Added Faceshift-network library.

This commit is contained in:
Andrzej Kapolka 2013-08-30 17:19:41 -07:00
parent c57118a64d
commit 1f468a77f2
4 changed files with 923 additions and 0 deletions

View file

@ -0,0 +1,11 @@
cmake_minimum_required(VERSION 2.8)
set(TARGET_NAME faceshift)
project(${TARGET_NAME})
# grab the implemenation and header files
file(GLOB FACESHIFT_SRCS include/*.h src/*.cpp)
include_directories(include)
add_library(${TARGET_NAME} ${FACESHIFT_SRCS})

View file

@ -0,0 +1,410 @@
#pragma once
#ifndef FSBINARYSTREAM_H
#define FSBINARYSTREAM_H
// ==========================================================================
// Copyright (C) 2012 faceshift AG, and/or its licensors. All rights reserved.
//
// the software is free to use and provided "as is", without warranty of any kind.
// faceshift AG does not make and hereby disclaims any express or implied
// warranties including, but not limited to, the warranties of
// non-infringement, merchantability or fitness for a particular purpose,
// or arising from a course of dealing, usage, or trade practice. in no
// event will faceshift AG and/or its licensors be liable for any lost
// revenues, data, or profits, or special, direct, indirect, or
// consequential damages, even if faceshift AG and/or its licensors has
// been advised of the possibility or probability of such damages.
// ==========================================================================
/**
* Define the HAVE_EIGEN preprocessor define, if you are using the Eigen library, it allows you to easily convert our tracked data from and to eigen
* See fsVector3f and fsQuaternionf for more details
**/
#ifdef HAVE_EIGEN
#include <Eigen/Core>
#include <Eigen/Geometry>
#endif
#ifdef _MSC_VER
#include <memory>
#else
#include <tr1/memory>
#endif
#include <string>
#include <vector>
#include <stdint.h>
/*******************************************************************************************
* This first part of the file contains a definition of the datastructures holding the
* tracking results
******************************************************************************************/
namespace fs {
/**
* A floating point three-vector.
*
* To keep these networking classes as simple as possible, we do not implement the
* vector semantics here, use Eigen for that purpose. The class just holds three named floats,
* and you have to interpret them yourself.
**/
struct fsVector3f {
float x,y,z;
fsVector3f() {}
#ifdef HAVE_EIGEN
explicit fsVector3f(const Eigen::Matrix<float,3,1> &v) : x(v[0]), y(v[1]), z(v[2]) {}
Eigen::Map< Eigen::Matrix<float,3,1> > eigen() const { return Eigen::Map<Eigen::Matrix<float,3,1> >((float*)this); }
#endif
};
/**
* An integer three-vector.
**/
struct fsVector3i {
int32_t x,y,z;
fsVector3i() {}
#ifdef HAVE_EIGEN
explicit fsVector3i(const Eigen::Matrix<int32_t,3,1> &v) : x(v[0]), y(v[1]), z(v[2]) {}
Eigen::Map<Eigen::Matrix<int32_t,3,1> > eigen() const { return Eigen::Map<Eigen::Matrix<int32_t,3,1> >((int32_t*)this); }
#endif
};
/**
* An integer four-vector.
**/
struct fsVector4i {
int32_t x,y,z,w;
fsVector4i() {}
#ifdef HAVE_EIGEN
explicit fsVector4i(const Eigen::Matrix<int32_t,4,1> &v) : x(v[0]), y(v[1]), z(v[2]), w(v[3]) {}
Eigen::Map<Eigen::Matrix<int32_t,4,1,Eigen::DontAlign> > eigen() const { return Eigen::Map<Eigen::Matrix<int32_t,4,1,Eigen::DontAlign> >((int32_t*)this); }
#endif
};
/**
* Structure holding the data of a quaternion.
*
*To keep these networking classes as simple as possible, we do not implement the
* quaternion semantics here. The class just holds four named floats, and you have to interpret them yourself.
*
* If you have Eigen you can just cast this class to an Eigen::Quaternionf and use it.
*
* The quaternion is defined as w+xi+yj+zk
**/
struct fsQuaternionf {
float x,y,z,w;
fsQuaternionf() {}
#ifdef HAVE_EIGEN
explicit fsQuaternionf(const Eigen::Quaternionf &q) : x(q.x()), y(q.y()), z(q.z()), w(q.w()) {}
Eigen::Quaternionf eigen() const { return Eigen::Quaternionf(w,x,y,z); }
#endif
};
/**
* A structure containing the data tracked for a single frame.
**/
class fsTrackingData {
public:
//! time stamp in ms
double m_timestamp;
//! flag whether tracking was successful [0,1]
bool m_trackingSuccessful;
//! head pose
fsQuaternionf m_headRotation;
fsVector3f m_headTranslation;
//! eye gaze in degrees
float m_eyeGazeLeftPitch;
float m_eyeGazeLeftYaw;
float m_eyeGazeRightPitch;
float m_eyeGazeRightYaw;
//! blendshape coefficients
std::vector<float> m_coeffs;
//! marker positions - format specified in faceshift
std::vector< fsVector3f > m_markers;
};
/**
* A structure containing vertex information
*/
class fsVertexData {
public:
//! vertex data
std::vector<fsVector3f> m_vertices;
#ifdef HAVE_EIGEN
Eigen::Map<Eigen::Matrix<float,3,Eigen::Dynamic> > eigen() { return Eigen::Map<Eigen::Matrix<float,3,Eigen::Dynamic> >((float*)m_vertices.data(),3,m_vertices.size()); }
#endif
};
/**
* A strucutre containing mesh information
*/
class fsMeshData {
public:
//! topology (quads)
std::vector<fsVector4i> m_quads;
//! topology (triangles)
std::vector<fsVector3i> m_tris;
//! vertex data
fsVertexData m_vertex_data;
#ifdef HAVE_EIGEN
Eigen::Map<Eigen::Matrix<int32_t,4,Eigen::Dynamic,Eigen::DontAlign> > quads_eigen() { return Eigen::Map<Eigen::Matrix<int32_t,4,Eigen::Dynamic,Eigen::DontAlign> >((int32_t*)m_quads.data(),4,m_quads.size()); }
Eigen::Map<Eigen::Matrix<int32_t,3,Eigen::Dynamic> > tris_eigen() { return Eigen::Map<Eigen::Matrix<int32_t,3,Eigen::Dynamic> >((int32_t*)m_tris.data(),3,m_tris.size()); }
Eigen::Map<Eigen::Matrix<float,3,Eigen::Dynamic> > vertices_eigen() { return m_vertex_data.eigen(); }
#endif
};
/*******************************************************************************************
* Now follows a definition of datastructures encapsulating the network messages
******************************************************************************************/
/** Predeclaration of the message types available in faceshift **/
// Inbound
class fsMsgStartCapturing;
class fsMsgStopCapturing;
class fsMsgCalibrateNeutral;
class fsMsgSendMarkerNames;
class fsMsgSendBlendshapeNames;
class fsMsgSendRig;
// Outbound
class fsMsgTrackingState;
class fsMsgMarkerNames;
class fsMsgBlendshapeNames;
class fsMsgRig;
/**
* Base class of all message that faceshift is sending.
* A class can be queried for its type, using the id() function for use in a switch statement, or by using a dynamic_cast.
**/
class fsMsg {
public:
virtual ~fsMsg() {}
enum MessageType {
// Messages to control faceshift via the network
// These are sent from the client to faceshift
MSG_IN_START_TRACKING = 44344,
MSG_IN_STOP_TRACKING = 44444,
MSG_IN_CALIBRATE_NEUTRAL = 44544,
MSG_IN_SEND_MARKER_NAMES = 44644,
MSG_IN_SEND_BLENDSHAPE_NAMES = 44744,
MSG_IN_SEND_RIG = 44844,
MSG_IN_HEADPOSE_RELATIVE = 44944,
MSG_IN_HEADPOSE_ABSOLUTE = 44945,
// Messages containing tracking information
// These are sent form faceshift to the client application
MSG_OUT_TRACKING_STATE = 33433,
MSG_OUT_MARKER_NAMES = 33533,
MSG_OUT_BLENDSHAPE_NAMES = 33633,
MSG_OUT_RIG = 33733
};
virtual MessageType id() const = 0;
};
typedef std::tr1::shared_ptr<fsMsg> fsMsgPtr;
/*************
* Inbound
***********/
class fsMsgStartCapturing : public fsMsg {
public:
virtual ~fsMsgStartCapturing() {}
virtual MessageType id() const { return MSG_IN_START_TRACKING; }
};
class fsMsgStopCapturing : public fsMsg {
public:
virtual ~fsMsgStopCapturing() {}
virtual MessageType id() const { return MSG_IN_STOP_TRACKING; }
};
class fsMsgCalibrateNeutral : public fsMsg {
public:
virtual ~fsMsgCalibrateNeutral() {}
virtual MessageType id() const { return MSG_IN_CALIBRATE_NEUTRAL; }
};
class fsMsgSendMarkerNames : public fsMsg {
public:
virtual ~fsMsgSendMarkerNames() {}
virtual MessageType id() const { return MSG_IN_SEND_MARKER_NAMES; }
};
class fsMsgSendBlendshapeNames : public fsMsg {
public:
virtual ~fsMsgSendBlendshapeNames() {}
virtual MessageType id() const { return MSG_IN_SEND_BLENDSHAPE_NAMES; }
};
class fsMsgSendRig : public fsMsg {
public:
virtual ~fsMsgSendRig() {}
virtual MessageType id() const { return MSG_IN_SEND_RIG; }
};
class fsMsgHeadPoseRelative : public fsMsg {
public:
virtual ~fsMsgHeadPoseRelative() {}
virtual MessageType id() const { return MSG_IN_HEADPOSE_RELATIVE; }
};
class fsMsgHeadPoseAbsolute : public fsMsg {
public:
virtual ~fsMsgHeadPoseAbsolute() {}
virtual MessageType id() const { return MSG_IN_HEADPOSE_ABSOLUTE; }
};
/*************
* Outbound
***********/
class fsMsgTrackingState : public fsMsg {
public:
virtual ~fsMsgTrackingState() {}
/* */ fsTrackingData & tracking_data() /* */ { return m_tracking_data; }
const fsTrackingData & tracking_data() const { return m_tracking_data; }
virtual MessageType id() const { return MSG_OUT_TRACKING_STATE; }
private:
fsTrackingData m_tracking_data;
};
class fsMsgMarkerNames : public fsMsg {
public:
virtual ~fsMsgMarkerNames() {}
/* */ std::vector<std::string> & marker_names() /* */ { return m_marker_names; }
const std::vector<std::string> & marker_names() const { return m_marker_names; }
virtual MessageType id() const { return MSG_OUT_MARKER_NAMES; }
private:
std::vector<std::string> m_marker_names;
};
class fsMsgBlendshapeNames : public fsMsg {
public:
virtual ~fsMsgBlendshapeNames() {}
/* */ std::vector<std::string> & blendshape_names() /* */ { return m_blendshape_names; }
const std::vector<std::string> & blendshape_names() const { return m_blendshape_names; }
virtual MessageType id() const { return MSG_OUT_BLENDSHAPE_NAMES; }
private:
std::vector<std::string> m_blendshape_names;
};
class fsMsgRig : public fsMsg {
public:
virtual ~fsMsgRig() {}
virtual MessageType id() const { return MSG_OUT_RIG; }
/* */ fsMeshData & mesh() /* */ { return m_mesh; }
const fsMeshData & mesh() const { return m_mesh; }
/* */ std::vector<std::string> & blendshape_names() /* */ { return m_blendshape_names; }
const std::vector<std::string> & blendshape_names() const { return m_blendshape_names; }
/* */ std::vector<fsVertexData> & blendshapes() /* */ { return m_blendshapes; }
const std::vector<fsVertexData> & blendshapes() const { return m_blendshapes; }
private:
//! neutral mesh
fsMeshData m_mesh;
//! blendshape names
std::vector<std::string> m_blendshape_names;
//! blendshapes
std::vector<fsVertexData> m_blendshapes;
};
class fsMsgSignal : public fsMsg {
MessageType m_id;
public:
explicit fsMsgSignal(MessageType id) : m_id(id) {}
virtual ~fsMsgSignal() {}
virtual MessageType id() const { return m_id; }
};
/**
* Class to parse a faceshift data stream, and to create message to write into such a stream
*
* This needs to be connected with your networking methods by calling
*
* void received(int, const char *);
*
* whenever new data is available. After adding received data to the parser you can parse faceshift messages using the
*
* std::tr1::shared_ptr<fsMsg> get_message();
*
* to get the next message, if a full block of data has been received. This should be iterated until no more messages are in the buffer.
*
* You can also use this to encode messages to send back to faceshift. This works by calling the
*
* void encode_message(std::string &msg_out, const fsMsg &msg);
*
* methods (actually the specializations existing for each of our message types). This will encode the message into a
* binary string in msg_out. You then only need to push the resulting string over the network to faceshift.
*
* This class does not handle differences in endianness or other strange things that can happen when pushing data over the network.
* Should you have to adapt this to such a system, then it should be possible to do this by changing only the write_... and read_...
* functions in the accompanying cpp file, but so far there was no need for it.
**/
class fsBinaryStream {
public:
fsBinaryStream();
/**
* Use to push data into the parser. Typically called inside of your network receiver routine
**/
void received(long int, const char *);
/**
* After pushing data, you can try to extract messages from the stream. Process messages until a null pointer is returned.
**/
fsMsgPtr get_message();
/**
* When an invalid message is received, the valid field is set to false. No attempt is made to recover from the problem, you will have to disconnect.
**/
bool valid() const { return m_valid; }
void clear() { m_start = 0; m_end = 0; m_valid=true; }
// Inbound
static void encode_message(std::string &msg_out, const fsMsgTrackingState &msg);
static void encode_message(std::string &msg_out, const fsMsgStartCapturing &msg);
static void encode_message(std::string &msg_out, const fsMsgStopCapturing &msg);
static void encode_message(std::string &msg_out, const fsMsgCalibrateNeutral &msg);
static void encode_message(std::string &msg_out, const fsMsgSendMarkerNames &msg);
static void encode_message(std::string &msg_out, const fsMsgSendBlendshapeNames &msg);
static void encode_message(std::string &msg_out, const fsMsgSendRig &msg);
static void encode_message(std::string &msg_out, const fsMsgHeadPoseRelative &msg);
static void encode_message(std::string &msg_out, const fsMsgHeadPoseAbsolute &msg);
// Outbound
static void encode_message(std::string &msg_out, const fsTrackingData &msg);
static void encode_message(std::string &msg_out, const fsMsgMarkerNames &msg);
static void encode_message(std::string &msg_out, const fsMsgBlendshapeNames &msg);
static void encode_message(std::string &msg_out, const fsMsgRig &msg);
static void encode_message(std::string &msg_out, const fsMsgSignal &msg); // Generic Signal
private:
std::string m_buffer;
long int m_start;
long int m_end;
bool m_valid;
};
}
#endif // FSBINARYSTREAM_H

Binary file not shown.

View file

@ -0,0 +1,502 @@
// ==========================================================================
// Copyright (C) 2012 faceshift AG, and/or its licensors. All rights reserved.
//
// the software is free to use and provided "as is", without warranty of any kind.
// faceshift AG does not make and hereby disclaims any express or implied
// warranties including, but not limited to, the warranties of
// non-infringement, merchantability or fitness for a particular purpose,
// or arising from a course of dealing, usage, or trade practice. in no
// event will faceshift AG and/or its licensors be liable for any lost
// revenues, data, or profits, or special, direct, indirect, or
// consequential damages, even if faceshift AG and/or its licensors has
// been advised of the possibility or probability of such damages.
// ==========================================================================
#include "fsbinarystream.h"
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#define FSNETWORKVERSION 1
#ifdef FS_INTERNAL
#include <common/log.hpp>
#else
#define LOG_RELEASE_ERROR(...) { printf("ERROR: %20s:%6d", __FILE__, __LINE__); printf(__VA_ARGS__); }
#define LOG_RELEASE_WARNING(...) { printf("WARNING: %20s:%6d", __FILE__, __LINE__); printf(__VA_ARGS__); }
#define LOG_RELEASE_INFO(...) { printf("INFO: %20s:%6d", __FILE__, __LINE__); printf(__VA_ARGS__); }
#endif
namespace fs {
// Ids of the submessages for the tracking state
enum BlockId {
BLOCKID_INFO = 101,
BLOCKID_POSE = 102,
BLOCKID_BLENDSHAPES = 103,
BLOCKID_EYES = 104,
BLOCKID_MARKERS = 105
};
typedef long int Size;
struct BlockHeader {
uint16_t id;
uint16_t version;
uint32_t size;
BlockHeader(uint16_t _id=0,
uint32_t _size=0,
uint16_t _version=FSNETWORKVERSION
) : id(_id), version(_version), size(_size) {}
};
// Interprets the data at the position start in buffer as a T and increments start by sizeof(T)
// It should be sufficient to change/overload this function when you are on a wierd endian system
template<class T> bool read_pod(T &value, const std::string &buffer, Size &start) {
if(start+sizeof(T) > buffer.size()) return false;
value = *(const T*)(&buffer[start]);
start += sizeof(T);
return true;
}
bool read_pod(std::string &value, const std::string &buffer, Size &start) {
uint16_t len = 0;
if(!read_pod(len, buffer, start)) return false;
if(start+len>Size(buffer.size())) return false; // check whether we have enough data available
value.resize(len);
memcpy(&(value[0]), &buffer[start], len);
start+=len;
return true;
}
template<class T> bool read_vector(std::vector<T> & values, const std::string & buffer, Size & start) {
uint32_t len = 0;
if( !read_pod(len, buffer, start)) return false;
if( start+len*sizeof(T) > buffer.size() ) return false;
values.resize(len);
for(uint32_t i = 0; i < len; ++i) {
read_pod(values[i],buffer,start);
}
return true;
}
template<class T> bool read_small_vector(std::vector<T> & values, const std::string & buffer, Size & start) {
uint16_t len = 0;
if( !read_pod(len, buffer, start)) return false;
if( start+len*sizeof(T) > buffer.size() ) return false;
values.resize(len);
bool success = true;
for(uint16_t i = 0; i < len; ++i) {
success &= read_pod(values[i],buffer,start);
}
return success;
}
// Adds the bitpattern of the data to the end of the buffer.
// It should be sufficient to change/overload this function when you are on a wierd endian system
template <class T>
void write_pod(std::string &buffer, const T &value) {
Size start = buffer.size();
buffer.resize(start + sizeof(T));
*(T*)(&buffer[start]) = value;
start += sizeof(T);
}
// special write function for strings
void write_pod(std::string &buffer, const std::string &value) {
uint16_t len = uint16_t(value.size()); write_pod(buffer, len);
buffer.append(value);
}
template<class T> void write_vector(std::string & buffer, const std::vector<T> & values) {
uint32_t len = values.size();
write_pod(buffer,len);
for(uint32_t i = 0; i < len; ++i)
write_pod(buffer,values[i]);
}
template<class T> void write_small_vector(std::string & buffer, const std::vector<T> & values) {
uint16_t len = values.size();
write_pod(buffer,len);
for(uint16_t i = 0; i < len; ++i)
write_pod(buffer,values[i]);
}
void update_msg_size(std::string &buffer, Size start) {
*(uint32_t*)(&buffer[start+4]) = buffer.size() - sizeof(BlockHeader) - start;
}
void update_msg_size(std::string &buffer) {
*(uint32_t*)(&buffer[4]) = buffer.size() - sizeof(BlockHeader);
}
static void skipHeader( Size &start) {
start += sizeof(BlockHeader);
}
//! returns whether @param data contains enough data to read the block header
static bool headerAvailable(BlockHeader &header, const std::string &buffer, Size &start, const Size &end) {
if (end-start >= Size(sizeof(BlockHeader))) {
header = *(BlockHeader*)(&buffer[start]);
return true;
} else {
return false;
}
}
//! returns whether @param data contains data for a full block
static bool blockAvailable(const std::string &buffer, Size &start, const Size &end) {
BlockHeader header;
if (!headerAvailable(header, buffer, start, end)) return false;
return end-start >= Size(sizeof(header)+header.size);
}
fsBinaryStream::fsBinaryStream() : m_buffer(), m_start(0), m_end(0), m_valid(true) { m_buffer.resize(64*1024); } // Use a 64kb buffer by default
void fsBinaryStream::received(long int sz, const char *data) {
long int new_end = m_end + sz;
if (new_end > Size(m_buffer.size()) && m_start>0) {
// If newly received block is too large to fit into the buffer, but we already have processed data from the start of the buffer, then
// move memory to the front of the buffer
// The buffer only grows, such that it is always large enough to contain the largest message seen so far.
if (m_end>m_start) memmove(&m_buffer[0], &m_buffer[0] + m_start, m_end - m_start);
m_end = m_end - m_start;
m_start = 0;
new_end = m_end + sz;
}
if (new_end > Size(m_buffer.size())) m_buffer.resize(1.5*new_end);
memcpy(&m_buffer[0] + m_end, data, sz);
m_end += sz;
}
static bool decodeInfo(fsTrackingData & _trackingData, const std::string &buffer, Size &start) {
bool success = true;
success &= read_pod<double>(_trackingData.m_timestamp, buffer, start);
unsigned char tracking_successfull = 0;
success &= read_pod<unsigned char>( tracking_successfull, buffer, start );
_trackingData.m_trackingSuccessful = bool(tracking_successfull);
return success;
}
static bool decodePose(fsTrackingData & _trackingData, const std::string &buffer, Size &start) {
bool success = true;
success &= read_pod(_trackingData.m_headRotation.x, buffer, start);
success &= read_pod(_trackingData.m_headRotation.y, buffer, start);
success &= read_pod(_trackingData.m_headRotation.z, buffer, start);
success &= read_pod(_trackingData.m_headRotation.w, buffer, start);
success &= read_pod(_trackingData.m_headTranslation.x, buffer, start);
success &= read_pod(_trackingData.m_headTranslation.y, buffer, start);
success &= read_pod(_trackingData.m_headTranslation.z, buffer, start);
return success;
}
static bool decodeBlendshapes(fsTrackingData & _trackingData, const std::string &buffer, Size &start) {
return read_vector(_trackingData.m_coeffs, buffer, start);
}
static bool decodeEyeGaze(fsTrackingData & _trackingData, const std::string &buffer, Size &start) {
bool success = true;
success &= read_pod(_trackingData.m_eyeGazeLeftPitch , buffer, start);
success &= read_pod(_trackingData.m_eyeGazeLeftYaw , buffer, start);
success &= read_pod(_trackingData.m_eyeGazeRightPitch, buffer, start);
success &= read_pod(_trackingData.m_eyeGazeRightYaw , buffer, start);
return success;
}
static bool decodeMarkers(fsTrackingData & _trackingData, const std::string &buffer, Size &start) {
return read_small_vector( _trackingData.m_markers, buffer, start );
}
static bool decodeMarkerNames(fsMsgMarkerNames &_msg, const std::string &buffer, Size &start) {
return read_small_vector(_msg.marker_names(), buffer, start);
}
static bool decodeBlendshapeNames(fsMsgBlendshapeNames &_msg, const std::string &buffer, Size &start) {
return read_small_vector(_msg.blendshape_names(), buffer, start);
}
static bool decodeRig(fsMsgRig &_msg, const std::string &buffer, Size &start) {
bool success = true;
success &= read_vector(_msg.mesh().m_quads,buffer,start); // read quads
success &= read_vector(_msg.mesh().m_tris,buffer,start); // read triangles
success &= read_vector(_msg.mesh().m_vertex_data.m_vertices,buffer,start);// read neutral vertices
success &= read_small_vector(_msg.blendshape_names(),buffer,start); // read names
uint16_t bsize = 0;
success &= read_pod(bsize,buffer,start);
_msg.blendshapes().resize(bsize);
for(uint16_t i = 0;i < bsize; i++)
success &= read_vector(_msg.blendshapes()[i].m_vertices,buffer,start); // read blendshapes
return success;
}
bool is_valid_msg(int id) {
switch(id) {
case fsMsg::MSG_IN_START_TRACKING :
case fsMsg::MSG_IN_STOP_TRACKING :
case fsMsg::MSG_IN_CALIBRATE_NEUTRAL :
case fsMsg::MSG_IN_SEND_MARKER_NAMES :
case fsMsg::MSG_IN_SEND_BLENDSHAPE_NAMES:
case fsMsg::MSG_IN_SEND_RIG :
case fsMsg::MSG_IN_HEADPOSE_RELATIVE :
case fsMsg::MSG_IN_HEADPOSE_ABSOLUTE :
case fsMsg::MSG_OUT_TRACKING_STATE :
case fsMsg::MSG_OUT_MARKER_NAMES :
case fsMsg::MSG_OUT_BLENDSHAPE_NAMES :
case fsMsg::MSG_OUT_RIG : return true;
default:
LOG_RELEASE_ERROR("Invalid Message ID %d", id);
return false;
}
}
fsMsgPtr fsBinaryStream::get_message() {
BlockHeader super_block;
if( !headerAvailable(super_block, m_buffer, m_start, m_end) ) return fsMsgPtr();
if (!is_valid_msg(super_block.id)) { LOG_RELEASE_ERROR("Invalid superblock id"); m_valid = false; return fsMsgPtr(); }
if( !blockAvailable( m_buffer, m_start, m_end) ) return fsMsgPtr();
skipHeader(m_start);
long super_block_data_start = m_start;
switch (super_block.id) {
case fsMsg::MSG_IN_START_TRACKING: {
if (super_block.size > 0) { LOG_RELEASE_ERROR("Expected Size to be 0, not %d", super_block.size); m_valid = false; return fsMsgPtr(); }
return fsMsgPtr(new fsMsgStartCapturing() );
}; break;
case fsMsg::MSG_IN_STOP_TRACKING: {
if (super_block.size > 0) { LOG_RELEASE_ERROR("Expected Size to be 0, not %d", super_block.size); m_valid = false; return fsMsgPtr(); }
return fsMsgPtr(new fsMsgStopCapturing() );
}; break;
case fsMsg::MSG_IN_CALIBRATE_NEUTRAL: {
if (super_block.size > 0) { LOG_RELEASE_ERROR("Expected Size to be 0, not %d", super_block.size); m_valid = false; return fsMsgPtr(); }
return fsMsgPtr(new fsMsgCalibrateNeutral() );
}; break;
case fsMsg::MSG_IN_SEND_MARKER_NAMES: {
if (super_block.size > 0) { LOG_RELEASE_ERROR("Expected Size to be 0, not %d", super_block.size); m_valid = false; return fsMsgPtr(); }
return fsMsgPtr(new fsMsgSendMarkerNames() );
}; break;
case fsMsg::MSG_IN_SEND_BLENDSHAPE_NAMES: {
if (super_block.size > 0) { LOG_RELEASE_ERROR("Expected Size to be 0, not %d", super_block.size); m_valid = false; return fsMsgPtr(); }
return fsMsgPtr(new fsMsgSendBlendshapeNames() );
}; break;
case fsMsg::MSG_IN_SEND_RIG: {
if (super_block.size > 0) { LOG_RELEASE_ERROR("Expected Size to be 0, not %d", super_block.size); m_valid = false; return fsMsgPtr(); }
return fsMsgPtr(new fsMsgSendRig() );
}; break;
case fsMsg::MSG_IN_HEADPOSE_RELATIVE: {
if (super_block.size > 0) { LOG_RELEASE_ERROR("Expected Size to be 0, not %d", super_block.size); m_valid = false; return fsMsgPtr(); }
return fsMsgPtr(new fsMsgHeadPoseRelative() );
}; break;
case fsMsg::MSG_IN_HEADPOSE_ABSOLUTE: {
if (super_block.size > 0) { LOG_RELEASE_ERROR("Expected Size to be 0, not %d", super_block.size); m_valid = false; return fsMsgPtr(); }
return fsMsgPtr(new fsMsgHeadPoseAbsolute() );
}; break;
case fsMsg::MSG_OUT_MARKER_NAMES: {
std::tr1::shared_ptr< fsMsgMarkerNames > msg(new fsMsgMarkerNames());
if( !decodeMarkerNames(*msg, m_buffer, m_start )) { LOG_RELEASE_ERROR("Could not decode marker names"); m_valid = false; return fsMsgPtr(); }
uint64_t actual_size = m_start-super_block_data_start;
if( actual_size != super_block.size ) { LOG_RELEASE_ERROR("Block was promised to be of size %d, not %d", super_block.size, actual_size); m_valid = false; return fsMsgPtr(); }
return msg;
}; break;
case fsMsg::MSG_OUT_BLENDSHAPE_NAMES: {
std::tr1::shared_ptr< fsMsgBlendshapeNames > msg(new fsMsgBlendshapeNames() );
if( !decodeBlendshapeNames(*msg, m_buffer, m_start) ) { LOG_RELEASE_ERROR("Could not decode blendshape names"); m_valid = false; return fsMsgPtr(); }
uint64_t actual_size = m_start-super_block_data_start;
if( actual_size != super_block.size ) { LOG_RELEASE_ERROR("Block was promised to be of size %d, not %d", super_block.size, actual_size); m_valid = false; return fsMsgPtr(); }
return msg;
}; break;
case fsMsg::MSG_OUT_TRACKING_STATE: {
BlockHeader sub_block;
uint16_t num_blocks = 0;
if( !read_pod(num_blocks, m_buffer, m_start) ) { LOG_RELEASE_ERROR("Could not read num_blocks"); m_valid = false; return fsMsgPtr(); }
std::tr1::shared_ptr<fsMsgTrackingState> msg = std::tr1::shared_ptr<fsMsgTrackingState>(new fsMsgTrackingState());
for(int i = 0; i < num_blocks; i++) {
if( !headerAvailable(sub_block, m_buffer, m_start, m_end) ) { LOG_RELEASE_ERROR("could not read sub-header %d", i); m_valid = false; return fsMsgPtr(); }
if( !blockAvailable( m_buffer, m_start, m_end) ) { LOG_RELEASE_ERROR("could not read sub-block %d", i); m_valid = false; return fsMsgPtr(); }
skipHeader(m_start);
long sub_block_data_start = m_start;
bool success = true;
switch(sub_block.id) {
case BLOCKID_INFO: success &= decodeInfo( msg->tracking_data(), m_buffer, m_start); break;
case BLOCKID_POSE: success &= decodePose( msg->tracking_data(), m_buffer, m_start); break;
case BLOCKID_BLENDSHAPES: success &= decodeBlendshapes(msg->tracking_data(), m_buffer, m_start); break;
case BLOCKID_EYES: success &= decodeEyeGaze( msg->tracking_data(), m_buffer, m_start); break;
case BLOCKID_MARKERS: success &= decodeMarkers( msg->tracking_data(), m_buffer, m_start); break;
default:
LOG_RELEASE_ERROR("Unexpected subblock id %d", sub_block.id);
m_valid = false; return msg;
break;
}
if(!success) {
LOG_RELEASE_ERROR("Could not decode subblock with id %d", sub_block.id);
m_valid = false; return fsMsgPtr();
}
uint64_t actual_size = m_start-sub_block_data_start;
if( actual_size != sub_block.size ) {
LOG_RELEASE_ERROR("Unexpected number of bytes consumed %d instead of %d for subblock %d id:%d", actual_size, sub_block.size, i, sub_block.id);
m_valid = false; return fsMsgPtr();
}
}
uint64_t actual_size = m_start-super_block_data_start;
if( actual_size != super_block.size ) {
LOG_RELEASE_ERROR("Unexpected number of bytes consumed %d instead of %d", actual_size, super_block.size);
m_valid = false; return fsMsgPtr();
}
return msg;
}; break;
case fsMsg::MSG_OUT_RIG: {
std::tr1::shared_ptr< fsMsgRig > msg(new fsMsgRig() );
if( !decodeRig(*msg, m_buffer, m_start) ) { LOG_RELEASE_ERROR("Could not decode rig"); m_valid = false; return fsMsgPtr(); }
if( m_start-super_block_data_start != super_block.size ) { LOG_RELEASE_ERROR("Could not decode rig unexpected size"); m_valid = false; return fsMsgPtr(); }
return msg;
}; break;
default: {
LOG_RELEASE_ERROR("Unexpected superblock id %d", super_block.id);
m_valid = false; return fsMsgPtr();
}; break;
}
return fsMsgPtr();
}
static void encodeInfo(std::string &buffer, const fsTrackingData & _trackingData) {
BlockHeader header(BLOCKID_INFO, sizeof(double) + 1);
write_pod(buffer, header);
write_pod(buffer, _trackingData.m_timestamp);
unsigned char tracking_successfull = _trackingData.m_trackingSuccessful;
write_pod( buffer, tracking_successfull );
}
static void encodePose(std::string &buffer, const fsTrackingData & _trackingData) {
BlockHeader header(BLOCKID_POSE, sizeof(float)*7);
write_pod(buffer, header);
write_pod(buffer, _trackingData.m_headRotation.x);
write_pod(buffer, _trackingData.m_headRotation.y);
write_pod(buffer, _trackingData.m_headRotation.z);
write_pod(buffer, _trackingData.m_headRotation.w);
write_pod(buffer, _trackingData.m_headTranslation.x);
write_pod(buffer, _trackingData.m_headTranslation.y);
write_pod(buffer, _trackingData.m_headTranslation.z);
}
static void encodeBlendshapes(std::string &buffer, const fsTrackingData & _trackingData) {
uint32_t num_parameters = _trackingData.m_coeffs.size();
BlockHeader header(BLOCKID_BLENDSHAPES, sizeof(uint32_t) + sizeof(float)*num_parameters);
write_pod(buffer, header);
write_pod(buffer, num_parameters);
for(uint32_t i = 0; i < num_parameters; i++)
write_pod(buffer, _trackingData.m_coeffs[i]);
}
static void encodeEyeGaze(std::string &buffer, const fsTrackingData & _trackingData) {
BlockHeader header(BLOCKID_EYES, sizeof(float)*4);
write_pod(buffer, header);
write_pod(buffer, _trackingData.m_eyeGazeLeftPitch );
write_pod(buffer, _trackingData.m_eyeGazeLeftYaw );
write_pod(buffer, _trackingData.m_eyeGazeRightPitch);
write_pod(buffer, _trackingData.m_eyeGazeRightYaw );
}
static void encodeMarkers(std::string &buffer, const fsTrackingData & _trackingData) {
uint16_t numMarkers = _trackingData.m_markers.size();
BlockHeader header(BLOCKID_MARKERS, sizeof(uint16_t) + sizeof(float)*3*numMarkers);
write_pod(buffer, header);
write_pod(buffer, numMarkers);
for(int i = 0; i < numMarkers; i++) {
write_pod(buffer, _trackingData.m_markers[i].x);
write_pod(buffer, _trackingData.m_markers[i].y);
write_pod(buffer, _trackingData.m_markers[i].z);
}
}
// Inbound
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgTrackingState &msg) {
encode_message(msg_out, msg.tracking_data());
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgStartCapturing &msg) {
BlockHeader header(msg.id());
write_pod(msg_out, header);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgStopCapturing &msg) {
BlockHeader header(msg.id());
write_pod(msg_out, header);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgCalibrateNeutral &msg) {
BlockHeader header(msg.id());
write_pod(msg_out, header);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgSendMarkerNames &msg) {
BlockHeader header(msg.id());
write_pod(msg_out, header);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgSendBlendshapeNames &msg) {
BlockHeader header(msg.id());
write_pod(msg_out, header);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgSendRig &msg) {
BlockHeader header(msg.id());
write_pod(msg_out, header);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgHeadPoseRelative &msg) {
BlockHeader header(msg.id());
write_pod(msg_out, header);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgHeadPoseAbsolute &msg) {
BlockHeader header(msg.id());
write_pod(msg_out, header);
}
// Outbound
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgSignal &msg) {
BlockHeader header(msg.id());
write_pod(msg_out, header);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsTrackingData &tracking_data) {
Size start = msg_out.size();
BlockHeader header(fsMsg::MSG_OUT_TRACKING_STATE);
write_pod(msg_out, header);
uint16_t N_blocks = 5;
write_pod(msg_out, N_blocks);
encodeInfo( msg_out, tracking_data);
encodePose( msg_out, tracking_data);
encodeBlendshapes(msg_out, tracking_data);
encodeEyeGaze( msg_out, tracking_data);
encodeMarkers( msg_out, tracking_data);
update_msg_size(msg_out, start);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgMarkerNames &msg) {
Size start = msg_out.size();
BlockHeader header(msg.id());
write_pod(msg_out, header);
write_small_vector(msg_out,msg.marker_names());
update_msg_size(msg_out, start);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgBlendshapeNames &msg) {
Size start = msg_out.size();
BlockHeader header(msg.id());
write_pod(msg_out, header);
write_small_vector(msg_out,msg.blendshape_names());
update_msg_size(msg_out, start);
}
void fsBinaryStream::encode_message(std::string &msg_out, const fsMsgRig &msg) {
Size start = msg_out.size();
BlockHeader header(msg.id());
write_pod(msg_out, header);
write_vector(msg_out, msg.mesh().m_quads); // write quads
write_vector(msg_out, msg.mesh().m_tris);// write triangles
write_vector(msg_out, msg.mesh().m_vertex_data.m_vertices);// write neutral vertices
write_small_vector(msg_out, msg.blendshape_names());// write names
write_pod(msg_out,uint16_t(msg.blendshapes().size()));
for(uint16_t i = 0;i < uint16_t(msg.blendshapes().size()); i++)
write_vector(msg_out, msg.blendshapes()[i].m_vertices); // write blendshapes
update_msg_size(msg_out, start);
}
}