changed the define variable to HIFI_USE_OPTIMIZED_IK

This commit is contained in:
amantley 2019-02-21 14:36:05 -08:00
parent 50bc8d3646
commit 6323f49f26
5 changed files with 8 additions and 358 deletions

View file

@ -52,7 +52,7 @@ else()
set(MOBILE 0)
endif()
set(HIFI_USE_Q_OS_ANDROID_OPTION OFF)
set(HIFI_USE_OPTIMIZED_IK OFF)
set(BUILD_CLIENT_OPTION ON)
set(BUILD_SERVER_OPTION ON)
set(BUILD_TESTS_OPTION OFF)
@ -109,7 +109,7 @@ if (USE_GLES AND (NOT ANDROID))
set(DISABLE_QML_OPTION ON)
endif()
option(HIFI_USE_Q_OS_ANDROID "USE OPTIMIZED IK" ${HIFI_USE_Q_OS_ANDROID_OPTION})
option(HIFI_USE_OPTIMIZED_IK "USE OPTIMIZED IK" ${HIFI_USE_OPTIMIZED_IK_OPTION})
option(BUILD_CLIENT "Build client components" ${BUILD_CLIENT_OPTION})
option(BUILD_SERVER "Build server components" ${BUILD_SERVER_OPTION})
option(BUILD_TESTS "Build tests" ${BUILD_TESTS_OPTION})
@ -140,7 +140,7 @@ foreach(PLATFORM_QT_COMPONENT ${PLATFORM_QT_COMPONENTS})
list(APPEND PLATFORM_QT_LIBRARIES "Qt5::${PLATFORM_QT_COMPONENT}")
endforeach()
MESSAGE(STATUS "USE OPTIMIZED IK: " ${HIFI_USE_Q_OS_ANDROID})
MESSAGE(STATUS "USE OPTIMIZED IK: " ${HIFI_USE_OPTIMIZED_IK})
MESSAGE(STATUS "Build server: " ${BUILD_SERVER})
MESSAGE(STATUS "Build client: " ${BUILD_CLIENT})
MESSAGE(STATUS "Build tests: " ${BUILD_TESTS})
@ -186,11 +186,9 @@ find_package( Threads )
add_definitions(-DGLM_FORCE_RADIANS)
add_definitions(-DGLM_ENABLE_EXPERIMENTAL)
add_definitions(-DGLM_FORCE_CTOR_INIT)
#add_definitions(-DHIFI_USE_Q_OS_ANDROID)
#option(HIFI_USE_Q_OS_ANDROID_OPTION "hifi_use_optimized_ik" OFF)
if (HIFI_USE_Q_OS_ANDROID)
if (HIFI_USE_OPTIMIZED_IK)
MESSAGE(STATUS "SET THE USE IK DEFINITION ")
add_definitions(-DHIFI_USE_Q_OS_ANDROID)
add_definitions(-DHIFI_USE_OPTIMIZED_IK)
endif()
set(HIFI_LIBRARY_DIR "${CMAKE_CURRENT_SOURCE_DIR}/libraries")

View file

@ -2952,7 +2952,7 @@ void MyAvatar::initAnimGraph() {
} else {
graphUrl = PathUtils::resourcesUrl("avatar/avatar-animation.json");
#if defined(Q_OS_ANDROID) || defined(HIFI_USE_Q_OS_ANDROID)
#if defined(Q_OS_ANDROID) || defined(HIFI_USE_OPTIMIZED_IK)
graphUrl = PathUtils::resourcesUrl("avatar/avatar-animation_withSplineIKNode.json");
#endif
}

View file

@ -252,7 +252,7 @@ void MySkeletonModel::updateRig(float deltaTime, glm::mat4 parentTransform) {
AnimPose headAvatarSpace(avatarHeadPose.getRotation(), avatarHeadPose.getTranslation());
AnimPose headRigSpace = avatarToRigPose * headAvatarSpace;
AnimPose hipsRigSpace = sensorToRigPose * sensorHips;
#if defined(Q_OS_ANDROID) || defined(HIFI_USE_Q_OS_ANDROID)
#if defined(Q_OS_ANDROID) || defined(HIFI_USE_OPTIMIZED_IK)
glm::vec3 spine2TargetTranslation = computeSpine2WithHeadHipsSpline(myAvatar, hipsRigSpace, headRigSpace);
#endif
const float SPINE2_ROTATION_FILTER = 0.5f;
@ -276,7 +276,7 @@ void MySkeletonModel::updateRig(float deltaTime, glm::mat4 parentTransform) {
}
generateBasisVectors(up, fwd, u, v, w);
AnimPose newSpinePose(glm::mat4(glm::vec4(w, 0.0f), glm::vec4(u, 0.0f), glm::vec4(v, 0.0f), glm::vec4(glm::vec3(0.0f, 0.0f, 0.0f), 1.0f)));
#if defined(Q_OS_ANDROID) || defined(HIFI_USE_Q_OS_ANDROID)
#if defined(Q_OS_ANDROID) || defined(HIFI_USE_OPTIMIZED_IK)
currentSpine2Pose.trans() = spine2TargetTranslation;
#endif
currentSpine2Pose.rot() = safeLerp(currentSpine2Pose.rot(), newSpinePose.rot(), SPINE2_ROTATION_FILTER);

View file

@ -1459,12 +1459,7 @@ void Rig::updateHands(bool leftHandEnabled, bool rightHandEnabled, bool hipsEnab
int oppositeArmJointIndex = _animSkeleton->nameToJointIndex("RightArm");
if (ENABLE_POLE_VECTORS && handJointIndex >= 0 && armJointIndex >= 0 && elbowJointIndex >= 0 && oppositeArmJointIndex >= 0) {
glm::vec3 poleVector;
#if defined(Q_OS_ANDROID) || defined(HIFI_USE_Q_OS_ANDROID)
bool isLeft = true;
bool usePoleVector = calculateElbowPoleVectorOptimized(handJointIndex, elbowJointIndex, armJointIndex, isLeft, poleVector);
#else
bool usePoleVector = calculateElbowPoleVector(handJointIndex, elbowJointIndex, armJointIndex, oppositeArmJointIndex, poleVector);
#endif
if (usePoleVector) {
glm::vec3 sensorPoleVector = transformVectorFast(rigToSensorMatrix, poleVector);
_animVars.set("leftHandPoleVectorEnabled", true);
@ -1519,12 +1514,7 @@ void Rig::updateHands(bool leftHandEnabled, bool rightHandEnabled, bool hipsEnab
if (ENABLE_POLE_VECTORS && handJointIndex >= 0 && armJointIndex >= 0 && elbowJointIndex >= 0 && oppositeArmJointIndex >= 0) {
glm::vec3 poleVector;
#if defined(Q_OS_ANDROID) || defined(HIFI_USE_Q_OS_ANDROID)
bool isLeft = false;
bool usePoleVector = calculateElbowPoleVectorOptimized(handJointIndex, elbowJointIndex, armJointIndex, isLeft, poleVector);
#else
bool usePoleVector = calculateElbowPoleVector(handJointIndex, elbowJointIndex, armJointIndex, oppositeArmJointIndex, poleVector);
#endif
if (usePoleVector) {
glm::vec3 sensorPoleVector = transformVectorFast(rigToSensorMatrix, poleVector);
_animVars.set("rightHandPoleVectorEnabled", true);
@ -1690,330 +1680,6 @@ void Rig::updateEyeJoint(int index, const glm::vec3& modelTranslation, const glm
}
}
static float getHandPositionTheta(glm::vec3 armToHand, float defaultArmLength, bool left) {
float handPositionTheta = 0.0f;
//calculate the hand position influence on theta
const float zStart = 0.6f;
const float xStart = 0.1f;
// biases
const glm::vec3 biases(0.0f, 135.0f, 0.0f);
// weights
const float zWeightBottom = -100.0f;
const glm::vec3 weights(-50.0f, 60.0f, 90.0f);
float yFactor = (fabsf(armToHand[1] / defaultArmLength) * weights[1]) + biases[1];
float zFactor;
if (armToHand[1] > 0.0f) {
zFactor = weights[2] * glm::max(zStart - (armToHand[2] / defaultArmLength), 0.0f) * glm::max(fabsf((armToHand[1] - 0.1f) / defaultArmLength), 0.0f);
} else {
zFactor = zWeightBottom * glm::max(zStart - (armToHand[2] / defaultArmLength), 0.0f) * fabsf(armToHand[1] / defaultArmLength);
}
float xFactor;
if (left) {
xFactor = weights[0] * ((-1.0f * (armToHand[0] / defaultArmLength) + xStart) - (0.2f) * ((1.0f + (armToHand[1] / defaultArmLength)) / 2.0f));
} else {
xFactor = weights[0] * (((armToHand[0] / defaultArmLength) + xStart) - (0.2f) * ((1.0f + (armToHand[1] / defaultArmLength)) / 2.0f));
}
handPositionTheta = xFactor + yFactor + zFactor;
const float LOWER_ANATOMICAL_ANGLE = 175.0f;
const float UPPER_ANATOMICAL_ANGLE = 50.0f;
if (handPositionTheta > LOWER_ANATOMICAL_ANGLE) {
handPositionTheta = LOWER_ANATOMICAL_ANGLE;
}
if (handPositionTheta < UPPER_ANATOMICAL_ANGLE) {
handPositionTheta = UPPER_ANATOMICAL_ANGLE;
}
if (left) {
handPositionTheta *= -1.0f;
}
return handPositionTheta;
}
static float computeUlnarRadialCompensation(float ulnarRadialTheta, float twistTheta, bool left) {
const float ULNAR_BOUNDARY_MINUS = -PI / 4.0f;
const float ULNAR_BOUNDARY_PLUS = -PI / 4.0f;
float ulnarDiff = 0.0f;
float ulnarCorrection = 0.0f;
float currentWristCoefficient = 0.0f;
if (left) {
if (ulnarRadialTheta > -ULNAR_BOUNDARY_MINUS) {
ulnarDiff = ulnarRadialTheta - (-ULNAR_BOUNDARY_MINUS);
} else if (ulnarRadialTheta < -ULNAR_BOUNDARY_PLUS) {
ulnarDiff = ulnarRadialTheta - (-ULNAR_BOUNDARY_PLUS);
}
} else {
if (ulnarRadialTheta > ULNAR_BOUNDARY_MINUS) {
ulnarDiff = ulnarRadialTheta - ULNAR_BOUNDARY_MINUS;
} else if (ulnarRadialTheta < ULNAR_BOUNDARY_PLUS) {
ulnarDiff = ulnarRadialTheta - ULNAR_BOUNDARY_PLUS;
}
}
if (fabsf(ulnarDiff) > 0.0f) {
float twistCoefficient = 0.0f;
if (left) {
twistCoefficient = twistTheta;
if (twistCoefficient > (PI / 6.0f)) {
twistCoefficient = 1.0f;
} else {
twistCoefficient = 0.0f;
}
} else {
twistCoefficient = twistTheta;
if (twistCoefficient < (-PI / 6.0f)) {
twistCoefficient = 1.0f;
} else {
twistCoefficient = 0.0f;
}
}
if (twistTheta < 0.0f) {
if (left) {
ulnarCorrection -= glm::sign(ulnarDiff) * (fabsf(ulnarDiff) / PI) * 180.0f * twistCoefficient;
} else {
ulnarCorrection += glm::sign(ulnarDiff) * (fabsf(ulnarDiff) / PI) * 180.0f * twistCoefficient;
}
} else {
if (left) {
ulnarCorrection += glm::sign(ulnarDiff) * (fabsf(ulnarDiff) / PI) * 180.0f * twistCoefficient;
} else {
ulnarCorrection -= glm::sign(ulnarDiff) * (fabsf(ulnarDiff) / PI) * 180.0f * twistCoefficient;
}
}
if (fabsf(ulnarCorrection) > 100.0f) {
ulnarCorrection = glm::sign(ulnarCorrection) * 100.0f;
}
currentWristCoefficient += ulnarCorrection;
}
return currentWristCoefficient;
}
static float computeTwistCompensation(float twistTheta, bool left) {
const float TWIST_DEADZONE = PI / 2.0f;
float twistCorrection = 0.0f;
if (fabsf(twistTheta) > TWIST_DEADZONE) {
twistCorrection = glm::sign(twistTheta) * ((fabsf(twistTheta) - TWIST_DEADZONE) / PI) * 90.0f;
}
// limit the twist correction
if (fabsf(twistCorrection) > 30.0f) {
twistCorrection = glm::sign(twistCorrection) * 30.0f;
}
return twistCorrection;
}
static float computeFlexCompensation(float flexTheta, bool left) {
const float FLEX_BOUNDARY = PI / 6.0f;
const float EXTEND_BOUNDARY = -PI / 4.0f;
float flexCorrection = 0.0f;
float currentWristCoefficient = 0.0f;
if (flexTheta > FLEX_BOUNDARY) {
flexCorrection = ((flexTheta - FLEX_BOUNDARY) / PI) * 60.0f;
} else if (flexTheta < EXTEND_BOUNDARY) {
flexCorrection = ((flexTheta - EXTEND_BOUNDARY) / PI) * 60.0f;
}
if (fabsf(flexCorrection) > 175.0f) {
flexCorrection = glm::sign(flexCorrection) * 175.0f;
}
if (left) {
currentWristCoefficient += flexCorrection;
} else {
currentWristCoefficient -= flexCorrection;
}
return currentWristCoefficient;
}
static float getAxisThetaFromRotation(glm::vec3 axis, glm::quat rotation) {
//get the flex/extension of the wrist rotation
glm::quat rotationAboutTheAxis;
glm::quat rotationOrthoganalToAxis;
swingTwistDecomposition(rotation, axis, rotationOrthoganalToAxis, rotationAboutTheAxis);
if (rotationAboutTheAxis.w < 0.0f) {
rotationAboutTheAxis *= -1.0f;
}
glm::vec3 rotAxis = glm::axis(rotationAboutTheAxis);
float axisTheta = glm::sign(glm::dot(rotAxis, axis)) * glm::angle(rotationAboutTheAxis);
return axisTheta;
}
bool Rig::calculateElbowPoleVectorOptimized(int handIndex, int elbowIndex, int shoulderIndex, bool left, glm::vec3& poleVector) {
AnimPose handPose = _externalPoseSet._absolutePoses[handIndex];
AnimPose shoulderPose = _externalPoseSet._absolutePoses[shoulderIndex];
AnimPose elbowPose = _externalPoseSet._absolutePoses[elbowIndex];
AnimPose absoluteShoulderPose = getAbsoluteDefaultPose(shoulderIndex);
AnimPose absoluteHandPose = getAbsoluteDefaultPose(handIndex);
float defaultArmLength = glm::length(absoluteHandPose.trans() - absoluteShoulderPose.trans());
glm::vec3 armToHand = handPose.trans() - shoulderPose.trans();
glm::vec3 unitAxis;
float axisLength = glm::length(armToHand);
if (axisLength > 0.0f) {
unitAxis = armToHand / axisLength;
} else {
unitAxis = Vectors::UNIT_Y;
}
if ((armToHand.z < 0.0f) && (armToHand.y < 0.0f)) {
// turn off the poleVector when the hand is back and down
return false;
}
// get the pole vector theta based on the hand position relative to the shoulder.
float positionalTheta = getHandPositionTheta(armToHand, defaultArmLength, left);
// now we calculate the contribution of the hand rotation relative to the arm
glm::quat relativeHandRotation = (elbowPose.inverse() * handPose).rot();
if (relativeHandRotation.w < 0.0f) {
relativeHandRotation *= -1.0f;
}
// find the thetas, hand relative to avatar arm
const glm::vec3 ULNAR_ROTATION_AXIS = Vectors::UNIT_Z;
const glm::vec3 TWIST_ROTATION_AXIS = Vectors::UNIT_Y;
const glm::vec3 FLEX__ROTATION_AXIS = Vectors::UNIT_X;
float ulnarDeviationTheta = getAxisThetaFromRotation(ULNAR_ROTATION_AXIS, relativeHandRotation);
float flexTheta = getAxisThetaFromRotation(FLEX__ROTATION_AXIS, relativeHandRotation);
float trueTwistTheta = getAxisThetaFromRotation(TWIST_ROTATION_AXIS, relativeHandRotation);
const float HALFWAY_ANGLE = PI / 2.0f;
const float SMOOTHING_COEFFICIENT = 0.5f;
if (left) {
if (glm::sign(ulnarDeviationTheta) != glm::sign(_ulnarRadialThetaRunningAverageLeft) && fabsf(ulnarDeviationTheta) > HALFWAY_ANGLE) {
// don't allow the theta to cross the 180 degree limit. ie don't go from 179 to -179 degrees
ulnarDeviationTheta = -1.0f * ulnarDeviationTheta;
}
if (glm::sign(flexTheta) != glm::sign(_flexThetaRunningAverageLeft) && fabsf(flexTheta) > HALFWAY_ANGLE) {
// don't allow the theta to cross the 180 degree limit.
flexTheta = -1.0f * flexTheta;
}
if (glm::sign(trueTwistTheta) != glm::sign(_twistThetaRunningAverageLeft) && fabsf(trueTwistTheta) > HALFWAY_ANGLE) {
// don't allow the theta to cross the 180 degree limit.
trueTwistTheta = -1.0f * trueTwistTheta;
}
// put some smoothing on the thetas
_ulnarRadialThetaRunningAverageLeft = ulnarDeviationTheta;
_flexThetaRunningAverageLeft = SMOOTHING_COEFFICIENT * _flexThetaRunningAverageLeft + (1.0f - SMOOTHING_COEFFICIENT) * flexTheta;
_twistThetaRunningAverageLeft = SMOOTHING_COEFFICIENT * _twistThetaRunningAverageLeft + (1.0f - SMOOTHING_COEFFICIENT) * trueTwistTheta;
} else {
if (glm::sign(ulnarDeviationTheta) != glm::sign(_ulnarRadialThetaRunningAverageRight) && fabsf(ulnarDeviationTheta) > HALFWAY_ANGLE) {
// don't allow the theta to cross the 180 degree limit. ie don't go from 179 to -179 degrees
ulnarDeviationTheta = -1.0f * ulnarDeviationTheta;
}
if (glm::sign(flexTheta) != glm::sign(_flexThetaRunningAverageRight) && fabsf(flexTheta) > HALFWAY_ANGLE) {
// don't allow the theta to cross the 180 degree limit.
flexTheta = -1.0f * flexTheta;
}
if (glm::sign(trueTwistTheta) != glm::sign(_twistThetaRunningAverageRight) && fabsf(trueTwistTheta) > HALFWAY_ANGLE) {
// don't allow the theta to cross the 180 degree limit.
trueTwistTheta = -1.0f * trueTwistTheta;
}
// put some smoothing on the thetas
_twistThetaRunningAverageRight = SMOOTHING_COEFFICIENT * _twistThetaRunningAverageRight + (1.0f - SMOOTHING_COEFFICIENT) * trueTwistTheta;
_flexThetaRunningAverageRight = SMOOTHING_COEFFICIENT * _flexThetaRunningAverageRight + (1.0f - SMOOTHING_COEFFICIENT) * flexTheta;
_ulnarRadialThetaRunningAverageRight = ulnarDeviationTheta;
}
// get the correction angle for each axis and add it to the base pole vector theta
float currentWristCoefficient = 0.0f;
if (left) {
currentWristCoefficient += computeTwistCompensation(_twistThetaRunningAverageLeft, left);
currentWristCoefficient += computeFlexCompensation(_flexThetaRunningAverageLeft, left);
//currentWristCoefficient += computeUlnarRadialCompensation(_ulnarRadialThetaRunningAverageLeft, _twistThetaRunningAverageLeft, left);
} else {
currentWristCoefficient += computeTwistCompensation(_twistThetaRunningAverageRight, left);
currentWristCoefficient += computeFlexCompensation(_flexThetaRunningAverageRight, left);
//currentWristCoefficient += computeUlnarRadialCompensation(_ulnarRadialThetaRunningAverageRight, _twistThetaRunningAverageRight, left);
}
// find the previous contribution of the wrist and add the current wrist correction to it
if (left) {
_lastWristCoefficientLeft = _lastThetaLeft - _lastPositionThetaLeft;
_lastWristCoefficientLeft += currentWristCoefficient;
_lastPositionThetaLeft = positionalTheta;
_lastThetaLeft = positionalTheta + _lastWristCoefficientLeft;
} else {
_lastWristCoefficientRight = _lastThetaRight - _lastPositionThetaRight;
_lastWristCoefficientRight += currentWristCoefficient;
_lastPositionThetaRight = positionalTheta;
_lastThetaRight = positionalTheta + _lastWristCoefficientRight;
}
// limit the correction anatomically possible angles and change to radians
const float LOWER_ANATOMICAL_ANGLE = 175.0f;
const float UPPER_ANATOMICAL_ANGLE = 50.0f;
// make the lower boundary vary with the body
float lowerBoundary = LOWER_ANATOMICAL_ANGLE;
if (fabsf(positionalTheta) < LOWER_ANATOMICAL_ANGLE) {
lowerBoundary = positionalTheta;
}
float thetaRadians = 0.0f;
if (left) {
if (_lastThetaLeft > -UPPER_ANATOMICAL_ANGLE) {
_lastThetaLeft = -UPPER_ANATOMICAL_ANGLE;
}
if (_lastThetaLeft < lowerBoundary) {
_lastThetaLeft = lowerBoundary;
}
// convert to radians and make 180 0 to match pole vector theta
thetaRadians = ((180.0f - _lastThetaLeft) / 180.0f)*PI;
} else {
if (_lastThetaRight < UPPER_ANATOMICAL_ANGLE) {
_lastThetaRight = UPPER_ANATOMICAL_ANGLE;
}
if (_lastThetaRight > lowerBoundary) {
_lastThetaRight = lowerBoundary;
}
// convert to radians and make 180 0 to match pole vector theta
thetaRadians = ((180.0f - _lastThetaRight) / 180.0f)*PI;
}
// convert the final theta to a pole vector value
float poleVectorXValue = -1.0f * sinf(thetaRadians);
float poleVectorYValue = -1.0f * cosf(thetaRadians);
float poleVectorZValue = 0.0f;
glm::vec3 thetaVector(poleVectorXValue, poleVectorYValue, poleVectorZValue);
glm::vec3 up = Vectors::UNIT_Y;
glm::vec3 fwd = armToHand/glm::length(armToHand);
glm::vec3 u, v, w;
generateBasisVectors(fwd, up, u, v, w);
AnimPose armAxisPose(glm::mat4(glm::vec4(-w, 0.0f), glm::vec4(v, 0.0f), glm::vec4(u, 0.0f), glm::vec4(glm::vec3(0.0f, 0.0f, 0.0f), 1.0f)));
poleVector = armAxisPose * thetaVector;
return true;
}
bool Rig::calculateElbowPoleVector(int handIndex, int elbowIndex, int armIndex, int oppositeArmIndex, glm::vec3& poleVector) const {
// The resulting Pole Vector is calculated as the sum of a three vectors.
// The first is the vector with direction shoulder-hand. The module of this vector is inversely proportional to the strength of the resulting Pole Vector.

View file

@ -258,7 +258,6 @@ protected:
void calcAnimAlpha(float speed, const std::vector<float>& referenceSpeeds, float* alphaOut) const;
bool calculateElbowPoleVector(int handIndex, int elbowIndex, int armIndex, int oppositeArmIndex, glm::vec3& poleVector) const;
bool calculateElbowPoleVectorOptimized(int handIndex, int elbowIndex, int shoulderIndex, bool left, glm::vec3& poleVector);
glm::vec3 calculateKneePoleVector(int footJointIndex, int kneeJoint, int upLegIndex, int hipsIndex, const AnimPose& targetFootPose) const;
glm::vec3 deflectHandFromTorso(const glm::vec3& handPosition, const HFMJointShapeInfo& hipsShapeInfo, const HFMJointShapeInfo& spineShapeInfo,
const HFMJointShapeInfo& spine1ShapeInfo, const HFMJointShapeInfo& spine2ShapeInfo) const;
@ -420,19 +419,6 @@ protected:
bool _computeNetworkAnimation { false };
bool _sendNetworkNode { false };
float _twistThetaRunningAverageLeft { 0.0f };
float _flexThetaRunningAverageLeft { 0.0f };
float _ulnarRadialThetaRunningAverageLeft { 0.0f };
float _twistThetaRunningAverageRight { 0.0f };
float _flexThetaRunningAverageRight { 0.0f };
float _ulnarRadialThetaRunningAverageRight { 0.0f };
float _lastThetaLeft { 0.0f };
float _lastThetaRight { 0.0f };
float _lastWristCoefficientRight { 0.0f };
float _lastWristCoefficientLeft { 0.0f };
float _lastPositionThetaLeft { 0.0f };
float _lastPositionThetaRight { 0.0f };
AnimContext _lastContext;
AnimVariantMap _lastAnimVars;