Merge pull request #3277 from AndrewMeadows/ragdoll

Ragdoll Part 10: a little more stability
This commit is contained in:
Philip Rosedale 2014-08-13 19:05:01 -07:00
commit 395f643f1b
4 changed files with 106 additions and 55 deletions

View file

@ -206,9 +206,9 @@ void MyAvatar::simulate(float deltaTime) {
{
PerformanceTimer perfTimer("ragdoll");
if (Menu::getInstance()->isOptionChecked(MenuOption::CollideAsRagdoll)) {
const float minError = 0.01f;
const float maxIterations = 10;
const quint64 maxUsec = 2000;
const float minError = 0.00001f;
const float maxIterations = 3;
const quint64 maxUsec = 4000;
_physicsSimulation.setTranslation(_position);
_physicsSimulation.stepForward(deltaTime, minError, maxIterations, maxUsec);
} else {

View file

@ -432,6 +432,9 @@ bool SkeletonModel::getHeadPosition(glm::vec3& headPosition) const {
}
bool SkeletonModel::getNeckPosition(glm::vec3& neckPosition) const {
if (Menu::getInstance()->isOptionChecked(MenuOption::CollideAsRagdoll)) {
return isActive() && getVisibleJointPositionInWorldFrame(_geometry->getFBXGeometry().neckJointIndex, neckPosition);
}
return isActive() && getJointPositionInWorldFrame(_geometry->getFBXGeometry().neckJointIndex, neckPosition);
}
@ -445,11 +448,16 @@ bool SkeletonModel::getNeckParentRotationFromDefaultOrientation(glm::quat& neckP
}
int parentIndex = geometry.joints.at(geometry.neckJointIndex).parentIndex;
glm::quat worldFrameRotation;
if (getJointRotationInWorldFrame(parentIndex, worldFrameRotation)) {
neckParentRotation = worldFrameRotation * _jointStates[parentIndex].getFBXJoint().inverseDefaultRotation;
return true;
bool success = false;
if (Menu::getInstance()->isOptionChecked(MenuOption::CollideAsRagdoll)) {
success = getVisibleJointRotationInWorldFrame(parentIndex, worldFrameRotation);
} else {
success = getJointRotationInWorldFrame(parentIndex, worldFrameRotation);
}
return false;
if (success) {
neckParentRotation = worldFrameRotation * _jointStates[parentIndex].getFBXJoint().inverseDefaultRotation;
}
return success;
}
bool SkeletonModel::getEyePositions(glm::vec3& firstEyePosition, glm::vec3& secondEyePosition) const {

View file

@ -13,47 +13,76 @@
#include "Shape.h"
#include "SharedUtil.h"
ContactPoint::ContactPoint() : _lastFrame(0), _shapeA(NULL), _shapeB(NULL),
_offsetA(0.0f), _offsetB(0.0f), _normal(0.0f) {
// This parameter helps keep the actual point of contact slightly inside each shape
// which allows the collisions to happen almost every frame for more frequent updates.
const float CONTACT_PENETRATION_ALLOWANCE = 0.005f;
ContactPoint::ContactPoint() :
_lastFrame(0), _shapeA(NULL), _shapeB(NULL),
_offsetA(0.0f), _offsetB(0.0f),
_relativeMassA(0.5f), _relativeMassB(0.5f),
_numPointsA(0), _numPoints(0), _normal(0.0f) {
}
ContactPoint::ContactPoint(const CollisionInfo& collision, quint32 frame) : _lastFrame(frame),
_shapeA(collision.getShapeA()), _shapeB(collision.getShapeB()), _offsetA(0.0f), _offsetB(0.0f),
ContactPoint::ContactPoint(const CollisionInfo& collision, quint32 frame) :
_lastFrame(frame), _shapeA(collision.getShapeA()), _shapeB(collision.getShapeB()),
_offsetA(0.0f), _offsetB(0.0f),
_relativeMassA(0.5f), _relativeMassB(0.5f),
_numPointsA(0), _numPoints(0), _normal(0.0f) {
_contactPoint = collision._contactPoint - 0.5f * collision._penetration;
_offsetA = collision._contactPoint - _shapeA->getTranslation();
_offsetB = collision._contactPoint - collision._penetration - _shapeB->getTranslation();
glm::vec3 pointA = collision._contactPoint;
glm::vec3 pointB = collision._contactPoint - collision._penetration;
float pLength = glm::length(collision._penetration);
if (pLength > EPSILON) {
_normal = collision._penetration / pLength;
}
if (_shapeA->getID() > _shapeB->getID()) {
// swap so that _shapeA always has lower ID
_shapeA = collision.getShapeB();
_shapeB = collision.getShapeA();
glm::vec3 temp = _offsetA;
_offsetA = _offsetB;
_offsetB = temp;
_normal = - _normal;
pointA = pointB;
pointB = collision._contactPoint;
}
// bring the contact points inside the shapes to help maintain collision updates
pointA -= CONTACT_PENETRATION_ALLOWANCE * _normal;
pointB += CONTACT_PENETRATION_ALLOWANCE * _normal;
_offsetA = pointA - _shapeA->getTranslation();
_offsetB = pointB - _shapeB->getTranslation();
_shapeA->getVerletPoints(_points);
_numPointsA = _points.size();
_shapeB->getVerletPoints(_points);
_numPoints = _points.size();
// compute and cache relative masses
float massA = EPSILON;
for (int i = 0; i < _numPointsA; ++i) {
massA += _points[i]->getMass();
}
float massB = EPSILON;
for (int i = _numPointsA; i < _numPoints; ++i) {
massB += _points[i]->getMass();
}
float invTotalMass = 1.0f / (massA + massB);
_relativeMassA = massA * invTotalMass;
_relativeMassB = massB * invTotalMass;
// _contactPoint will be the weighted average of the two
_contactPoint = _relativeMassA * pointA + _relativeMassB * pointB;
// compute offsets for shapeA
for (int i = 0; i < _numPointsA; ++i) {
glm::vec3 offset = _points[i]->_position - collision._contactPoint;
glm::vec3 offset = _points[i]->_position - pointA;
_offsets.push_back(offset);
_distances.push_back(glm::length(offset));
}
// compute offsets for shapeB
for (int i = _numPointsA; i < _numPoints; ++i) {
glm::vec3 offset = _points[i]->_position - collision._contactPoint + collision._penetration;
glm::vec3 offset = _points[i]->_position - pointB;
_offsets.push_back(offset);
_distances.push_back(glm::length(offset));
}
@ -61,8 +90,7 @@ ContactPoint::ContactPoint(const CollisionInfo& collision, quint32 frame) : _las
// virtual
float ContactPoint::enforce() {
int numPoints = _points.size();
for (int i = 0; i < numPoints; ++i) {
for (int i = 0; i < _numPoints; ++i) {
glm::vec3& position = _points[i]->_position;
// TODO: use a fast distance approximation
float newDistance = glm::distance(_contactPoint, position);
@ -82,8 +110,8 @@ void ContactPoint::buildConstraints() {
glm::vec3 pointA = _shapeA->getTranslation() + _offsetA;
glm::vec3 pointB = _shapeB->getTranslation() + _offsetB;
glm::vec3 penetration = pointA - pointB;
float pDotN = glm::dot(penetration, _normal);
bool actuallyMovePoints = (pDotN > EPSILON);
float pDotN = glm::dot(penetration, _normal);
bool constraintViolation = (pDotN > CONTACT_PENETRATION_ALLOWANCE);
// the contact point will be the average of the two points on the shapes
_contactPoint = 0.5f * (pointA + pointB);
@ -96,39 +124,45 @@ void ContactPoint::buildConstraints() {
// that this makes it easier for limbs to tunnel through during collisions.
const float HACK_STRENGTH = 0.5f;
int numPoints = _points.size();
for (int i = 0; i < numPoints; ++i) {
VerletPoint* point = _points[i];
glm::vec3 offset = _offsets[i];
// split delta into parallel and perpendicular components
glm::vec3 delta = _contactPoint + offset - point->_position;
glm::vec3 paraDelta = glm::dot(delta, _normal) * _normal;
glm::vec3 perpDelta = delta - paraDelta;
// use the relative sizes of the components to decide how much perpenducular delta to use
// perpendicular < parallel ==> static friciton ==> perpFactor = 1.0
// perpendicular > parallel ==> dynamic friciton ==> cap to length of paraDelta ==> perpFactor < 1.0
float paraLength = glm::length(paraDelta);
float perpLength = glm::length(perpDelta);
float perpFactor = (perpLength > paraLength && perpLength > EPSILON) ? (paraLength / perpLength) : 1.0f;
// recombine the two components to get the final delta
delta = paraDelta + perpFactor * perpDelta;
if (constraintViolation) {
for (int i = 0; i < _numPoints; ++i) {
VerletPoint* point = _points[i];
glm::vec3 offset = _offsets[i];
glm::vec3 targetPosition = point->_position + delta;
_distances[i] = glm::distance(_contactPoint, targetPosition);
if (actuallyMovePoints) {
// split delta into parallel and perpendicular components
glm::vec3 delta = _contactPoint + offset - point->_position;
glm::vec3 paraDelta = glm::dot(delta, _normal) * _normal;
glm::vec3 perpDelta = delta - paraDelta;
// use the relative sizes of the components to decide how much perpenducular delta to use
// perpendicular < parallel ==> static friction ==> perpFactor = 1.0
// perpendicular > parallel ==> dynamic friction ==> cap to length of paraDelta ==> perpFactor < 1.0
float paraLength = glm::length(paraDelta);
float perpLength = glm::length(perpDelta);
float perpFactor = (perpLength > paraLength && perpLength > EPSILON) ? (paraLength / perpLength) : 1.0f;
// recombine the two components to get the final delta
delta = paraDelta + perpFactor * perpDelta;
glm::vec3 targetPosition = point->_position + delta;
_distances[i] = glm::distance(_contactPoint, targetPosition);
point->_position += HACK_STRENGTH * delta;
}
} else {
for (int i = 0; i < _numPoints; ++i) {
_distances[i] = glm::length(glm::length(_offsets[i]));
}
}
}
void ContactPoint::updateContact(const CollisionInfo& collision, quint32 frame) {
_lastFrame = frame;
_contactPoint = collision._contactPoint - 0.5f * collision._penetration;
_offsetA = collision._contactPoint - collision._shapeA->getTranslation();
_offsetB = collision._contactPoint - collision._penetration - collision._shapeB->getTranslation();
// compute contact points on surface of each shape
glm::vec3 pointA = collision._contactPoint;
glm::vec3 pointB = pointA - collision._penetration;
// compute the normal (which points from A into B)
float pLength = glm::length(collision._penetration);
if (pLength > EPSILON) {
_normal = collision._penetration / pLength;
@ -138,19 +172,26 @@ void ContactPoint::updateContact(const CollisionInfo& collision, quint32 frame)
if (collision._shapeA->getID() > collision._shapeB->getID()) {
// our _shapeA always has lower ID
glm::vec3 temp = _offsetA;
_offsetA = _offsetB;
_offsetB = temp;
_normal = - _normal;
pointA = pointB;
pointB = collision._contactPoint;
}
// bring the contact points inside the shapes to help maintain collision updates
pointA -= CONTACT_PENETRATION_ALLOWANCE * _normal;
pointB += CONTACT_PENETRATION_ALLOWANCE * _normal;
// compute relative offsets to per-shape contact points
_offsetA = pointA - collision._shapeA->getTranslation();
_offsetB = pointB - collision._shapeB->getTranslation();
// compute offsets for shapeA
assert(_offsets.size() == _numPoints);
for (int i = 0; i < _numPointsA; ++i) {
_offsets[i] = (_points[i]->_position - collision._contactPoint);
_offsets[i] = _points[i]->_position - pointA;
}
// compute offsets for shapeB
for (int i = _numPointsA; i < _numPoints; ++i) {
_offsets[i] = (_points[i]->_position - collision._contactPoint + collision._penetration);
_offsets[i] = _points[i]->_position - pointB;
}
}

View file

@ -41,6 +41,8 @@ protected:
glm::vec3 _offsetA; // contact point relative to A's center
glm::vec3 _offsetB; // contact point relative to B's center
glm::vec3 _contactPoint; // a "virtual" point that is added to the simulation
float _relativeMassA; // massA / totalMass
float _relativeMassB; // massB / totalMass
int _numPointsA; // number of VerletPoints that belong to _shapeA
int _numPoints; // total number of VerletPoints
QVector<VerletPoint*> _points; // points that belong to colliding shapes