CSG edit improvements.

This commit is contained in:
Andrzej Kapolka 2014-09-22 17:56:18 -07:00
parent 4733945300
commit 39e52babb1

View file

@ -667,8 +667,9 @@ int VoxelMaterialBoxEditVisitor::visit(MetavoxelInfo& info) {
return DEFAULT_ORDER;
}
VoxelColorDataPointer colorPointer = info.inputValues.at(0).getInlineValue<VoxelColorDataPointer>();
QVector<QRgb> colorContents = (colorPointer && colorPointer->getSize() == VOXEL_BLOCK_SAMPLES) ?
QVector<QRgb> oldColorContents = (colorPointer && colorPointer->getSize() == VOXEL_BLOCK_SAMPLES) ?
colorPointer->getContents() : QVector<QRgb>(VOXEL_BLOCK_VOLUME);
QVector<QRgb> colorContents = oldColorContents;
Box overlap = info.getBounds().getIntersection(_region);
float scale = VOXEL_BLOCK_SIZE / info.size;
@ -725,32 +726,92 @@ int VoxelMaterialBoxEditVisitor::visit(MetavoxelInfo& info) {
for (int x = hermiteMinX, hermiteMaxX = x + hermiteSizeX - 1; x <= hermiteMaxX; x++,
hermiteDestX += VoxelHermiteData::EDGE_COUNT) {
// internal edges are set to zero; border edges (when non-terminal) are set to the intersection values
hermiteDestX[0] = 0x0;
if ((x == hermiteMinX || x == hermiteMaxX) && x != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[1])) {
hermiteDestX[0] = qRgba(alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, 0,
((x == hermiteMinX ? overlap.minimum.x : overlap.maximum.x) - x) * EIGHT_BIT_MAXIMUM);
int alpha1 = qAlpha(color[1]);
if (alpha0 != alpha1) {
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[1]) == alpha1) {
if (x == hermiteMinX) {
int alpha = (overlap.minimum.x - x) * EIGHT_BIT_MAXIMUM;
if (alpha <= qAlpha(hermiteDestX[0])) {
hermiteDestX[0] = qRgba(alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, 0, alpha);
}
} else {
int alpha = (overlap.maximum.x - x) * EIGHT_BIT_MAXIMUM;
if (alpha >= qAlpha(hermiteDestX[0])) {
hermiteDestX[0] = qRgba(alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, 0, alpha);
}
}
} else {
hermiteDestX[0] = qRgba(alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, 0,
((x == hermiteMinX ? overlap.minimum.x : overlap.maximum.x) - x) * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[0] = 0x0;
}
} else {
hermiteDestX[0] = 0x0;
}
hermiteDestX[1] = 0x0;
if ((y == hermiteMinY || y == hermiteMaxY) && y != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[VOXEL_BLOCK_SAMPLES])) {
hermiteDestX[1] = qRgba(0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0,
((y == hermiteMinY ? overlap.minimum.y : overlap.maximum.y) - y) * EIGHT_BIT_MAXIMUM);
int alpha2 = qAlpha(color[VOXEL_BLOCK_SAMPLES]);
if (alpha0 != alpha2) {
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[VOXEL_BLOCK_SAMPLES]) == alpha2) {
if (y == hermiteMinY) {
int alpha = (overlap.minimum.y - y) * EIGHT_BIT_MAXIMUM;
if (alpha <= qAlpha(hermiteDestX[1])) {
hermiteDestX[1] = qRgba(0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, alpha);
}
} else {
int alpha = (overlap.maximum.y - y) * EIGHT_BIT_MAXIMUM;
if (alpha >= qAlpha(hermiteDestX[1])) {
hermiteDestX[1] = qRgba(0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0, alpha);
}
}
} else {
hermiteDestX[1] = qRgba(0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, 0,
((y == hermiteMinY ? overlap.minimum.y : overlap.maximum.y) - y) * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[1] = 0x0;
}
} else {
hermiteDestX[1] = 0x0;
}
hermiteDestX[2] = 0x0;
if ((z == hermiteMinZ || z == hermiteMaxZ) && z != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[VOXEL_BLOCK_AREA])) {
hermiteDestX[2] = qRgba(0, 0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX,
((z == hermiteMinZ ? overlap.minimum.z : overlap.maximum.z) - z) * EIGHT_BIT_MAXIMUM);
int alpha4 = qAlpha(color[VOXEL_BLOCK_AREA]);
if (alpha0 != alpha4) {
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[VOXEL_BLOCK_AREA]) == alpha4) {
if (z == hermiteMinZ) {
int alpha = (overlap.minimum.z - z) * EIGHT_BIT_MAXIMUM;
if (alpha <= qAlpha(hermiteDestX[2])) {
hermiteDestX[2] = qRgba(0, 0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, alpha);
}
} else {
int alpha = (overlap.maximum.z - z) * EIGHT_BIT_MAXIMUM;
if (alpha >= qAlpha(hermiteDestX[2])) {
hermiteDestX[2] = qRgba(0, 0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX, alpha);
}
}
} else {
hermiteDestX[2] = qRgba(0, 0, alpha0 == 0 ? -NORMAL_MAX : NORMAL_MAX,
((z == hermiteMinZ ? overlap.minimum.z : overlap.maximum.z) - z) * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[2] = 0x0;
}
} else {
hermiteDestX[2] = 0x0;
}
}
}
@ -864,8 +925,9 @@ int VoxelMaterialSphereEditVisitor::visit(MetavoxelInfo& info) {
return DEFAULT_ORDER;
}
VoxelColorDataPointer colorPointer = info.inputValues.at(0).getInlineValue<VoxelColorDataPointer>();
QVector<QRgb> colorContents = (colorPointer && colorPointer->getSize() == VOXEL_BLOCK_SAMPLES) ?
QVector<QRgb> oldColorContents = (colorPointer && colorPointer->getSize() == VOXEL_BLOCK_SAMPLES) ?
colorPointer->getContents() : QVector<QRgb>(VOXEL_BLOCK_VOLUME);
QVector<QRgb> colorContents = oldColorContents;
Box overlap = info.getBounds().getIntersection(_bounds);
float scale = VOXEL_BLOCK_SIZE / info.size;
@ -883,6 +945,7 @@ int VoxelMaterialSphereEditVisitor::visit(MetavoxelInfo& info) {
float relativeRadiusSquared = relativeRadius * relativeRadius;
QRgb rgb = _color.rgba();
bool flipped = (qAlpha(rgb) == 0);
glm::vec3 position(0.0f, 0.0f, minZ);
for (QRgb* destZ = colorContents.data() + minZ * VOXEL_BLOCK_AREA + minY * VOXEL_BLOCK_SAMPLES + minX,
*endZ = destZ + sizeZ * VOXEL_BLOCK_AREA; destZ != endZ; destZ += VOXEL_BLOCK_AREA, position.z++) {
@ -932,78 +995,117 @@ int VoxelMaterialSphereEditVisitor::visit(MetavoxelInfo& info) {
hermiteDestX += VoxelHermiteData::EDGE_COUNT) {
// at each intersected non-terminal edge, we check for a transition and, if one is detected, we assign the
// crossing and normal values based on intersection with the sphere
hermiteDestX[0] = 0x0;
glm::vec3 offset(x - relativeCenter.x, y - relativeCenter.y, z - relativeCenter.z);
glm::vec3 vector(x - relativeCenter.x, y - relativeCenter.y, z - relativeCenter.z);
if (x != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[1])) {
float radicand = relativeRadiusSquared - offset.y * offset.y - offset.z * offset.z;
int alpha1 = qAlpha(color[1]);
if (alpha0 != alpha1) {
float radicand = relativeRadiusSquared - vector.y * vector.y - vector.z * vector.z;
float parameter = 0.5f;
if (radicand >= 0.0f) {
float root = glm::sqrt(radicand);
parameter = -offset.x - root;
parameter = -vector.x - root;
if (parameter < 0.0f || parameter > 1.0f) {
parameter = glm::clamp(-offset.x + root, 0.0f, 1.0f);
parameter = glm::clamp(-vector.x + root, 0.0f, 1.0f);
}
}
glm::vec3 normal = offset + glm::vec3(parameter, 0.0f, 0.0f);
glm::vec3 normal = vector + glm::vec3(parameter, 0.0f, 0.0f);
float length = glm::length(normal);
if (length > EPSILON) {
normal /= length;
} else {
normal = glm::vec3(0.0f, 1.0f, 0.0f);
}
hermiteDestX[0] = packNormal(normal, parameter * EIGHT_BIT_MAXIMUM);
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[1]) == alpha1) {
int alpha = parameter * EIGHT_BIT_MAXIMUM;
if (normal.x < 0.0f ? alpha <= qAlpha(hermiteDestX[0]) : alpha >= qAlpha(hermiteDestX[0])) {
hermiteDestX[0] = packNormal(flipped ? -normal : normal, alpha);
}
} else {
hermiteDestX[0] = packNormal(flipped ? -normal : normal, parameter * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[0] = 0x0;
}
} else {
hermiteDestX[0] = 0x0;
}
hermiteDestX[1] = 0x0;
if (y != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[VOXEL_BLOCK_SAMPLES])) {
float radicand = relativeRadiusSquared - offset.x * offset.x - offset.z * offset.z;
int alpha2 = qAlpha(color[VOXEL_BLOCK_SAMPLES]);
if (alpha0 != alpha2) {
float radicand = relativeRadiusSquared - vector.x * vector.x - vector.z * vector.z;
float parameter = 0.5f;
if (radicand >= 0.0f) {
float root = glm::sqrt(radicand);
parameter = -offset.y - root;
parameter = -vector.y - root;
if (parameter < 0.0f || parameter > 1.0f) {
parameter = glm::clamp(-offset.y + root, 0.0f, 1.0f);
parameter = glm::clamp(-vector.y + root, 0.0f, 1.0f);
}
}
glm::vec3 normal = offset + glm::vec3(parameter, 0.0f, 0.0f);
glm::vec3 normal = vector + glm::vec3(parameter, 0.0f, 0.0f);
float length = glm::length(normal);
if (length > EPSILON) {
normal /= length;
} else {
normal = glm::vec3(1.0f, 0.0f, 0.0f);
}
hermiteDestX[1] = packNormal(normal, parameter * EIGHT_BIT_MAXIMUM);
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[VOXEL_BLOCK_SAMPLES]) == alpha2) {
int alpha = parameter * EIGHT_BIT_MAXIMUM;
if (normal.y < 0.0f ? alpha <= qAlpha(hermiteDestX[1]) : alpha >= qAlpha(hermiteDestX[1])) {
hermiteDestX[1] = packNormal(flipped ? -normal : normal, alpha);
}
} else {
hermiteDestX[1] = packNormal(flipped ? -normal : normal, parameter * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[1] = 0x0;
}
} else {
hermiteDestX[1] = 0x0;
}
hermiteDestX[2] = 0x0;
if (z != VOXEL_BLOCK_SIZE) {
const QRgb* color = colorContents.constData() + z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
int offset = z * VOXEL_BLOCK_AREA + y * VOXEL_BLOCK_SAMPLES + x;
const QRgb* color = colorContents.constData() + offset;
int alpha0 = qAlpha(color[0]);
if (alpha0 != qAlpha(color[VOXEL_BLOCK_AREA])) {
float radicand = relativeRadiusSquared - offset.x * offset.x - offset.y * offset.y;
int alpha4 = qAlpha(color[VOXEL_BLOCK_AREA]);
if (alpha0 != alpha4) {
float radicand = relativeRadiusSquared - vector.x * vector.x - vector.y * vector.y;
float parameter = 0.5f;
if (radicand >= 0.0f) {
float root = glm::sqrt(radicand);
parameter = -offset.z - root;
parameter = -vector.z - root;
if (parameter < 0.0f || parameter > 1.0f) {
parameter = glm::clamp(-offset.z + root, 0.0f, 1.0f);
parameter = glm::clamp(-vector.z + root, 0.0f, 1.0f);
}
}
glm::vec3 normal = offset + glm::vec3(parameter, 0.0f, 0.0f);
glm::vec3 normal = vector + glm::vec3(parameter, 0.0f, 0.0f);
float length = glm::length(normal);
if (length > EPSILON) {
normal /= length;
} else {
normal = glm::vec3(1.0f, 0.0f, 0.0f);
}
hermiteDestX[2] = packNormal(normal, parameter * EIGHT_BIT_MAXIMUM);
const QRgb* oldColor = oldColorContents.constData() + offset;
if (qAlpha(oldColor[0]) == alpha0 && qAlpha(oldColor[VOXEL_BLOCK_AREA]) == alpha4) {
int alpha = parameter * EIGHT_BIT_MAXIMUM;
if (normal.z < 0.0f ? alpha <= qAlpha(hermiteDestX[2]) : alpha >= qAlpha(hermiteDestX[2])) {
hermiteDestX[2] = packNormal(flipped ? -normal : normal, alpha);
}
} else {
hermiteDestX[2] = packNormal(flipped ? -normal : normal, parameter * EIGHT_BIT_MAXIMUM);
}
} else {
hermiteDestX[2] = 0x0;
}
} else {
hermiteDestX[2] = 0x0;
}
}
}