Merge pull request #5577 from vastcharade/horizAmbOcclPerf

Horiz amb occl performance updates
This commit is contained in:
Brad Hefta-Gaub 2015-08-22 12:39:51 -07:00
commit fe44442ffe
3 changed files with 211 additions and 134 deletions

View file

@ -51,8 +51,13 @@ const gpu::PipelinePointer& AmbientOcclusion::getOcclusionPipeline() {
_gBiasLoc = program->getUniforms().findLocation("g_bias");
_gSampleRadiusLoc = program->getUniforms().findLocation("g_sample_rad");
_gIntensityLoc = program->getUniforms().findLocation("g_intensity");
_bufferWidthLoc = program->getUniforms().findLocation("bufferWidth");
_bufferHeightLoc = program->getUniforms().findLocation("bufferHeight");
_nearLoc = program->getUniforms().findLocation("near");
_depthScaleLoc = program->getUniforms().findLocation("depthScale");
_depthTexCoordOffsetLoc = program->getUniforms().findLocation("depthTexCoordOffset");
_depthTexCoordScaleLoc = program->getUniforms().findLocation("depthTexCoordScale");
_renderTargetResLoc = program->getUniforms().findLocation("renderTargetRes");
_renderTargetResInvLoc = program->getUniforms().findLocation("renderTargetResInv");
gpu::StatePointer state = gpu::StatePointer(new gpu::State());
@ -172,9 +177,19 @@ const gpu::PipelinePointer& AmbientOcclusion::getBlendPipeline() {
void AmbientOcclusion::run(const render::SceneContextPointer& sceneContext, const render::RenderContextPointer& renderContext) {
assert(renderContext->args);
assert(renderContext->args->_viewFrustum);
RenderArgs* args = renderContext->args;
gpu::Batch batch;
RenderArgs* args = renderContext->args;
auto framebufferCache = DependencyManager::get<FramebufferCache>();
QSize framebufferSize = framebufferCache->getFrameBufferSize();
float fbWidth = framebufferSize.width();
float fbHeight = framebufferSize.height();
float sMin = args->_viewport.x / fbWidth;
float sWidth = args->_viewport.z / fbWidth;
float tMin = args->_viewport.y / fbHeight;
float tHeight = args->_viewport.w / fbHeight;
glm::mat4 projMat;
Transform viewMat;
@ -186,8 +201,8 @@ void AmbientOcclusion::run(const render::SceneContextPointer& sceneContext, cons
// Occlusion step
getOcclusionPipeline();
batch.setResourceTexture(0, DependencyManager::get<FramebufferCache>()->getPrimaryDepthTexture());
batch.setResourceTexture(1, DependencyManager::get<FramebufferCache>()->getPrimaryNormalTexture());
batch.setResourceTexture(0, framebufferCache->getPrimaryDepthTexture());
batch.setResourceTexture(1, framebufferCache->getPrimaryNormalTexture());
_occlusionBuffer->setRenderBuffer(0, _occlusionTexture);
batch.setFramebuffer(_occlusionBuffer);
@ -203,8 +218,32 @@ void AmbientOcclusion::run(const render::SceneContextPointer& sceneContext, cons
batch._glUniform1f(_gBiasLoc, g_bias);
batch._glUniform1f(_gSampleRadiusLoc, g_sample_rad);
batch._glUniform1f(_gIntensityLoc, g_intensity);
batch._glUniform1f(_bufferWidthLoc, DependencyManager::get<FramebufferCache>()->getFrameBufferSize().width());
batch._glUniform1f(_bufferHeightLoc, DependencyManager::get<FramebufferCache>()->getFrameBufferSize().height());
// setup uniforms for unpacking a view-space position from the depth buffer
// This is code taken from DeferredLightEffect.render() method in DeferredLightingEffect.cpp.
// DeferredBuffer.slh shows how the unpacking is done and what variables are needed.
// initialize the view-space unpacking uniforms using frustum data
float left, right, bottom, top, nearVal, farVal;
glm::vec4 nearClipPlane, farClipPlane;
args->_viewFrustum->computeOffAxisFrustum(left, right, bottom, top, nearVal, farVal, nearClipPlane, farClipPlane);
float depthScale = (farVal - nearVal) / farVal;
float nearScale = -1.0f / nearVal;
float depthTexCoordScaleS = (right - left) * nearScale / sWidth;
float depthTexCoordScaleT = (top - bottom) * nearScale / tHeight;
float depthTexCoordOffsetS = left * nearScale - sMin * depthTexCoordScaleS;
float depthTexCoordOffsetT = bottom * nearScale - tMin * depthTexCoordScaleT;
// now set the position-unpacking unforms
batch._glUniform1f(_nearLoc, nearVal);
batch._glUniform1f(_depthScaleLoc, depthScale);
batch._glUniform2f(_depthTexCoordOffsetLoc, depthTexCoordOffsetS, depthTexCoordOffsetT);
batch._glUniform2f(_depthTexCoordScaleLoc, depthTexCoordScaleS, depthTexCoordScaleT);
batch._glUniform2f(_renderTargetResLoc, fbWidth, fbHeight);
batch._glUniform2f(_renderTargetResInvLoc, 1.0/fbWidth, 1.0/fbHeight);
glm::vec4 color(0.0f, 0.0f, 0.0f, 1.0f);
glm::vec2 bottomLeft(-1.0f, -1.0f);
@ -238,13 +277,13 @@ void AmbientOcclusion::run(const render::SceneContextPointer& sceneContext, cons
// Blend step
getBlendPipeline();
batch.setResourceTexture(0, _hBlurTexture);
batch.setFramebuffer(DependencyManager::get<FramebufferCache>()->getPrimaryFramebuffer());
batch.setFramebuffer(framebufferCache->getPrimaryFramebuffer());
// Bind the fourth gpu::Pipeline we need - for blending the primary color buffer with blurred occlusion texture
batch.setPipeline(getBlendPipeline());
DependencyManager::get<GeometryCache>()->renderQuad(batch, bottomLeft, topRight, texCoordTopLeft, texCoordBottomRight, color);
// Ready to render
args->_context->render((batch));
}

View file

@ -36,8 +36,15 @@ private:
gpu::int32 _gBiasLoc;
gpu::int32 _gSampleRadiusLoc;
gpu::int32 _gIntensityLoc;
gpu::int32 _bufferWidthLoc;
gpu::int32 _bufferHeightLoc;
gpu::int32 _nearLoc;
gpu::int32 _depthScaleLoc;
gpu::int32 _depthTexCoordOffsetLoc;
gpu::int32 _depthTexCoordScaleLoc;
gpu::int32 _renderTargetResLoc;
gpu::int32 _renderTargetResInvLoc;
float g_scale;
float g_bias;
float g_sample_rad;

View file

@ -30,25 +30,40 @@ uniform float g_scale;
uniform float g_bias;
uniform float g_sample_rad;
uniform float g_intensity;
uniform float bufferWidth;
uniform float bufferHeight;
// the distance to the near clip plane
uniform float near;
// scale factor for depth: (far - near) / far
uniform float depthScale;
// offset for depth texture coordinates
uniform vec2 depthTexCoordOffset;
// scale for depth texture coordinates
uniform vec2 depthTexCoordScale;
// the resolution of the occlusion buffer
// and its inverse
uniform vec2 renderTargetRes;
uniform vec2 renderTargetResInv;
const float PI = 3.14159265;
const vec2 FocalLen = vec2(1.0, 1.0);
const vec2 LinMAD = vec2(0.1-10.0, 0.1+10.0) / (2.0*0.1*10.0);
const vec2 AORes = vec2(1024.0, 768.0);
const vec2 InvAORes = vec2(1.0/1024.0, 1.0/768.0);
const vec2 NoiseScale = vec2(1024.0, 768.0) / 4.0;
const float AOStrength = 1.9;
const float R = 0.3;
const float R2 = 0.3*0.3;
const float NegInvR2 = - 1.0 / (0.3*0.3);
// TODO: R (radius) should be exposed as a uniform parameter
const float R = 0.01;
const float R2 = 0.01*0.01;
const float NegInvR2 = - 1.0 / (0.01*0.01);
// can't use tan to initialize a const value
const float TanBias = 0.57735027; // tan(30.0 * PI / 180.0);
const float TanBias = 0.57735027; // tan(30.0 * PI / 180.0);
const float MaxRadiusPixels = 50.0;
const int NumDirections = 6;
@ -56,113 +71,126 @@ const int NumSamples = 4;
out vec4 outFragColor;
/**
* Gets the normal in view space from a normal texture.
* uv: the uv texture coordinates to look up in the texture at.
*/
vec3 GetViewNormalFromTexture(vec2 uv) {
// convert [0,1] -> [-1,1], note: since we're normalizing
// we don't need to do v*2 - 1.0, we can just do a v-0.5
return normalize(texture(normalTexture, uv).xyz - 0.5);
}
/**
* Gets the linearized depth in view space.
* d: the depth value [0-1], usually from a depth texture to convert.
*/
float ViewSpaceZFromDepth(float d){
// [0,1] -> [-1,1] clip space
d = d * 2.0 - 1.0;
// Get view space Z
return -1.0 / (LinMAD.x * d + LinMAD.y);
return near / (d * depthScale - 1.0);
}
/**
* Converts a uv coordinate and depth value into a 3D view space coordinate.
* uv: the uv coordinates to convert
* z: the view space depth of the uv coordinate.
*/
vec3 UVToViewSpace(vec2 uv, float z){
//uv = UVToViewA * uv + UVToViewB;
return vec3(uv * z, z);
return vec3((depthTexCoordOffset + varTexcoord * depthTexCoordScale) * z, z);
}
vec3 GetViewPos(vec2 uv){
float z = ViewSpaceZFromDepth(texture(depthTexture, uv).r);
return UVToViewSpace(uv, z);
/**
* Converts a uv coordinate into a 3D view space coordinate.
* The depth of the uv coord is determined from the depth texture.
* uv: the uv coordinates to convert
*/
vec3 GetViewPos(vec2 uv) {
float z = ViewSpaceZFromDepth(texture(depthTexture, uv).r);
return UVToViewSpace(uv, z);
}
vec3 GetViewPosPoint(ivec2 uv){
vec2 coord = vec2(gl_FragCoord.xy) + uv;
//float z = texelFetch(texture0, coord, 0).r;
float z = texture(depthTexture, uv).r;
return UVToViewSpace(uv, z);
float TanToSin(float x) {
return x * inversesqrt(x*x + 1.0);
}
float TanToSin(float x){
return x * inversesqrt(x*x + 1.0);
float InvLength(vec2 V) {
return inversesqrt(dot(V, V));
}
float InvLength(vec2 V){
return inversesqrt(dot(V,V));
float Tangent(vec3 V) {
return V.z * InvLength(V.xy);
}
float Tangent(vec3 V){
return V.z * InvLength(V.xy);
float BiasedTangent(vec3 V) {
return V.z * InvLength(V.xy) + TanBias;
}
float BiasedTangent(vec3 V){
return V.z * InvLength(V.xy) + TanBias;
}
float Tangent(vec3 P, vec3 S){
float Tangent(vec3 P, vec3 S) {
return -(P.z - S.z) * InvLength(S.xy - P.xy);
}
float Length2(vec3 V){
return dot(V,V);
float Length2(vec3 V) {
return dot(V, V);
}
vec3 MinDiff(vec3 P, vec3 Pr, vec3 Pl){
vec3 MinDiff(vec3 P, vec3 Pr, vec3 Pl) {
vec3 V1 = Pr - P;
vec3 V2 = P - Pl;
return (Length2(V1) < Length2(V2)) ? V1 : V2;
}
vec2 SnapUVOffset(vec2 uv){
return round(uv * AORes) * InvAORes;
vec2 SnapUVOffset(vec2 uv) {
return round(uv * renderTargetRes) * renderTargetResInv;
}
float Falloff(float d2){
return d2 * NegInvR2 + 1.0f;
float Falloff(float d2) {
return d2 * NegInvR2 + 1.0f;
}
float HorizonOcclusion( vec2 deltaUV, vec3 P, vec3 dPdu, vec3 dPdv, float randstep, float numSamples){
float ao = 0;
float HorizonOcclusion(vec2 deltaUV, vec3 P, vec3 dPdu, vec3 dPdv, float randstep, float numSamples) {
float ao = 0;
// Offset the first coord with some noise
vec2 uv = varTexcoord + SnapUVOffset(randstep*deltaUV);
deltaUV = SnapUVOffset( deltaUV );
// Offset the first coord with some noise
vec2 uv = varTexcoord + SnapUVOffset(randstep*deltaUV);
deltaUV = SnapUVOffset(deltaUV);
// Calculate the tangent vector
vec3 T = deltaUV.x * dPdu + deltaUV.y * dPdv;
// Calculate the tangent vector
vec3 T = deltaUV.x * dPdu + deltaUV.y * dPdv;
// Get the angle of the tangent vector from the viewspace axis
float tanH = BiasedTangent(T);
float sinH = TanToSin(tanH);
// Get the angle of the tangent vector from the viewspace axis
float tanH = BiasedTangent(T);
float sinH = TanToSin(tanH);
float tanS;
float d2;
vec3 S;
float tanS;
float d2;
vec3 S;
// Sample to find the maximum angle
for(float s = 1; s <= numSamples; ++s){
uv += deltaUV;
S = GetViewPos(uv);
tanS = Tangent(P, S);
d2 = Length2(S - P);
// Sample to find the maximum angle
for (float s = 1; s <= numSamples; ++s) {
uv += deltaUV;
S = GetViewPos(uv);
tanS = Tangent(P, S);
d2 = Length2(S - P);
// Is the sample within the radius and the angle greater?
if(d2 < R2 && tanS > tanH)
{
float sinS = TanToSin(tanS);
// Apply falloff based on the distance
ao += Falloff(d2) * (sinS - sinH);
// Is the sample within the radius and the angle greater?
if (d2 < R2 && tanS > tanH) {
float sinS = TanToSin(tanS);
// Apply falloff based on the distance
ao += Falloff(d2) * (sinS - sinH);
tanH = tanS;
sinH = sinS;
}
}
return ao;
tanH = tanS;
sinH = sinS;
}
}
return ao;
}
vec2 RotateDirections(vec2 Dir, vec2 CosSin){
return vec2(Dir.x*CosSin.x - Dir.y*CosSin.y, Dir.x*CosSin.y + Dir.y*CosSin.x);
vec2 RotateDirections(vec2 Dir, vec2 CosSin) {
return vec2(Dir.x*CosSin.x - Dir.y*CosSin.y,
Dir.x*CosSin.y + Dir.y*CosSin.x);
}
void ComputeSteps(inout vec2 stepSizeUv, inout float numSteps, float rayRadiusPix, float rand){
void ComputeSteps(inout vec2 stepSizeUv, inout float numSteps, float rayRadiusPix, float rand) {
// Avoid oversampling if numSteps is greater than the kernel radius in pixels
numSteps = min(NumSamples, rayRadiusPix);
@ -171,8 +199,7 @@ void ComputeSteps(inout vec2 stepSizeUv, inout float numSteps, float rayRadiusPi
// Clamp numSteps if it is greater than the max kernel footprint
float maxNumSteps = MaxRadiusPixels / stepSizePix;
if (maxNumSteps < numSteps)
{
if (maxNumSteps < numSteps) {
// Use dithering to avoid AO discontinuities
numSteps = floor(maxNumSteps + rand);
numSteps = max(numSteps, 1);
@ -180,69 +207,73 @@ void ComputeSteps(inout vec2 stepSizeUv, inout float numSteps, float rayRadiusPi
}
// Step size in uv space
stepSizeUv = stepSizePix * InvAORes;
stepSizeUv = stepSizePix * renderTargetResInv;
}
float getRandom(vec2 uv){
float getRandom(vec2 uv) {
return fract(sin(dot(uv.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
void main(void){
float numDirections = NumDirections;
void main(void) {
mat4 projMatrix = getTransformCamera()._projection;
vec3 P, Pr, Pl, Pt, Pb;
P = GetViewPos(varTexcoord);
float numDirections = NumDirections;
// Sample neighboring pixels
Pr = GetViewPos(varTexcoord + vec2( InvAORes.x, 0));
Pl = GetViewPos(varTexcoord + vec2(-InvAORes.x, 0));
Pt = GetViewPos(varTexcoord + vec2( 0, InvAORes.y));
Pb = GetViewPos(varTexcoord + vec2( 0,-InvAORes.y));
vec3 P, Pr, Pl, Pt, Pb;
P = GetViewPos(varTexcoord);
// Sample neighboring pixels
Pr = GetViewPos(varTexcoord + vec2( renderTargetResInv.x, 0));
Pl = GetViewPos(varTexcoord + vec2(-renderTargetResInv.x, 0));
Pt = GetViewPos(varTexcoord + vec2( 0, renderTargetResInv.y));
Pb = GetViewPos(varTexcoord + vec2( 0,-renderTargetResInv.y));
// Calculate tangent basis vectors using the minimum difference
vec3 dPdu = MinDiff(P, Pr, Pl);
vec3 dPdv = MinDiff(P, Pt, Pb) * (AORes.y * InvAORes.x);
vec3 dPdv = MinDiff(P, Pt, Pb) * (renderTargetRes.y * renderTargetResInv.x);
// Get the random samples from the noise function
vec3 random = vec3(getRandom(varTexcoord.xy), getRandom(varTexcoord.yx), getRandom(varTexcoord.xx));
vec3 random = vec3(getRandom(varTexcoord.xy), getRandom(varTexcoord.yx), getRandom(varTexcoord.xx));
// Calculate the projected size of the hemisphere
vec2 rayRadiusUV = 0.5 * R * FocalLen / -P.z;
float rayRadiusPix = rayRadiusUV.x * AORes.x;
// Calculate the projected size of the hemisphere
float w = P.z * projMatrix[2][3] + projMatrix[3][3];
vec2 rayRadiusUV = (0.5 * R * vec2(projMatrix[0][0], projMatrix[1][1]) / w); // [-1,1] -> [0,1] uv
float rayRadiusPix = rayRadiusUV.x * renderTargetRes.x;
float ao = 1.0;
// Make sure the radius of the evaluated hemisphere is more than a pixel
if(rayRadiusPix > 1.0){
ao = 0.0;
float numSteps;
vec2 stepSizeUV;
if(rayRadiusPix > 1.0) {
ao = 0.0;
float numSteps;
vec2 stepSizeUV;
// Compute the number of steps
ComputeSteps(stepSizeUV, numSteps, rayRadiusPix, random.z);
// Compute the number of steps
ComputeSteps(stepSizeUV, numSteps, rayRadiusPix, random.z);
float alpha = 2.0 * PI / numDirections;
float alpha = 2.0 * PI / numDirections;
// Calculate the horizon occlusion of each direction
for(float d = 0; d < numDirections; ++d){
float theta = alpha * d;
// Calculate the horizon occlusion of each direction
for(float d = 0; d < numDirections; ++d) {
float theta = alpha * d;
// Apply noise to the direction
vec2 dir = RotateDirections(vec2(cos(theta), sin(theta)), random.xy);
vec2 deltaUV = dir * stepSizeUV;
// Apply noise to the direction
vec2 dir = RotateDirections(vec2(cos(theta), sin(theta)), random.xy);
vec2 deltaUV = dir * stepSizeUV;
// Sample the pixels along the direction
ao += HorizonOcclusion( deltaUV,
P,
dPdu,
dPdv,
random.z,
numSteps);
}
// Sample the pixels along the direction
ao += HorizonOcclusion( deltaUV,
P,
dPdu,
dPdv,
random.z,
numSteps);
}
// Average the results and produce the final AO
ao = 1.0 - ao / numDirections * AOStrength;
}
// Average the results and produce the final AO
ao = 1.0 - ao / numDirections * AOStrength;
}
outFragColor = vec4(vec3(ao), 1.0);
}
}