChatCircle(deltaTime); // update avatar skeleton and simulate hand and head getHand()->collideAgainstOurself(); getHand()->simulate(deltaTime, true); _skeletonModel.simulate(deltaTime); // copy out the skeleton joints from the model _jointData.resize(_skeletonModel.getJointStateCount()); for (int i = 0; i < _jointData.size(); i++) { JointData& data = _jointData[i]; data.valid = _skeletonModel.getJointState(i, data.rotation); } Head* head = getHead(); glm::vec3 headPosition; if (!_skeletonModel.getHeadPosition(headPosition)) { headPosition = _position; } head->setPosition(headPosition); head->setScale(_scale); head->simulate(deltaTime, true); // now that we're done stepping the avatar forward in time, compute new collisions if (_collisionGroups != 0) { Camera* myCamera = Application::getInstance()->getCamera(); float radius = getSkeletonHeight() * COLLISION_RADIUS_SCALE; if (myCamera->getMode() == CAMERA_MODE_FIRST_PERSON && !OculusManager::isConnected()) { radius = myCamera->getAspectRatio() * (myCamera->getNearClip() / cos(myCamera->getFieldOfView() / 2.0f)); radius *= COLLISION_RADIUS_SCALAR; } if (_collisionGroups) { updateShapePositions(); if (_collisionGroups & COLLISION_GROUP_ENVIRONMENT) { updateCollisionWithEnvironment(deltaTime, radius); } if (_collisionGroups & COLLISION_GROUP_VOXELS) { updateCollisionWithVoxels(deltaTime, radius); } if (_collisionGroups & COLLISION_GROUP_AVATARS) { updateCollisionWithAvatars(deltaTime); } } } // consider updating our billboard maybeUpdateBillboard(); } // Update avatar head rotation with sensor data void MyAvatar::updateFromGyros(float deltaTime) { glm::vec3 estimatedPosition, estimatedRotation; FaceTracker* tracker = Application::getInstance()->getActiveFaceTracker(); if (tracker) { estimatedPosition = tracker->getHeadTranslation(); estimatedRotation = glm::degrees(safeEulerAngles(tracker->getHeadRotation())); // Rotate the body if the head is turned beyond the screen if (Menu::getInstance()->isOptionChecked(MenuOption::TurnWithHead)) { const float TRACKER_YAW_TURN_SENSITIVITY = 0.5f; const float TRACKER_MIN_YAW_TURN = 15.0f; const float TRACKER_MAX_YAW_TURN = 50.0f; if ( (fabs(estimatedRotation.y) > TRACKER_MIN_YAW_TURN) && (fabs(estimatedRotation.y) < TRACKER_MAX_YAW_TURN) ) { if (estimatedRotation.y > 0.0f) { _bodyYawDelta += (estimatedRotation.y - TRACKER_MIN_YAW_TURN) * TRACKER_YAW_TURN_SENSITIVITY; } else { _bodyYawDelta += (estimatedRotation.y + TRACKER_MIN_YAW_TURN) * TRACKER_YAW_TURN_SENSITIVITY; } } } } // Set the rotation of the avatar's head (as seen by others, not affecting view frustum) // to be scaled. Pitch is greater to emphasize nodding behavior / synchrony. const float AVATAR_HEAD_PITCH_MAGNIFY = 1.0f; const float AVATAR_HEAD_YAW_MAGNIFY = 1.0f; const float AVATAR_HEAD_ROLL_MAGNIFY = 1.0f; Head* head = getHead(); head->setDeltaPitch(estimatedRotation.x * AVATAR_HEAD_PITCH_MAGNIFY); head->setDeltaYaw(estimatedRotation.y * AVATAR_HEAD_YAW_MAGNIFY); head->setDeltaRoll(estimatedRotation.z * AVATAR_HEAD_ROLL_MAGNIFY); // Update torso lean distance based on accelerometer data const float TORSO_LENGTH = 0.5f; glm::vec3 relativePosition = estimatedPosition - glm::vec3(0.0f, -TORSO_LENGTH, 0.0f); const float MAX_LEAN = 45.0f; head->setLeanSideways(glm::clamp(glm::degrees(atanf(relativePosition.x * _leanScale / TORSO_LENGTH)), -MAX_LEAN, MAX_LEAN)); head->setLeanForward(glm::clamp(glm::degrees(atanf(relativePosition.z * _leanScale / TORSO_LENGTH)), -MAX_LEAN, MAX_LEAN)); } void MyAvatar::moveWithLean() { // Move with Lean by applying thrust proportional to leaning Head* head = getHead(); glm::quat orientation = head->getCameraOrientation(); glm::vec3 front = orientation * IDENTITY_FRONT; glm::vec3 right = orientation * IDENTITY_RIGHT; float leanForward = head->getLeanForward(); float leanSideways = head->getLeanSideways(); // Degrees of 'dead zone' when leaning, and amount of acceleration to apply to lean angle const float LEAN_FWD_DEAD_ZONE = 15.0f; const float LEAN_SIDEWAYS_DEAD_ZONE = 10.0f; const float LEAN_FWD_THRUST_SCALE = 4.0f; const float LEAN_SIDEWAYS_THRUST_SCALE = 3.0f; if (fabs(leanForward) > LEAN_FWD_DEAD_ZONE) { if (leanForward > 0.0f) { addThrust(front * -(leanForward - LEAN_FWD_DEAD_ZONE) * LEAN_FWD_THRUST_SCALE); } else { addThrust(front * -(leanForward + LEAN_FWD_DEAD_ZONE) * LEAN_FWD_THRUST_SCALE); } } if (fabs(leanSideways) > LEAN_SIDEWAYS_DEAD_ZONE) { if (leanSideways > 0.0f) { addThrust(right * -(leanSideways - LEAN_SIDEWAYS_DEAD_ZONE) * LEAN_SIDEWAYS_THRUST_SCALE); } else { addThrust(right * -(leanSideways + LEAN_SIDEWAYS_DEAD_ZONE) * LEAN_SIDEWAYS_THRUST_SCALE); } } } void MyAvatar::renderDebugBodyPoints() { glm::vec3 torsoPosition(getPosition()); glm::vec3 headPosition(getHead()->getEyePosition()); float torsoToHead = glm::length(headPosition - torsoPosition); glm::vec3 position; qDebug("head-above-torso %.2f, scale = %0.2f", torsoToHead, getScale()); // Torso Sphere position = torsoPosition; glPushMatrix(); glColor4f(0, 1, 0, .5f); glTranslatef(position.x, position.y, position.z); glutSolidSphere(0.2, 10, 10); glPopMatrix(); // Head Sphere position = headPosition; glPushMatrix(); glColor4f(0, 1, 0, .5f); glTranslatef(position.x, position.y, position.z); glutSolidSphere(0.15, 10, 10); glPopMatrix(); } // virtual void MyAvatar::render(const glm::vec3& cameraPosition, RenderMode renderMode) { // don't render if we've been asked to disable local rendering if (!_shouldRender) { return; // exit early } Avatar::render(cameraPosition, renderMode); if (Menu::getInstance()->isOptionChecked(MenuOption::ShowIKConstraints)) { _skeletonModel.renderIKConstraints(); } } void MyAvatar::renderHeadMouse() const { // TODO? resurrect headMouse stuff? /* // Display small target box at center or head mouse target that can also be used to measure LOD glColor3f(1.0f, 1.0f, 1.0f); glDisable(GL_LINE_SMOOTH); const int PIXEL_BOX = 16; glBegin(GL_LINES); glVertex2f(_headMouseX - PIXEL_BOX/2, _headMouseY); glVertex2f(_headMouseX + PIXEL_BOX/2, _headMouseY); glVertex2f(_headMouseX, _headMouseY - PIXEL_BOX/2); glVertex2f(_headMouseX, _headMouseY + PIXEL_BOX/2); glEnd(); glEnable(GL_LINE_SMOOTH); glColor3f(1.0f, 0.0f, 0.0f); glPointSize(3.0f); glDisable(GL_POINT_SMOOTH); glBegin(GL_POINTS); glVertex2f(_headMouseX - 1, _headMouseY + 1); glEnd(); // If Faceshift is active, show eye pitch and yaw as separate pointer if (_faceshift.isActive()) { const float EYE_TARGET_PIXELS_PER_DEGREE = 40.0; int eyeTargetX = (_glWidget->width() / 2) - _faceshift.getEstimatedEyeYaw() * EYE_TARGET_PIXELS_PER_DEGREE; int eyeTargetY = (_glWidget->height() / 2) - _faceshift.getEstimatedEyePitch() * EYE_TARGET_PIXELS_PER_DEGREE; glColor3f(0.0f, 1.0f, 1.0f); glDisable(GL_LINE_SMOOTH); glBegin(GL_LINES); glVertex2f(eyeTargetX - PIXEL_BOX/2, eyeTargetY); glVertex2f(eyeTargetX + PIXEL_BOX/2, eyeTargetY); glVertex2f(eyeTargetX, eyeTargetY - PIXEL_BOX/2); glVertex2f(eyeTargetX, eyeTargetY + PIXEL_BOX/2); glEnd(); } */ } void MyAvatar::setLocalGravity(glm::vec3 gravity) { _motionBehaviors |= AVATAR_MOTION_OBEY_LOCAL_GRAVITY; // Environmental and Local gravities are incompatible. Since Local is being set here // the environmental setting must be removed. _motionBehaviors &= ~AVATAR_MOTION_OBEY_ENVIRONMENTAL_GRAVITY; setGravity(gravity); } void MyAvatar::setGravity(const glm::vec3& gravity) { _gravity = gravity; getHead()->setGravity(_gravity); // use the gravity to determine the new world up direction, if possible float gravityLength = glm::length(gravity); if (gravityLength > EPSILON) { _worldUpDirection = _gravity / -gravityLength; } else { _worldUpDirection = DEFAULT_UP_DIRECTION; } } void MyAvatar::saveData(QSettings* settings) { settings->beginGroup("Avatar"); settings->setValue("bodyYaw", _bodyYaw); settings->setValue("bodyPitch", _bodyPitch); settings->setValue("bodyRoll", _bodyRoll); settings->setValue("headPitch", getHead()->getBasePitch()); settings->setValue("position_x", _position.x); settings->setValue("position_y", _position.y); settings->setValue("position_z", _position.z); settings->setValue("pupilDilation", getHead()->getPupilDilation()); settings->setValue("leanScale", _leanScale); settings->setValue("scale", _targetScale); settings->setValue("faceModelURL", _faceModelURL); settings->setValue("skeletonModelURL", _skeletonModelURL); settings->setValue("displayName", _displayName); settings->endGroup(); } void MyAvatar::loadData(QSettings* settings) { settings->beginGroup("Avatar"); // in case settings is corrupt or missing loadSetting() will check for NaN _bodyYaw = loadSetting(settings, "bodyYaw", 0.0f); _bodyPitch = loadSetting(settings, "bodyPitch", 0.0f); _bodyRoll = loadSetting(settings, "bodyRoll", 0.0f); getHead()->setBasePitch(loadSetting(settings, "headPitch", 0.0f)); _position.x = loadSetting(settings, "position_x", 0.0f); _position.y = loadSetting(settings, "position_y", 0.0f); _position.z = loadSetting(settings, "position_z", 0.0f); getHead()->setPupilDilation(loadSetting(settings, "pupilDilation", 0.0f)); _leanScale = loadSetting(settings, "leanScale", 0.05f); _targetScale = loadSetting(settings, "scale", 1.0f); setScale(_scale); Application::getInstance()->getCamera()->setScale(_scale); setFaceModelURL(settings->value("faceModelURL").toUrl()); setSkeletonModelURL(settings->value("skeletonModelURL").toUrl()); setDisplayName(settings->value("displayName").toString()); settings->endGroup(); } int MyAvatar::parseDataAtOffset(const QByteArray& packet, int offset) { qDebug() << "Error: ignoring update packet for MyAvatar" << " packetLength = " << packet.size() << " offset = " << offset; // this packet is just bad, so we pretend that we unpacked it ALL return packet.size() - offset; } void MyAvatar::sendKillAvatar() { QByteArray killPacket = byteArrayWithPopulatedHeader(PacketTypeKillAvatar); NodeList::getInstance()->broadcastToNodes(killPacket, NodeSet() << NodeType::AvatarMixer); } void MyAvatar::orbit(const glm::vec3& position, int deltaX, int deltaY) { // first orbit horizontally glm::quat orientation = getOrientation(); const float ANGULAR_SCALE = 0.5f; glm::quat rotation = glm::angleAxis(glm::radians(- deltaX * ANGULAR_SCALE), orientation * IDENTITY_UP); setPosition(position + rotation * (getPosition() - position)); orientation = rotation * orientation; setOrientation(orientation); // then vertically float oldPitch = getHead()->getBasePitch(); getHead()->setBasePitch(oldPitch - deltaY * ANGULAR_SCALE); rotation = glm::angleAxis(glm::radians((getHead()->getBasePitch() - oldPitch)), orientation * IDENTITY_RIGHT); setPosition(position + rotation * (getPosition() - position)); } void MyAvatar::updateLookAtTargetAvatar() { Application* applicationInstance = Application::getInstance(); if (!applicationInstance->isMousePressed()) { glm::vec3 mouseOrigin = applicationInstance->getMouseRayOrigin(); glm::vec3 mouseDirection = applicationInstance->getMouseRayDirection(); foreach (const AvatarSharedPointer& avatarPointer, Application::getInstance()->getAvatarManager().getAvatarHash()) { Avatar* avatar = static_cast(avatarPointer.data()); float distance; if (avatar->findRayIntersection(mouseOrigin, mouseDirection, distance)) { _lookAtTargetAvatar = avatarPointer; _targetAvatarPosition = avatarPointer->getPosition(); return; } } _lookAtTargetAvatar.clear(); _targetAvatarPosition = glm::vec3(0, 0, 0); } } void MyAvatar::clearLookAtTargetAvatar() { _lookAtTargetAvatar.clear(); } glm::vec3 MyAvatar::getUprightHeadPosition() const { return _position + getWorldAlignedOrientation() * glm::vec3(0.0f, getPelvisToHeadLength(), 0.0f); } void MyAvatar::setJointData(int index, const glm::quat& rotation) { Avatar::setJointData(index, rotation); if (QThread::currentThread() == thread()) { _skeletonModel.setJointState(index, true, rotation); } } void MyAvatar::clearJointData(int index) { Avatar::clearJointData(index); if (QThread::currentThread() == thread()) { _skeletonModel.setJointState(index, false); } } void MyAvatar::setFaceModelURL(const QUrl& faceModelURL) { Avatar::setFaceModelURL(faceModelURL); _billboardValid = false; } void MyAvatar::setSkeletonModelURL(const QUrl& skeletonModelURL) { Avatar::setSkeletonModelURL(skeletonModelURL); _billboardValid = false; } void MyAvatar::renderBody(RenderMode renderMode) { if (!(_skeletonModel.isRenderable() && getHead()->getFaceModel().isRenderable())) { return; // wait until both models are loaded } // Render the body's voxels and head Model::RenderMode modelRenderMode = (renderMode == SHADOW_RENDER_MODE) ? Model::SHADOW_RENDER_MODE : Model::DEFAULT_RENDER_MODE; _skeletonModel.render(1.0f, modelRenderMode); // Render head so long as the camera isn't inside it if (shouldRenderHead(Application::getInstance()->getCamera()->getPosition(), renderMode)) { getHead()->render(1.0f, modelRenderMode); } getHand()->render(true); } const float RENDER_HEAD_CUTOFF_DISTANCE = 0.50f; bool MyAvatar::shouldRenderHead(const glm::vec3& cameraPosition, RenderMode renderMode) const { const Head* head = getHead(); return (renderMode != NORMAL_RENDER_MODE) || (glm::length(cameraPosition - head->calculateAverageEyePosition()) > RENDER_HEAD_CUTOFF_DISTANCE * _scale); } void MyAvatar::updateOrientation(float deltaTime) { // Gather rotation information from keyboard _bodyYawDelta -= _driveKeys[ROT_RIGHT] * YAW_SPEED * deltaTime; _bodyYawDelta += _driveKeys[ROT_LEFT] * YAW_SPEED * deltaTime; getHead()->setBasePitch(getHead()->getBasePitch() + (_driveKeys[ROT_UP] - _driveKeys[ROT_DOWN]) * PITCH_SPEED * deltaTime); // update body yaw by body yaw delta glm::quat orientation = getOrientation() * glm::quat(glm::radians( glm::vec3(_bodyPitchDelta, _bodyYawDelta, _bodyRollDelta) * deltaTime)); // decay body rotation momentum const float BODY_SPIN_FRICTION = 7.5f; float bodySpinMomentum = 1.0f - BODY_SPIN_FRICTION * deltaTime; if (bodySpinMomentum < 0.0f) { bodySpinMomentum = 0.0f; } _bodyPitchDelta *= bodySpinMomentum; _bodyYawDelta *= bodySpinMomentum; _bodyRollDelta *= bodySpinMomentum; float MINIMUM_ROTATION_RATE = 2.0f; if (fabs(_bodyYawDelta) < MINIMUM_ROTATION_RATE) { _bodyYawDelta = 0.0f; } if (fabs(_bodyRollDelta) < MINIMUM_ROTATION_RATE) { _bodyRollDelta = 0.0f; } if (fabs(_bodyPitchDelta) < MINIMUM_ROTATION_RATE) { _bodyPitchDelta = 0.0f; } if (OculusManager::isConnected()) { // these angles will be in radians float yaw, pitch, roll; OculusManager::getEulerAngles(yaw, pitch, roll); // ... so they need to be converted to degrees before we do math... // The neck is limited in how much it can yaw, so we check its relative // yaw from the body and yaw the body if necessary. yaw *= DEGREES_PER_RADIAN; float bodyToHeadYaw = yaw - _oculusYawOffset; const float MAX_NECK_YAW = 85.0f; // degrees if ((fabs(bodyToHeadYaw) > 2.0f * MAX_NECK_YAW) && (yaw * _oculusYawOffset < 0.0f)) { // We've wrapped around the range for yaw so adjust // the measured yaw to be relative to _oculusYawOffset. if (yaw > 0.0f) { yaw -= 360.0f; } else { yaw += 360.0f; } bodyToHeadYaw = yaw - _oculusYawOffset; } float delta = fabs(bodyToHeadYaw) - MAX_NECK_YAW; if (delta > 0.0f) { yaw = MAX_NECK_YAW; if (bodyToHeadYaw < 0.0f) { delta *= -1.0f; bodyToHeadYaw = -MAX_NECK_YAW; } else { bodyToHeadYaw = MAX_NECK_YAW; } // constrain _oculusYawOffset to be within range [-180,180] _oculusYawOffset = fmod((_oculusYawOffset + delta) + 180.0f, 360.0f) - 180.0f; // We must adjust the body orientation using a delta rotation (rather than // doing yaw math) because the body's yaw ranges are not the same // as what the Oculus API provides. glm::vec3 UP_AXIS = glm::vec3(0.0f, 1.0f, 0.0f); glm::quat bodyCorrection = glm::angleAxis(glm::radians(delta), UP_AXIS); orientation = orientation * bodyCorrection; } Head* head = getHead(); head->setBaseYaw(bodyToHeadYaw); head->setBasePitch(pitch * DEGREES_PER_RADIAN); head->setBaseRoll(roll * DEGREES_PER_RADIAN); } // update the euler angles setOrientation(orientation); } void MyAvatar::updateMotorFromKeyboard(float deltaTime, bool walking) { // Increase motor velocity until its length is equal to _maxMotorSpeed. if (!(_motionBehaviors & AVATAR_MOTION_MOTOR_KEYBOARD_ENABLED)) { // nothing to do return; } glm::vec3 localVelocity = _velocity; if (_motionBehaviors & AVATAR_MOTION_MOTOR_USE_LOCAL_FRAME) { glm::quat orientation = getHead()->getCameraOrientation(); localVelocity = glm::inverse(orientation) * _velocity; } // Compute keyboard input glm::vec3 front = (_driveKeys[FWD] - _driveKeys[BACK]) * IDENTITY_FRONT; glm::vec3 right = (_driveKeys[RIGHT] - _driveKeys[LEFT]) * IDENTITY_RIGHT; glm::vec3 up = (_driveKeys[UP] - _driveKeys[DOWN]) * IDENTITY_UP; glm::vec3 direction = front + right + up; float directionLength = glm::length(direction); // Compute motor magnitude if (directionLength > EPSILON) { direction /= directionLength; // the finalMotorSpeed depends on whether we are walking or not const float MIN_KEYBOARD_CONTROL_SPEED = 2.0f; const float MAX_WALKING_SPEED = 4.0f * MIN_KEYBOARD_CONTROL_SPEED; float finalMaxMotorSpeed = walking ? MAX_WALKING_SPEED : _maxMotorSpeed; float motorLength = glm::length(_motorVelocity); if (motorLength < MIN_KEYBOARD_CONTROL_SPEED) { // an active keyboard motor should never be slower than this _motorVelocity = MIN_KEYBOARD_CONTROL_SPEED * direction; } else { float MOTOR_LENGTH_TIMESCALE = 1.5f; float tau = glm::clamp(deltaTime / MOTOR_LENGTH_TIMESCALE, 0.0f, 1.0f); float INCREASE_FACTOR = 2.0f; //_motorVelocity *= 1.0f + tau * INCREASE_FACTOR; motorLength *= 1.0f + tau * INCREASE_FACTOR; if (motorLength > finalMaxMotorSpeed) { motorLength = finalMaxMotorSpeed; } _motorVelocity = motorLength * direction; } _isPushing = true; } else { // motor opposes motion (wants to be at rest) _motorVelocity = - localVelocity; } } float MyAvatar::computeMotorTimescale() { // The timescale of the motor is the approximate time it takes for the motor to // accomplish its intended velocity. A short timescale makes the motor strong, // and a long timescale makes it weak. The value of timescale to use depends // on what the motor is doing: // // (1) braking --> short timescale (aggressive motor assertion) // (2) pushing --> medium timescale (mild motor assertion) // (3) inactive --> long timescale (gentle friction for low speeds) // // TODO: recover extra braking behavior when flying close to nearest avatar float MIN_MOTOR_TIMESCALE = 0.125f; float MAX_MOTOR_TIMESCALE = 0.5f; float MIN_BRAKE_SPEED = 0.4f; float timescale = MAX_MOTOR_TIMESCALE; float speed = glm::length(_velocity); bool areThrusting = (glm::length2(_thrust) > EPSILON); if (_wasPushing && !(_isPushing || areThrusting) && speed > MIN_BRAKE_SPEED) { // we don't change _wasPushing for this case --> // keeps the brakes on until we go below MIN_BRAKE_SPEED timescale = MIN_MOTOR_TIMESCALE; } else { if (_isPushing) { timescale = _motorTimescale; } _wasPushing = _isPushing || areThrusting; } _isPushing = false; return timescale; } void MyAvatar::applyMotor(float deltaTime) { if (!( _motionBehaviors & AVATAR_MOTION_MOTOR_ENABLED)) { // nothing to do --> early exit return; } glm::vec3 targetVelocity = _motorVelocity; if (_motionBehaviors & AVATAR_MOTION_MOTOR_USE_LOCAL_FRAME) { // rotate _motorVelocity into world frame glm::quat rotation = getOrientation(); targetVelocity = rotation * _motorVelocity; } glm::vec3 targetDirection(0.f); if (glm::length2(targetVelocity) > EPSILON) { targetDirection = glm::normalize(targetVelocity); } glm::vec3 deltaVelocity = targetVelocity - _velocity; if (_motionBehaviors & AVATAR_MOTION_MOTOR_COLLISION_SURFACE_ONLY && glm::length2(_gravity) > EPSILON) { // For now we subtract the component parallel to gravity but what we need to do is: // TODO: subtract the component perp to the local surface normal (motor only pushes in surface plane). glm::vec3 gravityDirection = glm::normalize(_gravity); glm::vec3 parallelDelta = glm::dot(deltaVelocity, gravityDirection) * gravityDirection; if (glm::dot(targetVelocity, _velocity) > 0.0f) { // remove parallel part from deltaVelocity deltaVelocity -= parallelDelta; } } // simple critical damping float timescale = computeMotorTimescale(); float tau = glm::clamp(deltaTime / timescale, 0.0f, 1.0f); _velocity += tau * deltaVelocity; } void MyAvatar::applyThrust(float deltaTime) { _velocity += _thrust * deltaTime; float speed = glm::length(_velocity); // cap the speed that thrust can achieve if (speed > MAX_AVATAR_SPEED) { _velocity *= MAX_AVATAR_SPEED / speed; } // zero thrust so we don't pile up thrust from other sources _thrust = glm::vec3(0.0f); } /* Keep this code for the short term as reference in case we need to further tune the new model * to achieve legacy movement response. void MyAvatar::updateThrust(float deltaTime) { // // Gather thrust information from keyboard and sensors to apply to avatar motion // glm::quat orientation = getHead()->getCameraOrientation(); glm::vec3 front = orientation * IDENTITY_FRONT; glm::vec3 right = orientation * IDENTITY_RIGHT; glm::vec3 up = orientation * IDENTITY_UP; const float THRUST_MAG_UP = 800.0f; const float THRUST_MAG_DOWN = 300.0f; const float THRUST_MAG_FWD = 500.0f; const float THRUST_MAG_BACK = 300.0f; const float THRUST_MAG_LATERAL = 250.0f; const float THRUST_JUMP = 120.0f; // Add Thrusts from keyboard _thrust += _driveKeys[FWD] * _scale * THRUST_MAG_FWD * _thrustMultiplier * deltaTime * front; _thrust -= _driveKeys[BACK] * _scale * THRUST_MAG_BACK * _thrustMultiplier * deltaTime * front; _thrust += _driveKeys[RIGHT] * _scale * THRUST_MAG_LATERAL * _thrustMultiplier * deltaTime * right; _thrust -= _driveKeys[LEFT] * _scale * THRUST_MAG_LATERAL * _thrustMultiplier * deltaTime * right; _thrust += _driveKeys[UP] * _scale * THRUST_MAG_UP * _thrustMultiplier * deltaTime * up; _thrust -= _driveKeys[DOWN] * _scale * THRUST_MAG_DOWN * _thrustMultiplier * deltaTime * up; // attenuate thrust when in penetration if (glm::dot(_thrust, _lastBodyPenetration) > EPSILON) { const float MAX_BODY_PENETRATION_DEPTH = 0.6f * _skeletonModel.getBoundingShapeRadius(); float penetrationFactor = glm::min(1.0f, glm::length(_lastBodyPenetration) / MAX_BODY_PENETRATION_DEPTH); glm::vec3 penetrationDirection = glm::normalize(_lastBodyPenetration); // attenuate parallel component glm::vec3 parallelThrust = glm::dot(_thrust, penetrationDirection) * penetrationDirection; // attenuate perpendicular component (friction) glm::vec3 perpendicularThrust = _thrust - parallelThrust; // recombine to get the final thrust _thrust = (1.0f - penetrationFactor) * parallelThrust + (1.0f - penetrationFactor * penetrationFactor) * perpendicularThrust; // attenuate the growth of _thrustMultiplier when in penetration // otherwise the avatar will eventually be able to tunnel through the obstacle _thrustMultiplier *= (1.0f - penetrationFactor * penetrationFactor); } else if (_thrustMultiplier < 1.0f) { // rapid healing of attenuated thrustMultiplier after penetration event _thrustMultiplier = 1.0f; } _lastBodyPenetration = glm::vec3(0.0f); // If thrust keys are being held down, slowly increase thrust to allow reaching great speeds if (_driveKeys[FWD] || _driveKeys[BACK] || _driveKeys[RIGHT] || _driveKeys[LEFT] || _driveKeys[UP] || _driveKeys[DOWN]) { const float THRUST_INCREASE_RATE = 1.05f; const float MAX_THRUST_MULTIPLIER = 75.0f; _thrustMultiplier *= 1.0f + deltaTime * THRUST_INCREASE_RATE; if (_thrustMultiplier > MAX_THRUST_MULTIPLIER) { _thrustMultiplier = MAX_THRUST_MULTIPLIER; } } else { _thrustMultiplier = 1.0f; } // Add one time jumping force if requested if (_shouldJump) { if (glm::length(_gravity) > EPSILON) { _thrust += _scale * THRUST_JUMP * up; } _shouldJump = false; } // Update speed brake status const float MIN_SPEED_BRAKE_VELOCITY = _scale * 0.4f; if ((glm::length(_thrust) == 0.0f) && _isThrustOn && (glm::length(_velocity) > MIN_SPEED_BRAKE_VELOCITY)) { _speedBrakes = true; } _isThrustOn = (glm::length(_thrust) > EPSILON); if (_isThrustOn || (_speedBrakes && (glm::length(_velocity) < MIN_SPEED_BRAKE_VELOCITY))) { _speedBrakes = false; } _velocity += _thrust * deltaTime; // Zero thrust out now that we've added it to velocity in this frame _thrust = glm::vec3(0.0f); // apply linear damping const float MAX_STATIC_FRICTION_SPEED = 0.5f; const float STATIC_FRICTION_STRENGTH = _scale * 20.0f; applyStaticFriction(deltaTime, _velocity, MAX_STATIC_FRICTION_SPEED, STATIC_FRICTION_STRENGTH); const float LINEAR_DAMPING_STRENGTH = 0.5f; const float SPEED_BRAKE_POWER = _scale * 10.0f; const float SQUARED_DAMPING_STRENGTH = 0.007f; const float SLOW_NEAR_RADIUS = 5.0f; float linearDamping = LINEAR_DAMPING_STRENGTH; const float NEAR_AVATAR_DAMPING_FACTOR = 50.0f; if (_distanceToNearestAvatar < _scale * SLOW_NEAR_RADIUS) { linearDamping *= 1.0f + NEAR_AVATAR_DAMPING_FACTOR * ((SLOW_NEAR_RADIUS - _distanceToNearestAvatar) / SLOW_NEAR_RADIUS); } if (_speedBrakes) { applyDamping(deltaTime, _velocity, linearDamping * SPEED_BRAKE_POWER, SQUARED_DAMPING_STRENGTH * SPEED_BRAKE_POWER); } else { applyDamping(deltaTime, _velocity, linearDamping, SQUARED_DAMPING_STRENGTH); } } */ void MyAvatar::updateHandMovementAndTouching(float deltaTime) { glm::quat orientation = getOrientation(); // reset hand and arm positions according to hand movement glm::vec3 up = orientation * IDENTITY_UP; bool pointing = false; if (glm::length(_mouseRayDirection) > EPSILON && !Application::getInstance()->isMouseHidden()) { // confine to the approximate shoulder plane glm::vec3 pointDirection = _mouseRayDirection; if (glm::dot(_mouseRayDirection, up) > 0.0f) { glm::vec3 projectedVector = glm::cross(up, glm::cross(_mouseRayDirection, up)); if (glm::length(projectedVector) > EPSILON) { pointDirection = glm::normalize(projectedVector); } } glm::vec3 shoulderPosition; if (_skeletonModel.getRightShoulderPosition(shoulderPosition)) { glm::vec3 farVector = _mouseRayOrigin + pointDirection * (float)TREE_SCALE - shoulderPosition; const float ARM_RETRACTION = 0.75f; float retractedLength = _skeletonModel.getRightArmLength() * ARM_RETRACTION; setHandPosition(shoulderPosition + glm::normalize(farVector) * retractedLength); pointing = true; } } if (_mousePressed) { _handState = HAND_STATE_GRASPING; } else if (pointing) { _handState = HAND_STATE_POINTING; } else { _handState = HAND_STATE_NULL; } } void MyAvatar::updateCollisionWithEnvironment(float deltaTime, float radius) { glm::vec3 up = getBodyUpDirection(); const float ENVIRONMENT_SURFACE_ELASTICITY = 0.0f; const float ENVIRONMENT_SURFACE_DAMPING = 0.01f; const float ENVIRONMENT_COLLISION_FREQUENCY = 0.05f; glm::vec3 penetration; float pelvisFloatingHeight = getPelvisFloatingHeight(); if (Application::getInstance()->getEnvironment()->findCapsulePenetration( _position - up * (pelvisFloatingHeight - radius), _position + up * (getSkeletonHeight() - pelvisFloatingHeight + radius), radius, penetration)) { updateCollisionSound(penetration, deltaTime, ENVIRONMENT_COLLISION_FREQUENCY); applyHardCollision(penetration, ENVIRONMENT_SURFACE_ELASTICITY, ENVIRONMENT_SURFACE_DAMPING); } } static CollisionList myCollisions(64); void MyAvatar::updateCollisionWithVoxels(float deltaTime, float radius) { myCollisions.clear(); const CapsuleShape& boundingShape = _skeletonModel.getBoundingShape(); if (Application::getInstance()->getVoxelTree()->findShapeCollisions(&boundingShape, myCollisions)) { const float VOXEL_ELASTICITY = 0.0f; const float VOXEL_DAMPING = 0.0f; if (glm::length2(_gravity) > EPSILON) { if (myCollisions.size() == 1) { // trivial case CollisionInfo* collision = myCollisions[0]; applyHardCollision(collision->_penetration, VOXEL_ELASTICITY, VOXEL_DAMPING); _lastFloorContactPoint = collision->_contactPoint - collision->_penetration; } else { // This is special collision handling for when walking on a voxel field which // prevents snagging at corners and seams. // sift through the collisions looking for one against the "floor" int floorIndex = 0; float distanceToFloor = 0.0f; float penetrationWithFloor = 0.0f; for (int i = 0; i < myCollisions.size(); ++i) { CollisionInfo* collision = myCollisions[i]; float distance = glm::dot(_gravity, collision->_contactPoint - _position); if (distance > distanceToFloor) { distanceToFloor = distance; penetrationWithFloor = glm::dot(_gravity, collision->_penetration); floorIndex = i; } } // step through the collisions again and apply each that is not redundant glm::vec3 oldPosition = _position; for (int i = 0; i < myCollisions.size(); ++i) { CollisionInfo* collision = myCollisions[i]; if (i == floorIndex) { applyHardCollision(collision->_penetration, VOXEL_ELASTICITY, VOXEL_DAMPING); _lastFloorContactPoint = collision->_contactPoint - collision->_penetration; } else { float distance = glm::dot(_gravity, collision->_contactPoint - oldPosition); float penetration = glm::dot(_gravity, collision->_penetration); if (distance - distanceToFloor > penetrationWithFloor || penetration > penetrationWithFloor) { // resolution of the deepest penetration would not resolve this one // so we apply the collision applyHardCollision(collision->_penetration, VOXEL_ELASTICITY, VOXEL_DAMPING); } } } } } else { // no gravity -- apply all collisions for (int i = 0; i < myCollisions.size(); ++i) { CollisionInfo* collision = myCollisions[i]; applyHardCollision(collision->_penetration, VOXEL_ELASTICITY, VOXEL_DAMPING); } } const float VOXEL_COLLISION_FREQUENCY = 0.5f; updateCollisionSound(myCollisions[0]->_penetration, deltaTime, VOXEL_COLLISION_FREQUENCY); } } void MyAvatar::applyHardCollision(const glm::vec3& penetration, float elasticity, float damping) { // // Update the avatar in response to a hard collision. Position will be reset exactly // to outside the colliding surface. Velocity will be modified according to elasticity. // // if elasticity = 0.0, collision is 100% inelastic. // if elasticity = 1.0, collision is elastic. // _position -= penetration; static float HALTING_VELOCITY = 0.2f; // cancel out the velocity component in the direction of penetration float penetrationLength = glm::length(penetration); if (penetrationLength > EPSILON) { glm::vec3 direction = penetration / penetrationLength; _velocity -= glm::dot(_velocity, direction) * direction * (1.0f + elasticity); _velocity *= glm::clamp(1.0f - damping, 0.0f, 1.0f); if ((glm::length(_velocity) < HALTING_VELOCITY) && (glm::length(_thrust) == 0.0f)) { // If moving really slowly after a collision, and not applying forces, stop altogether _velocity *= 0.0f; } } } void MyAvatar::updateCollisionSound(const glm::vec3 &penetration, float deltaTime, float frequency) { // consider whether to have the collision make a sound const float AUDIBLE_COLLISION_THRESHOLD = 0.02f; const float COLLISION_LOUDNESS = 1.0f; const float DURATION_SCALING = 0.004f; const float NOISE_SCALING = 0.1f; glm::vec3 velocity = _velocity; glm::vec3 gravity = getGravity(); if (glm::length(gravity) > EPSILON) { // If gravity is on, remove the effect of gravity on velocity for this // frame, so that we are not constantly colliding with the surface velocity -= _scale * glm::length(gravity) * GRAVITY_EARTH * deltaTime * glm::normalize(gravity); } float velocityTowardCollision = glm::dot(velocity, glm::normalize(penetration)); float velocityTangentToCollision = glm::length(velocity) - velocityTowardCollision; if (velocityTowardCollision > AUDIBLE_COLLISION_THRESHOLD) { // Volume is proportional to collision velocity // Base frequency is modified upward by the angle of the collision // Noise is a function of the angle of collision // Duration of the sound is a function of both base frequency and velocity of impact Application::getInstance()->getAudio()->startCollisionSound( std::min(COLLISION_LOUDNESS * velocityTowardCollision, 1.0f), frequency * (1.0f + velocityTangentToCollision / velocityTowardCollision), std::min(velocityTangentToCollision / velocityTowardCollision * NOISE_SCALING, 1.0f), 1.0f - DURATION_SCALING * powf(frequency, 0.5f) / velocityTowardCollision, false); } } bool findAvatarAvatarPenetration(const glm::vec3 positionA, float radiusA, float heightA, const glm::vec3 positionB, float radiusB, float heightB, glm::vec3& penetration) { glm::vec3 positionBA = positionB - positionA; float xzDistance = sqrt(positionBA.x * positionBA.x + positionBA.z * positionBA.z); if (xzDistance < (radiusA + radiusB)) { float yDistance = fabs(positionBA.y); float halfHeights = 0.5 * (heightA + heightB); if (yDistance < halfHeights) { // cylinders collide if (xzDistance > 0.0f) { positionBA.y = 0.0f; // note, penetration should point from A into B penetration = positionBA * ((radiusA + radiusB - xzDistance) / xzDistance); return true; } else { // exactly coaxial -- we'll return false for this case return false; } } else if (yDistance < halfHeights + radiusA + radiusB) { // caps collide if (positionBA.y < 0.0f) { // A is above B positionBA.y += halfHeights; float BA = glm::length(positionBA); penetration = positionBA * (radiusA + radiusB - BA) / BA; return true; } else { // A is below B positionBA.y -= halfHeights; float BA = glm::length(positionBA); penetration = positionBA * (radiusA + radiusB - BA) / BA; return true; } } } return false; } const float BODY_COLLISION_RESOLUTION_TIMESCALE = 0.5f; // seconds void MyAvatar::updateCollisionWithAvatars(float deltaTime) { // Reset detector for nearest avatar _distanceToNearestAvatar = std::numeric_limits::max(); const AvatarHash& avatars = Application::getInstance()->getAvatarManager().getAvatarHash(); if (avatars.size() <= 1) { // no need to compute a bunch of stuff if we have one or fewer avatars return; } float myBoundingRadius = getBoundingRadius(); const float BODY_COLLISION_RESOLUTION_FACTOR = glm::max(1.0f, deltaTime / BODY_COLLISION_RESOLUTION_TIMESCALE); foreach (const AvatarSharedPointer& avatarPointer, avatars) { Avatar* avatar = static_cast(avatarPointer.data()); if (static_cast(this) == avatar) { // don't collide with ourselves continue; } avatar->updateShapePositions(); float distance = glm::length(_position - avatar->getPosition()); if (_distanceToNearestAvatar > distance) { _distanceToNearestAvatar = distance; } float theirBoundingRadius = avatar->getBoundingRadius(); if (distance < myBoundingRadius + theirBoundingRadius) { // collide our body against theirs QVector myShapes; _skeletonModel.getBodyShapes(myShapes); QVector theirShapes; avatar->getSkeletonModel().getBodyShapes(theirShapes); CollisionInfo collision; if (ShapeCollider::collideShapesCoarse(myShapes, theirShapes, collision)) { float penetrationDepth = glm::length(collision._penetration); if (penetrationDepth > myBoundingRadius) { qDebug() << "WARNING: ignoring avatar-avatar penetration depth " << penetrationDepth; } else if (penetrationDepth > EPSILON) { setPosition(getPosition() - BODY_COLLISION_RESOLUTION_FACTOR * collision._penetration); _lastBodyPenetration += collision._penetration; emit collisionWithAvatar(getSessionUUID(), avatar->getSessionUUID(), collision); } } // collide our hands against them // TODO: make this work when we can figure out when the other avatar won't yeild // (for example, we're colliding against their chest or leg) //getHand()->collideAgainstAvatar(avatar, true); // collide their hands against us avatar->getHand()->collideAgainstAvatar(this, false); } } // TODO: uncomment this when we handle collisions that won't affect other avatar //getHand()->resolvePenetrations(); } class SortedAvatar { public: Avatar* avatar; float distance; glm::vec3 accumulatedCenter; }; bool operator<(const SortedAvatar& s1, const SortedAvatar& s2) { return s1.distance < s2.distance; } void MyAvatar::updateChatCircle(float deltaTime) { if (!(_isChatCirclingEnabled = Menu::getInstance()->isOptionChecked(MenuOption::ChatCircling))) { return; } // find all circle-enabled members and sort by distance QVector sortedAvatars; foreach (const AvatarSharedPointer& avatarPointer, Application::getInstance()->getAvatarManager().getAvatarHash()) { Avatar* avatar = static_cast(avatarPointer.data()); if ( ! avatar->isChatCirclingEnabled() || avatar == static_cast(this)) { continue; } SortedAvatar sortedAvatar; sortedAvatar.avatar = avatar; sortedAvatar.distance = glm::distance(_position, sortedAvatar.avatar->getPosition()); sortedAvatars.append(sortedAvatar); } qSort(sortedAvatars.begin(), sortedAvatars.end()); // compute the accumulated centers glm::vec3 center = _position; for (int i = 0; i < sortedAvatars.size(); i++) { SortedAvatar& sortedAvatar = sortedAvatars[i]; sortedAvatar.accumulatedCenter = (center += sortedAvatar.avatar->getPosition()) / (i + 2.0f); } // remove members whose accumulated circles are too far away to influence us const float CIRCUMFERENCE_PER_MEMBER = 0.5f; const float CIRCLE_INFLUENCE_SCALE = 2.0f; const float MIN_RADIUS = 0.3f; for (int i = sortedAvatars.size() - 1; i >= 0; i--) { float radius = qMax(MIN_RADIUS, (CIRCUMFERENCE_PER_MEMBER * (i + 2)) / TWO_PI); if (glm::distance(_position, sortedAvatars[i].accumulatedCenter) > radius * CIRCLE_INFLUENCE_SCALE) { sortedAvatars.remove(i); } else { break; } } if (sortedAvatars.isEmpty()) { return; } center = sortedAvatars.last().accumulatedCenter; float radius = qMax(MIN_RADIUS, (CIRCUMFERENCE_PER_MEMBER * (sortedAvatars.size() + 1)) / TWO_PI); // compute the average up vector glm::vec3 up = getWorldAlignedOrientation() * IDENTITY_UP; foreach (const SortedAvatar& sortedAvatar, sortedAvatars) { up += sortedAvatar.avatar->getWorldAlignedOrientation() * IDENTITY_UP; } up = glm::normalize(up); // find reasonable corresponding right/front vectors glm::vec3 front = glm::cross(up, IDENTITY_RIGHT); if (glm::length(front) < EPSILON) { front = glm::cross(up, IDENTITY_FRONT); } front = glm::normalize(front); glm::vec3 right = glm::cross(front, up); // find our angle and the angular distances to our closest neighbors glm::vec3 delta = _position - center; glm::vec3 projected = glm::vec3(glm::dot(right, delta), glm::dot(front, delta), 0.0f); float myAngle = glm::length(projected) > EPSILON ? atan2f(projected.y, projected.x) : 0.0f; float leftDistance = TWO_PI; float rightDistance = TWO_PI; foreach (const SortedAvatar& sortedAvatar, sortedAvatars) { delta = sortedAvatar.avatar->getPosition() - center; projected = glm::vec3(glm::dot(right, delta), glm::dot(front, delta), 0.0f); float angle = glm::length(projected) > EPSILON ? atan2f(projected.y, projected.x) : 0.0f; if (angle < myAngle) { leftDistance = min(myAngle - angle, leftDistance); rightDistance = min(TWO_PI - (myAngle - angle), rightDistance); } else { leftDistance = min(TWO_PI - (angle - myAngle), leftDistance); rightDistance = min(angle - myAngle, rightDistance); } } // if we're on top of a neighbor, we need to randomize so that they don't both go in the same direction if (rightDistance == 0.0f && randomBoolean()) { swap(leftDistance, rightDistance); } // split the difference between our neighbors float targetAngle = myAngle + (rightDistance - leftDistance) / 4.0f; glm::vec3 targetPosition = center + (front * sinf(targetAngle) + right * cosf(targetAngle)) * radius; // approach the target position const float APPROACH_RATE = 0.05f; _position = glm::mix(_position, targetPosition, APPROACH_RATE); } void MyAvatar::maybeUpdateBillboard() { if (_billboardValid || !(_skeletonModel.isLoadedWithTextures() && getHead()->getFaceModel().isLoadedWithTextures())) { return; } QImage image = Application::getInstance()->renderAvatarBillboard(); _billboard.clear(); QBuffer buffer(&_billboard); buffer.open(QIODevice::WriteOnly); image.save(&buffer, "PNG"); _billboardValid = true; sendBillboardPacket(); } void MyAvatar::goHome() { qDebug("Going Home!"); setPosition(START_LOCATION); } void MyAvatar::increaseSize() { if ((1.0f + SCALING_RATIO) * _targetScale < MAX_AVATAR_SCALE) { _targetScale *= (1.0f + SCALING_RATIO); qDebug("Changed scale to %f", _targetScale); } } void MyAvatar::decreaseSize() { if (MIN_AVATAR_SCALE < (1.0f - SCALING_RATIO) * _targetScale) { _targetScale *= (1.0f - SCALING_RATIO); qDebug("Changed scale to %f", _targetScale); } } void MyAvatar::resetSize() { _targetScale = 1.0f; qDebug("Reseted scale to %f", _targetScale); } static QByteArray createByteArray(const glm::vec3& vector) { return QByteArray::number(vector.x) + ',' + QByteArray::number(vector.y) + ',' + QByteArray::number(vector.z); } void MyAvatar::updateLocationInDataServer() { // TODO: don't re-send this when it hasn't change or doesn't change by some threshold // This will required storing the last sent values and clearing them when the AccountManager rootURL changes AccountManager& accountManager = AccountManager::getInstance(); if (accountManager.isLoggedIn()) { QString positionString(createByteArray(_position)); QString orientationString(createByteArray(glm::degrees(safeEulerAngles(getOrientation())))); // construct the json to put the user's location QString locationPutJson = QString() + "{\"address\":{\"position\":\"" + positionString + "\", \"orientation\":\"" + orientationString + "\"}}"; accountManager.authenticatedRequest("/api/v1/users/address", QNetworkAccessManager::PutOperation, JSONCallbackParameters(), locationPutJson.toUtf8()); } } void MyAvatar::goToLocationFromResponse(const QJsonObject& jsonObject) { if (jsonObject["status"].toString() == "success") { // send a node kill request, indicating to other clients that they should play the "disappeared" effect sendKillAvatar(); QJsonObject locationObject = jsonObject["data"].toObject()["address"].toObject(); QString positionString = locationObject["position"].toString(); QString orientationString = locationObject["orientation"].toString(); QString domainHostnameString = locationObject["domain"].toString(); qDebug() << "Changing domain to" << domainHostnameString << ", position to" << positionString << ", and orientation to" << orientationString; QStringList coordinateItems = positionString.split(','); QStringList orientationItems = orientationString.split(','); NodeList::getInstance()->getDomainHandler().setHostname(domainHostnameString); // orient the user to face the target glm::quat newOrientation = glm::quat(glm::radians(glm::vec3(orientationItems[0].toFloat(), orientationItems[1].toFloat(), orientationItems[2].toFloat()))) * glm::angleAxis(PI, glm::vec3(0.0f, 1.0f, 0.0f)); setOrientation(newOrientation); // move the user a couple units away const float DISTANCE_TO_USER = 2.0f; glm::vec3 newPosition = glm::vec3(coordinateItems[0].toFloat(), coordinateItems[1].toFloat(), coordinateItems[2].toFloat()) - newOrientation * IDENTITY_FRONT * DISTANCE_TO_USER; setPosition(newPosition); emit transformChanged(); } else { QMessageBox::warning(Application::getInstance()->getWindow(), "", "That user or location could not be found."); } } void MyAvatar::updateMotionBehaviorsFromMenu() { if (Menu::getInstance()->isOptionChecked(MenuOption::ObeyEnvironmentalGravity)) { _motionBehaviors |= AVATAR_MOTION_OBEY_ENVIRONMENTAL_GRAVITY; // Environmental and Local gravities are incompatible. Environmental setting trumps local. _motionBehaviors &= ~AVATAR_MOTION_OBEY_LOCAL_GRAVITY; } if (! (_motionBehaviors & (AVATAR_MOTION_OBEY_ENVIRONMENTAL_GRAVITY | AVATAR_MOTION_OBEY_LOCAL_GRAVITY))) { setGravity(glm::vec3(0.0f)); } } void MyAvatar::setCollisionGroups(quint32 collisionGroups) { Avatar::setCollisionGroups(collisionGroups & VALID_COLLISION_GROUPS); Menu* menu = Menu::getInstance(); menu->setIsOptionChecked(MenuOption::CollideWithEnvironment, (bool)(_collisionGroups & COLLISION_GROUP_ENVIRONMENT)); menu->setIsOptionChecked(MenuOption::CollideWithAvatars, (bool)(_collisionGroups & COLLISION_GROUP_AVATARS)); menu->setIsOptionChecked(MenuOption::CollideWithVoxels, (bool)(_collisionGroups & COLLISION_GROUP_VOXELS)); menu->setIsOptionChecked(MenuOption::CollideWithParticles, (bool)(_collisionGroups & COLLISION_GROUP_PARTICLES)); } void MyAvatar::setMotionBehaviorsByScript(quint32 flags) { // start with the defaults _motionBehaviors = AVATAR_MOTION_DEFAULTS; // add the set scriptable bits _motionBehaviors += flags & AVATAR_MOTION_SCRIPTABLE_BITS; // reconcile incompatible settings from menu (if any) Menu* menu = Menu::getInstance(); menu->setIsOptionChecked(MenuOption::ObeyEnvironmentalGravity, (bool)(_motionBehaviors & AVATAR_MOTION_OBEY_ENVIRONMENTAL_GRAVITY)); // Environmental and Local gravities are incompatible. Environmental setting trumps local. if (_motionBehaviors & AVATAR_MOTION_OBEY_ENVIRONMENTAL_GRAVITY) { _motionBehaviors &= ~AVATAR_MOTION_OBEY_LOCAL_GRAVITY; setGravity(Application::getInstance()->getEnvironment()->getGravity(getPosition())); } else if (! (_motionBehaviors & (AVATAR_MOTION_OBEY_ENVIRONMENTAL_GRAVITY | AVATAR_MOTION_OBEY_LOCAL_GRAVITY))) { setGravity(glm::vec3(0.0f)); } } void MyAvatar::applyCollision(const glm::vec3& contactPoint, const glm::vec3& penetration) { glm::vec3 leverAxis = contactPoint - getPosition(); float leverLength = glm::length(leverAxis); if (leverLength > EPSILON) { // compute lean perturbation angles glm::quat bodyRotation = getOrientation(); glm::vec3 xAxis = bodyRotation * glm::vec3(1.0f, 0.0f, 0.0f); glm::vec3 zAxis = bodyRotation * glm::vec3(0.0f, 0.0f, 1.0f); leverAxis = leverAxis / leverLength; glm::vec3 effectivePenetration = penetration - glm::dot(penetration, leverAxis) * leverAxis; // use the small-angle approximation for sine float sideways = - glm::dot(effectivePenetration, xAxis) / leverLength; float forward = glm::dot(effectivePenetration, zAxis) / leverLength; getHead()->addLeanDeltas(sideways, forward); } }